

Software has become a strategic societal resource in the last few decades.
e emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software – sometimes also referred to as
“Open Source” or “Libre Software” – can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. ese freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. e FTA attempts to respond to
this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (e Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Preface

GNUFDL • PID_00148363 Implementation of free software systems

Acknowledgements

The authors would like to thank the Foundation for the

Universitat Oberta de Catalunya (http://www.uoc.edu) for

the funding of this project, which forms part of the

International Master's Degree in Free Software offered by

the University.

They would also like to thank Jordi Mas for his help in

coordinating the first edition of this material.

GNUFDL • PID_00148363 11 Implementation of free software systems

Annex

GNU�Free�Documentation�License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional

and useful document "free" in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of

the document must themselves be free in the same sense. It complements

the GNU General Public License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come

with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction

or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be distributed

under the terms of this License. Such a notice grants a world-wide, royalty-free

license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any

GNUFDL • PID_00148363 12 Implementation of free software systems

member of the public is a licensee, and is addressed as "you". You accept

the license if you copy, modify or distribute the work in a way requiring

permission under copyright law.

A "Modified Version" of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifications

and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the

Document that deals exclusively with the relationship of the publishers or

authors of the Document to the Document's overall subject (or to related

matters) and contains nothing that could fall directly within that overall

subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could

be a matter of historical connection with the subject or with related matters,

or of legal, commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles are

designated, as being those of Invariant Sections, in the notice that says that

the Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant.

The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as

Front-Cover Texts or Back-Cover Texts, in the notice that says that the

Document is released under this License. A Front-Cover Text may be at most

5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the general public,

that is suitable for revising the document straightforwardly with generic text

editors or (for images composed of pixels) generic paint programs or (for

drawings) some widely available drawing editor, and that is suitable for input

to text formatters or for automatic translation to a variety of formats suitable

for input to text formatters. A copy made in an otherwise Transparent file

format whose markup, or absence of markup, has been arranged to thwart or

discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount of text.

A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII

without markup, Texinfo input format, LaTeX input format, SGML or

XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples of

GNUFDL • PID_00148363 13 Implementation of free software systems

transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary

word processors, SGML or XML for which the DTD and/or processing tools

are not generally available, and the machine-generated HTML, PostScript or

PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such

following pages as are needed to hold, legibly, the material this License

requires to appear in the title page. For works in formats which do not have

any title page as such, "Title Page" means the text near the most prominent

appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following text

that translates XYZ in another language. (Here XYZ stands for a specific

section name mentioned below, such as "Acknowledgements", "Dedications",

"Endorsements", or "History".) To "Preserve the Title" of such a section when

you modify the Document means that it remains a section "Entitled XYZ"

according to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the copyright

notices, and the license notice saying this License applies to the Document

are reproduced in all copies, and that you add no other conditions whatsoever

to those of this License. You may not use technical measures to obstruct

or control the reading or further copying of the copies you make or

distribute. However, you may accept compensation in exchange for copies.

If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document's

license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

GNUFDL • PID_00148363 14 Implementation of free software systems

cover, and Back-Cover Texts on the back cover. Both covers must also clearly

and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of

the Document and satisfy these conditions, can be treated as verbatim copying

in other respects.

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using public

has access to download using public-standard network protocols a complete

Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps, when

you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at

least one year after the last time you distribute an Opaque copy (directly or

through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance

to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified

Version under precisely this License, with the Modified Version filling the

role of the Document, thus licensing distribution and modification of the

Modified Version to whoever possesses a copy of it. In addition, you must do

these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that

of the Document, and from those of previous versions (which should, if there

were any, be listed in the History section of the Document). You may use the

same title as a previous version if the original publisher of that version gives

permission.

GNUFDL • PID_00148363 15 Implementation of free software systems

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,

as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled "History" in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network

locations given in the Document for previous versions it was based on. These

may be placed in the "History" section. You may omit a network location for

a work that was published at least four years before the Document itself, or if

the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the

Title of the section, and preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text

and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be

included in the Modified Version.

GNUFDL • PID_00148363 16 Implementation of free software systems

N. Do not retitle any existing section to be Entitled "Endorsements" or to

conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices

that qualify as Secondary Sections and contain no material copied from the

Document, you may at your option designate some or all of these sections as

invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other

section titles.

You may add a section Entitled "Endorsements", provided it contains nothing

but endorsements of your Modified Version by various parties--for example,

statements of peer review or that the text has been approved by an

organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts

in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old

one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or imply

endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are

multiple Invariant Sections with the same name but different contents, make

the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else

a unique number.

GNUFDL • PID_00148363 17 Implementation of free software systems

Make the same adjustment to the section titles in the list of Invariant Sections

in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the

various original documents, forming one section Entitled "History"; likewise

combine any sections Entitled "Acknowledgements", and any sections Entitled

"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License

in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and

independent documents or works, in or on a volume of a storage or

distribution medium, is called an "aggregate" if the copyright resulting from

the compilation is not used to limit the legal rights of the compilation's users

beyond what the individual works permit.

When the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative works

of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of

the Document, then if the Document is less than one half of the entire

aggregate, the Document's Cover Texts may be placed on covers that bracket

the Document within the aggregate, or the electronic equivalent of covers if

the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing

Invariant Sections with translations requires special permission from their

GNUFDL • PID_00148363 18 Implementation of free software systems

copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You

may include a translation of this License, and all the license notices in the

Document, and any Warranty Disclaimers, provided that you also include

the original English version of this License and the original versions of those

notices and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the original

version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",

or "History", the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except

as expressly provided for under this License. Any other attempt to copy,

modify, sublicense or distribute the Document is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the

Document specifies that a particular numbered version of this License "or any

later version" applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been

published (not as a draft) by the Free Software Foundation. If the Document

does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

Copyright (c) YEAR YOUR NAME.

GNUFDL • PID_00148363 19 Implementation of free software systems

Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.2 or any

later version published by the Free Software Foundation; with no Invariant

Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free

Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of free

software license, such as the GNU General Public License, to permit their use

in free software.

Free software
implementation,
projects and
companies

Amadeu Albós Raya
Óscar David Sánchez Jiménez

PID_00148382

GNUFDL • PID_00148382 Free software implementation, projects and companies

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148382 Free software implementation, projects and companies

Index

Introduction... 7

Objectives... 9

1. Introduction to the implementation of free software

systems.. 11

1.1. Basic concepts ... 11

1.1.1. Definition ... 11

1.1.2. The organisation's strategic plan 12

1.1.3. Origin of systems implementation 13

1.1.4. Resources of a systems implementation project 14

1.1.5. The main stages of a systems implementation

project .. 15

1.1.6. Feasibility and evaluation of the project 17

1.1.7. Project methodology ... 18

1.2. Types of project ... 19

1.2.1. Classification by scope .. 19

1.2.2. Classification by requirement aim 22

1.3. Free software systems .. 25

1.4. Management of free software projects .. 27

1.4.1. Scope management .. 27

1.4.2. Time management ... 28

1.4.3. Integration management ... 31

1.4.4. Cost management .. 31

1.4.5. Quality management ... 32

1.4.6. Human resources management 32

1.4.7. Communication management 33

1.4.8. Risk management .. 33

1.4.9. Supply management .. 35

2. Free software projects... 36

2.1. Life cycle ... 36

2.1.1. The project ... 37

2.1.2. The stages .. 38

2.1.3. Execution ... 40

2.1.4. Results .. 41

2.2. Study of the current situation .. 42

2.2.1. Identification of the system .. 43

2.2.2. Case study development ... 44

2.2.3. Final evaluation ... 45

2.3. Study of the implementation requirements 47

GNUFDL • PID_00148382 Free software implementation, projects and companies

2.3.1. Identification and definition ... 49

2.3.2. Specification and structuring .. 49

2.3.3. Verification ... 51

2.3.4. Validation ... 52

2.3.5. Final evaluation ... 53

2.4. Analysis of free software solutions ... 54

2.4.1. Search for solutions ... 55

2.4.2. Analysis and assessment of candidates 57

2.4.3. Final evaluation ... 59

2.5. Formalisation of the proposal ... 61

2.5.1. Drafting of the proposal .. 63

2.5.2. Design of the proposal .. 64

2.5.3. Presentation of the proposal ... 66

2.5.4. Final evaluation ... 67

2.6. Development ... 68

2.6.1. Allocation of resources .. 69

2.6.2. Software configuration and/or development 71

2.6.3. Final evaluation ... 72

2.7. Implementation and migration .. 74

2.7.1. Types of migration .. 74

2.7.2. Migration strategies ... 76

2.7.3. Hardware and software inventories 77

2.7.4. Network and structure diagrams 79

2.7.5. Execution of migration ... 81

2.7.6. Evaluation of the migration .. 83

2.7.7. Migration of the services of a system 84

2.8. User training, communication and support 93

2.8.1. Training .. 94

2.8.2. Introduction to free software .. 95

2.8.3. Project communication ... 96

2.8.4. User support system .. 97

3. Free software companies.. 98

3.1. Business models .. 99

3.1.1. Development .. 101

3.1.2. Consulting ... 103

3.1.3. Installation and integration .. 105

3.1.4. Systems migration ... 106

3.1.5. Systems administration and maintenance 108

3.1.6. Support and training ... 109

3.2. Business plan ... 110

3.2.1. Executive summary ... 112

3.2.2. Introduction ... 113

3.2.3. Description of the business ... 114

3.2.4. Organisation of production ... 115

3.2.5. Internal organisation and human resources 116

3.2.6. Market study .. 117

GNUFDL • PID_00148382 Free software implementation, projects and companies

3.2.7. Marketing plan .. 119

3.2.8. Financial analysis ... 121

3.2.9. Legal form .. 123

3.2.10. Risk management .. 123

3.2.11. Summary and evaluation .. 124

3.2.12. Business plans and free software 124

3.3. Production of free software .. 125

3.3.1. Creation and presentation of the project 126

3.3.2. Infrastructure ... 129

3.3.3. Organisation of the community 132

3.3.4. Development .. 135

3.3.5. Releasing and packaging ... 137

3.3.6. Choice of licences .. 140

Summary.. 141

Glossary.. 143

Bibliography... 145

Appendix.. 146

GNUFDL • PID_00148382 7 Free software implementation, projects and companies

Introduction

This module looks in detail at the methodology used to implement free

software systems in organisations and generic scenarios, establishing the main

features that will guide the project and its development.

Technology is now becoming a strategic factor in both public and private

organisations, whether small, medium or large. The integration of technology

in all of the organisation's functional and operating processes means that its

state of operation is closely related to the production of the organisation. As

a result, we need to systematically monitor the efficiency and effectiveness of

the system in order to control performance in line with the evolution of the

strategic needs of the organisation.

The implementation of systems cannot be left at random or to the

convenience of factors that are irrelevant to the organisation because the

results can be unexpected and have consequences of varying magnitudes for

the organisation. Hence, we can see the need for a rigorous implementation of

systems with the methodology used in scientific and technological circles, by

which we establish a framework of support with guarantees for management

of the complexity, development of the project and management of the risks

inherent both to the technology and the system implementation process.

The main aim of this module is to provide a broad and detailed vision of

the main processes related to the implementation of free software systems,

both in a generic or abstract context and from a perspective focusing on the

characteristics of the functional and operational management of the project

to implement the system, or considering the free software business as a valid

and viable option for a profitable company.

All of the above must be subject to a methodical and rigorous management

allowing, on the one hand, satisfactory management of the complexity of

solving the specific problems of the systems implementation project and, on

the other, keeping under control all of the potential risks that could cause the

project to fail in one way or another, whether prematurely or while the system

is already in operation, both important consequences for the organisation and

its users.

The contents of this module are divided into three units that gradually

introduce the key theoretical concepts of the process of implementing a

system in an organisation. Its sections present the implementation of systems

from the perspective of free software, analysing the main features that will

produce a successful project both from a project management perspective and

GNUFDL • PID_00148382 8 Free software implementation, projects and companies

from that of the implementation of free software as a profitable business. A

brief summary then follows of the main features of each of the units in this

module.

The first section, "Introduction to systems implementation", gives a general

presentation of systems implementation and the features of free software.

We define the term "systems implementation" as an action resulting from

the strategy of the organisation, detailing the different reasons leading to

implementation, the main stages of the process and a classification of the

main typologies based on project context and aim. We present the specific

features of free software, their effects on systems implementation and the

functional management of the project in terms of scope, time, integration,

cost, quality, human resources, communication and risks.

The second section, "Free software projects", presents the free software

implementation project in detail from the point of view of its

methodology. We define the life cycle of the project and its main

characteristics, repercussions and relationship with the aims. The stages of the

implementation project are described in detail: study of the current situation,

study of implementation issues, analysis of free software solutions, formalising

of the proposal, development, implementation and migration, and lastly,

training, communication and support for users. Each of the stages is defined

and described in detail in relation to its specific and global objectives.

The third section, "Free software companies", provides a detailed description

of free software companies as a valid and viable alternative to sales of copies

of software. We present the main business models for free software, based

primarily on the production and sale of extra services. Lastly, we take a detailed

look at the features of the business plan of free software companies, focusing

on aspects such as definition, scope, organisation, human resources and

materials, production, product evolution, quality control and monitoring,

guarantees and user support, economics, financing and the project feasibility

study.

We hope that the conceptual, methodological and practical formalising of the

main aspects of the project to implement free software systems will enable

you to understand the need for and importance of the process and the actions

that must be taken to guarantee the strategic aims of the project.

GNUFDL • PID_00148382 9 Free software implementation, projects and companies

Objectives

The aims of this module are:

1. to be aware of the basic concepts of the implementation of free software

systems;

2. to be able to identify the different types of project to implement free

software systems;

3. to be familiar with the project management areas and their specific

features in application to free software;

4. to know the main elements of free software projects;

5. to know the life cycle phases of free software projects;

6. to learn how to draft a free software project proposal;

7. to obtain an in-depth knowledge of the features of free software migration

projects;

8. to learn how to plan and execute free software migration projects;

9. to know the business models used by free software companies;

10. to become familiar with the main elements of a business plan;

11. to learn how to draw up a business plan based on free software; and

12. to know the main characteristics of free software production and its

specific features.

GNUFDL • PID_00148382 11 Free software implementation, projects and companies

1. Introduction to the implementation of free
software systems

This first module of this subject, Implementation of free software systems,

provides the basis for discovering the main concepts of the implementation

of systems in general, and its application to free software in particular.

The module begins with an overview of the basic concepts of systems

implementation projects, characterising the different phases of the process

from a methodological and functional point of view and analysing the close

relationship between the strategic objectives of the organisation and the

implementation project.

We then provide a classification of the most common types of implementation

project, indicating their basic characteristics and the differences between

them, and carefully analysing the implications of this for the objectives and

performance of the project.

After summarising the basic concepts of systems implementation and the

different types of project it includes, we look at the specific features of

the implementation of free software systems. We analyse the main factors

influencing the project and the pros and cons of implementation with free

software.

Lastly, we look at the basic concepts of project management and expand on

the classical models in order to adapt them to the specific features of free

software implementation.

1.1. Basic concepts

This first section provides an overview of the basic concepts of systems

implementation, from conceptual definition to its main phases, including

methodological, strategic and organisational aspects.

1.1.1. Definition

Systems implementation has always been closely associated with the

evolution and popular diffusion of technology. In fact, if we consider

this concept from a global perspective, any innovation – technological or

otherwise – that we wish to extend beyond the borders of the context of its

creators needs to undergo an implementation process.

GNUFDL • PID_00148382 12 Free software implementation, projects and companies

When implementing technology, we need to pay attention to certain basic

aspects, such as the impact on the organisation and direct users, but also

on indirect users and clients, for example. Furthermore, technology – in

the global and generic sense – is currently seen as a decisive factor in the

competitive evolution of organisations.

Systems implementation is the process by which one or more

technological innovations are introduced into an organisation, as the

result of an action deriving from its strategic plan.

In line with this definition, the implementation of technological systems is

the result of an organisation's strategic desire to reach new milestones, whose

aims can be very wide-ranging, depending on the context of the organisation.

We can illustrate this concept with two examples from different contexts:

• Companies, as profit-making organisations, can take action concerning

the technology they use in an attempt to increase their competitiveness

and obtain greater market shares, thus being able to offer more innovative

products or ones tailored to new demands.

• Government agencies, as non-profit-making organisations, can take

action concerning the technology accessible by the region they govern in

an attempt to provide competitive tools that will reduce the digital divide

and develop the sector's economy.

1.1.2. The organisation's strategic plan

In the previous section we mentioned the organisation's strategic plan and its

important role in systems implementation.

An organisation's strategic plan is a series of proposals setting down

the future aims or directions of the organisation. It usually covers a

five year period and is developed in the diverse divisions or functional

departments of the organisation.

The main aim of the plan is to minimise the risks and maximise the results

of implementation by marking out real, affordable and measurable directions

generated by the relationship between the organisation and the area in which

operates.

GNUFDL • PID_00148382 13 Free software implementation, projects and companies

Very often, SWOT1 analysis is used to diagnose the organisation's current

situation. This tool summarises in a single table the main factors influencing

the structural operation of the organisation in its context at a given time.

Considering that the system implemented has to meet the current and future

needs of the organisation, we can understand the importance of the link

between the organisation's strategic plan and the implementation project.

The organisation's strategic plan evolves over time and adapts dynamically

to changes in the context in which it is carried out. Additionally, the

organisation's system must evolve with strategic changes and must conclude

some of the actions begun with a new systems implementation project.

1.1.3. Origin of systems implementation

In the preceding paragraphs, we saw the link between the implementation

project and the organisation's strategic plan. Organisations do not introduce

implementation projects without first determining that they are necessary for

their specific strategies.

Thus, the implementation of a system requires having detected

deficiencies in the organisation's current system, although they can

also be implemented in new organisations or those without prior

technological positioning.

Broadly speaking, there are four generic origins leading to the implementation

of a new system:

• Detection�of�problems: there may be diverse cases in which the current

system operates inefficiently, which compromises the everyday tasks of its

users and the reliability of the system.

In these cases, the strategic plan is chiefly affected by loss of performance

and efficiency in the organisation.

An example of this type of situation could be programming errors that

produce inaccurate calculations, access errors or system locking.

• System�evolution: this covers situations in which the current system is

functionally obsolete, which compromises the organisation's operation

due to the lack of features to solve the increasing number of issues in the

organisation.

In these cases, the strategic plan is affected by the organisation's loss of

effectiveness. An example of this type of situation might be the need to

increase features following a change in legislation.

(1)SWOT is an acronym
for strengths, weaknesses,
opportunities, threats).

GNUFDL • PID_00148382 14 Free software implementation, projects and companies

• System� enhancement: in these situations, the system in place is

structurally obsolete, which compromises the organisation's operation

due to the poor performance of the platform of the current system.

In these cases, the strategic plan is affected by the loss of performance

and efficiency of the organisation. An example of this situation might

be the lack of integration of new operating systems or different types of

hardware.

• New� strategic� action: this includes possible updates, changes or

innovations in the organisation's strategic plan not covered by the current

system.

In these cases, the strategic plan is affected by the organisation's loss of

effectiveness. An example of this type of situation might be an increase in

the services offered or expansion of the target market.

The above list of possible origins is not all-inclusive but it does indicate the

most logical reasons for systems implementation. In addition, the different

cases are not mutually exclusive and their coincidence can be strongly

motivated by the evolution of the organisation and its system.

1.1.4. Resources of a systems implementation project

Normally, once the need to adapt the current system to the organisation's

strategic plan has been noted, resources are allocated to the new systems

implementation project. Initially, these resources usually take the form of one

or more individuals with free time to spend on the project, with the financial

repercussions that this will have on the everyday workings of the organisation

(insourcing2).

(2)The term insourcing refers to the
internal delegation or production
of a process.

Some organisations prefer to leave this task to professionals outside

the company (subcontracting or outsourcing3) for reasons of functional

objectivity, production capacity or time availability. In these instances, it is

not the case that the organisation spends no time at all on the project; rather,

this time is reduced by the degree to which outsourcing increases, since both

the organisation and the external professionals need one another to bring the

project to successful completion.

One of the key points of an implementation project, regardless of its final

form of execution, is the creation of a supervisory or monitoring committee

for the project (executive committee in some organisations). This committee

is charged with the methodological execution of the project and its adequate,

gradual and sustained progress over time.

The supervisory committee is normally made up of individuals from the

various divisions affected by implementation, mainly management staff and

heads of department. If the organisation contracts external professionals to

(3)The term outsourcing refers
to the external delegation or
production of a process.

GNUFDL • PID_00148382 15 Free software implementation, projects and companies

manage the implementation, they will also form part of the committee.

Although most of the committee members only spend part of their time on

it, there is usually at least one member that works on the project full-time to

ensure rigorous monitoring.

The importance of resources in the implementation of a system is twofold:

• Firstly, human resources are allocated based on the quantity and quality

in the analysis and design of the system implementation.

• And secondly, material resources are allocated according to the quality and

quantity of the system to be implemented.

In all events, the resources allocated to a systems implementation project will

have a direct effect on the finances of the organisation.

1.1.5. The main stages of a systems implementation project

As we explained above, a systems implementation project is a methodological

process designed to adapt the system to the strategic plan. This process must

be performed with due care and attention in order to guarantee the success

of the project.

From a generic point of view, we can break the systems implementation

process down into four main phases: analysis of the current system,

design of the new system, development, and implementation of the

system.

Analysis�of�the�current�system

All implementation projects begin with a study and analysis of the current

status of the organisation in the terms indicated by the strategic action. There

are two possible initial situations:

• If the organisation has a system in place, its characteristics are assessed

by collecting information on the elements affecting the strategic action

and their structure. The aim of this is to create an abstract framework for

adapting the system to the new strategy.

• If the organisation does not have a system in place (or it is a new

organisation), we need to evaluate the features of the area of action that

will be affected by the strategic scope of the organisation's operation. We

will need to create an abstract framework of aims that the implementation

project must meet.

GNUFDL • PID_00148382 16 Free software implementation, projects and companies

In either case, this stage defines and determines the problems that the

implementation project will need to overcome, given that we will select the

different aims of the strategic action. We evaluate aspects such as system

history, structure and operation or the evolution of issues and workload over

time. Many of these results are presented in the form of charts or diagrams.

The stage ends with a presentation of the conclusions of the study and an

analysis of the current status, which evaluate the extent to which the system

can stand up to new strategic challenges.

Design�of�the�new�system

Once we have assessed the initial situation of the organisation, defined the

main points of the strategic action and received confirmation of monitoring

from the project's executive committee, we can begin to design the new

system.

This stage begins with a thorough analysis of the issues that the new

implementation will need to resolve, based on the strategic actions we have

defined. We will come up with different solutions or alternatives for these

problems that we will need to analyse individually to gauge their suitability

and determine their costs, advantages and disadvantages, both tangible and

intangible. Depending on the type of project and strategic action, this

evaluation will cover a five-year period.

We must be objective and use a methodology when choosing our solution

in order to maximise the advantages and minimise the disadvantages

both of implementation of the solution and its everyday operation. Some

decision-making criteria may concern the scope of the action, performance,

the necessary equipment, the requirements covered, provider support,

availability of equipment and support, and the maintenance required over

time.

Development�of�the�new�system

After receiving confirmation of the project monitoring by the supervisory

committee, we can begin to develop the new system.

The development of the system or adaptation of the proposed solutions adopts

a life cycle most suited to the purpose of the project, some of which we have

studied in other subjects. At the end of this stage, we obtain a system ready

to be implemented in the organisation that will resolve the strategic issues

observed in the previous stage.

Implementation�of�the�system

See also

The subject on Software
engineering in free software
environments contains more
information on the life cycle of
software development.

GNUFDL • PID_00148382 17 Free software implementation, projects and companies

Once the new system is ready, we can begin the implementation phase, which

involves setting up the system in the organisation.

This phase sees the completion of the adaptation and integration of the new

system into the real environment and covers user training, pilot tests and

system integration with end user testing, and the conversion and final release

of the new system.

If the organisation already has a system in place, we must also take into

account the migration from the old system to the new one. Migration involves

transferring the current status of the system in place to the new system. Data

transfer is usually the most important task of migration, since this activity

cannot affect the day-to-day running of the organisation.

This stage ends with the final implementation of the new system, data

migration and user training. In other words, we will have fully introduced

the elements needed for performance of the strategic action we defined at the

start.

Although a considerable proportion of the implementation project is

completed with the implementation of the system, the maintenance and

continuous evaluation of the system's feasibility remain active as in any other

project, particularly if the new implementation is regarded as a strategic factor

in the competitiveness of the organisation.

1.1.6. Feasibility and evaluation of the project

The previous section outlined the main phases of a systems implementation

project but we also need to consider the importance of at least two control

points for the project.

The first is the feasibility and continuation of the project, which is assessed

on the basis of two milestones:

• The first milestone occurs after the current status analysis stage, in which

we analyse and discuss the current system status in terms of the strategic

action.

• The second milestone takes place after the design stage, which involves

an analysis and discussion of the proposed solutions.

For instance, the convenience of continuing the project could be questioned

given the financial implications of its development.

GNUFDL • PID_00148382 18 Free software implementation, projects and companies

The second control point is the project evaluation, which takes place once

the system has been fully implemented in the organisation. At this milestone,

now that implementation is complete, we analyse the true repercussions of

the new system by evaluating the measurable impact factors described in the

strategic action that led to the implementation process. The aim is to evaluate

the new system's concordance with the strategy of the organisation. These

measurable indicators are observed from a longitudinal perspective.

For example, we can evaluate the impact of the new system on the

organisation's production capacity or on its ability to attract new clients.

1.1.7. Project methodology

As in all strategic projects, systems implementation must be carried out in a

methodological, structured and orderly way. The importance of the project

outcome for the development of the organisation dictates the precision with

which it needs to be carried out.

To illustrate this concept, we can contrast it with the methodology applied

to life cycle in software development and the importance of the conceptual

analysis and solution design phases. Here we can see the problems caused

by not detecting failures in the analysis and design stages. Solving a design

problem detected at the development stage is generally considered to have a

possible cost ratio of one to ten.

Systems implementation projects also require maximum precision in the

analysis and design phases because of the strategic implications of the new

implementation on the organisation's evolution.

The stages described in the previous sections have a sequential behaviour,

inherent to their aims, but we can still specialise the methodology for

execution of each stage in order to achieve our aims more efficiently. One

example would be the distribution below:

• The current system analysis phase may use an iterative method, with

feedback obtained from the study results.

Longitudinal perspective

Observing measurable
indicators from a longitudinal
perspective means that the
observation is not unique in
time but is in fact repeated
several times over a previously
defined period.

• The design and development phases may use an XP4 method if we are

developing software, or a classical schema if we are implementing an

infrastructure.

• The implementation phase can use an iterative process if it affects a

number of units, with the possibility of maintaining more than one line

of implementation for each time unit.

(4)XP stands for eXtreme
Programming, an agile software
development methodology.

GNUFDL • PID_00148382 19 Free software implementation, projects and companies

In all events, we will need to adapt the methodology of each stage to the

convenience of the project and the organisation, always with the aim of

maximising efficiency and minimising any negative impact.

1.2. Types of project

This section contains a general classification of the different types of

implementation project and describes the diverse features and main

implications for project development.

It offers two classifications, one based on project scope, that is, the

repercussions and scope of the implementation, and a second that considers

the aim of the project, that is, the contents of the implementation.

This classification should not be regarded as a rigid structure, since the true

diversity of the projects allows a combination of different typologies.

1.2.1. Classification by scope

We can define three broad scopes of action for implementation projects:

1)�Internal

Projects whose scope is internal are designed to implement a local

system in an organisation that will primarily be used internally.

Examples of projects with an internal scope are those implementing local

network services (directory, authentication or data sharing services), those

implementing tools in local groups (internal mail or groupware) or those

implementing internal management tools (ERP systems).

The strategic aim of this type of project is to introduce functional internal

improvements to the efficiency and efficacy of work through technological

renovation. These are normally used in scenarios in which the current system

reveals functional deficiencies or is unreliable.

The main implications for project development are as follows.

• Evaluation� of� the� current� system: This stage basically evaluates the

system from a functional perspective, pinpointing and evaluating the

aspects of the system that could cause problems, always taking the

strategic action outlined by the organisation as a reference.

• Design�of�the�new�system: The issues analysis carried out at the design

stage must allow us to compare two alternatives for implementation:

GNUFDL • PID_00148382 20 Free software implementation, projects and companies

on the one hand, evolution of the current system, and, on the other, a

complete overhaul of this system.

While evolution seeks to partially update the current system in order

to extend its useful life, a complete overhaul requires changing various

elements of the system (hardware and/or software).

• Development�of�the�new�system: There are no major differences in the

development stage. In all events, the local scope of the project can help

us to define the latter and provide a strategic resolution.

• Implementation: The project's internal scope can help with progressive

implementation (of time and/or services) which, along with staff

training, must contribute to the creation of a mood of acceptance while

guaranteeing the day-to-day operation of the organisation.

2)�External

The aim of external projects is to implement a system essentially

for public use in the organisation, connecting external agents to the

organisation. The system can be placed locally or remotely.

Examples of projects with an external scope are those that implement

corporate intranets or extranets (tailored access to workers, clients

or suppliers) or implementation of electronic government services

(e-government or e-voting).

The strategic aim of this type of project is to introduce functional

improvements to the organisation in its external dealings, enhancing

the efficiency and efficacy of its communication through technological

renovation. They are normally used in scenarios in which the management of

digital relations with third parties is complex or inefficient and in cases where

we are looking to improve the corporate image and target market.

The main implications for project development are as follows.

• Evaluation� of� the� current� system: This stage basically evaluates the

system from a relational, communicative and interactive perspective. Data

collection cannot be limited to the internal part of the organisation, so

contact with external agents will be required. Regardless of whether or

not there is a system in place, the aim of the strategic action will be

to highlight the shortcomings and weaknesses of the current relational

implementation.

• Design�of�the�new�system: The design of the new system basically needs

to cover two types of aim: the efficiency and efficacy of user functionality,

GNUFDL • PID_00148382 21 Free software implementation, projects and companies

and considerations relating to the corporate image that the organisation

wishes to convey to the target market.

• Development� of� the� new� system: There are no major differences

in the development stage. However, it should be noted that security

management is particularly important with this type of project.

• Implementation: The full implementation of these systems can be carried

out in two phases: we can first set up the basic system and then we

can progressively update the services and contents over time, taking into

account the opinions of external users on the changes that have taken

place (feedback).

3)�Productive

The aim of projects with a productive scope is to implement a system in

a different environment to that of the organisation managing and/or

developing the project (outsourcing).

Examples of projects with a productive scope include core software

implementation (operating systems), specialist software implementation

(office automation tools, accounting, invoicing, etc.) and implementation of

outsourced services (subcontracting of website services).

The strategic aim of this type of project is to meet the demands or needs for

technology services of other organisations or external groups from diverse

fields. It is normally used in scenarios associated with opportunities for a

strategic and technological change in the target market.

The main implications for project development are as follows.

• Evaluation� of� the� current� system: This stage basically evaluates the

system from two different angles. Firstly, specialised projects for an

organisation with specific strategic needs to be met.

And secondly, direct implementation projects (operating systems or office

automation tools), designed to provide generic solutions for a large market

segment. In both cases, the importance of studying the status of the

current situation is clear.

• Design�of� the�new�system: There are no significant differences in the

design stage. Specialised projects are carried out in accordance with the

internal or external project considerations in the client organisation while

direct implementation projects need to meet everyday operating needs

GNUFDL • PID_00148382 22 Free software implementation, projects and companies

and/or offer new features. The technology used in the project is important

for the corporate image of the organisation.

• Development�of�the�new�system: There are no major differences in the

development stage. It is important for the development to meet the aims

of the client organisation efficiently and effectively, and that this is done

within the fixed time limit.

• Implementation: Specialised projects are implemented based on typology

(internal or external project), with an emphasis on user training

and communication. Direct implementation projects are normally

implemented as a self-installing product package (on CD-ROM or

DVD-ROM, or as a download from the Internet). Some services can be

considered extras (training, migration, etc.) and supplied on request by

the organisation or by third parties.

1.2.2. Classification by requirement aim

Three main groups of aim can be defined for implementation projects:

1)�Software

The aim of software development projects is to implement applications

to meet certain demands. This type can also include projects for the

adaptation, reengineering or integration of software or tools, such as

the adaptation of operating systems or the integration of specialised

software packages.

The strategic aim of this type of project is to provide a technological response

to a specific functional problem. It is normally used in scenarios where systems

are implemented to automate tasks, provide efficient technological support to

users or to evolve or replace obsolete software.

The main implications for project development are as follows.

• Evaluation� of� the� current� system: This stage basically evaluates the

system from a functional perspective, evaluating overall efficiency and

efficacy in terms of the strategic action that launched the project.

In projects involving the creation of new or generic software, the

evaluation focuses on the study and analysis of the current status of the

target market and its main directions.

GNUFDL • PID_00148382 23 Free software implementation, projects and companies

• Design�of� the�new� system: There are no significant differences at the

design stage in the life cycle of software production that we have studied

in other subjects. The use of methodology is important during the analysis

of needs and system design phases to minimise the errors detected at later

stages.

• Development�of�the�new�system: There are no major differences in the

development stage regarding the usual life cycle of this type of project.

Aspects of importance include the mechanisms guaranteeing the quality

of the code produced and the evolution of the code in versions and

revisions.

• Implementation: We can distinguish between two possibilities at the

system implementation stage. On the one hand, the development of

software that needs to be installed in an organisation, which will follow

the usual process, taking into account the possible need for migration

if there is a system already in place. And on the other, common or

generic software, which is usually implemented as a self-installing product

package on a CD-ROM or DVD-ROM, or as a download from the Internet.

Some services can be considered extras (training, migration, etc.) and

supplied on request by the organisation or by third parties.

2)�Infrastructure

See also

For more information on
the life cycle of software
production, see the subject
on Software engineering in free
software environments.

The aim of infrastructure implementation projects is to implement

architectural or structural systems in a given environment. These

projects are usually used to implement functional equipment that

provides a basic service for the organisation.

The strategic aim of this type of project is to provide a functional technological

basis to meet the requirements of the organisation. It is normally used

in scenarios of new creations or technological renovation due to the

system becoming obsolete. We need to remember that the organisation's

infrastructure is its functional basic architecture, on which the rest of the

technological elements will be organised.

The main implications for project development are as follows:

• Evaluation� of� the� current� system: This stage basically evaluates the

system from a functional perspective, taking into account aspects such

as efficiency and efficacy as well as reliability and adaptation to the new

standards of technological evolution.

Functional equipment
providing basic services

This applies to the installation
and configuration of servers
or clients, such as operating
systems, office automation
software, basic network
services (DNS, DHCP, etc.)
and advanced network services
(mail, groupware, etc.).

GNUFDL • PID_00148382 24 Free software implementation, projects and companies

Where there is no previous system in place, we will basically need to take

into account the needs (quality and quantity) of the organisation, together

with current directions and standards.

• Design� of� the� new� system: The design stage deals mainly with the

research and study of the diverse solutions available on the market,

although we cannot rule out the creation or evolution of a solution if

the needs of the organisation so require. By comparing these options, we

should come up with the product that best fits the strategic action, taking

into account evaluation criteria such as the scope, efficiency and efficacy

of the solution, equipment and support requirements, availability and

product maintenance.

• Development�of�the�new�system: The system development stage involves

the preparation of procedures to implement the infrastructure, bearing

in mind that it is sometimes necessary to tailor the product or adapt

configuration files.

• Implementation: If the new system replaces an earlier one, we will

need to migrate from one system to the other. Nonetheless, we can

split implementation into two phases: firstly, the installation and

configuration of the new system features and secondly, start up and status

restore.

User training and communication are essential for this type of project

to ensure acceptance of the new features and for an assessment of its

operation after start-up.

3)�Systems�migration

The aim of systems migration projects is to transfer the status of the

current technological architecture to a different one. These projects

are implemented when one or more main elements of the system are

updated.

The strategic aim of this type of project is to minimise the impact

of technological changes on the operation of the organisation. It is

normally used in scenarios where new software systems or infrastructures are

implemented, but they can also be developed independently to replace the

physical technological platform in order to improve performance, reliability

or in the event of obsolescence.

The main implications for project development are as follows:

• Evaluation� of� the� current� system: This stage evaluates the system

primarily from the point of view of preserving the configuration and

GNUFDL • PID_00148382 25 Free software implementation, projects and companies

stored data. It is important to adopt a methodological approach in the

research and evaluation of the various elements that need to be migrated

to the new system.

• Migration� design: The design stage normally involves studying and

analysing the methods and procedures that we will need to implement

to transfer the status between the two systems. We can consider aspects

such as the preparation of backups or the design of procedures to export

or convert the data in the current system.

• Migration� development: Migration development requires the

performance of all tasks to preserve the data and configuration, and to

export and convert the current system. With this task, we must take into

account the importance of the temporary location, to ensure that data

is transferred fully without interrupting the day-to-day operation of the

organisation. We also need to consider the security guarantees of the

backup medium.

• Implementation: Implementation covers start-up of the new system and

the status restore of the organisation's previous system. The timing of this

process must be planned in conjunction with the migration development

stage in order to minimise the impact of the change on the day-to-day

operation of the organisation, although the progressive restoring of some

minor elements may be possible. Communication and collaboration with

users is particularly important in this type of project if we are to meet the

aims of migration successfully.

1.3. Free software systems

This section introduces the specific features of the implementation of free

software systems. We will analyse the main factors affecting the project and

the myths, advantages and disadvantages of using this type of software.

When we talk about free software, we generally refer to its advantages,

which are fairly well-known. For instance, free software is secure and

good quality, is distributed freely, uses open standards and is based

on the culture of collaboration and promotes the latter. What is

more, it can be used anywhere, enhances technological capabilities,

helps to reduce overheads and operating expenses in IT systems,

reduces dependence on providers and fosters the development of local

companies.

GNUFDL • PID_00148382 26 Free software implementation, projects and companies

However, the companies that implement free software systems come up

against a series of problems that is hindering the sector's development (Sáez

et al).

Generally, to encourage the development of a technology, we need this

technology to be commercially viable – i.e. there has to be a supply and

demand – and economically feasible, in that the companies from that sector

must generate profits through their implementation of the technology.

With demand, that is, the companies that could adopt the free software,

the main obstacles are piracy, fear of change and misgivings. Companies

confuse free software with freeware, and some companies rule out its

implementation either because free software of similar standards is not

available or because they do not believe that there are companies behind this

software guaranteeing its support and maintenance.

With supply, that is, the companies that provide the applications and free

software services, the main obstacles are fear of change and the lack of

cooperation.

On the whole, IT companies are used to developing tailored software solutions

without giving their clients the sources, and setting up a model of licence

payments for their use. And yet, with the appearance of free software, some

companies are seeing that a business model based on payment for services

rather than licences can be sustainable, leading them to release part of the

code that was thus far kept private. Therefore, one possibility that could be

used initially by many companies would be to offer two solutions to clients:

ownership (with a licence fee) and free (normally without a licence fee). This

is just one of many possible business models for free software.

IT companies are also used to developing software on an individual basis

but a better option would be to develop the cooperative model. This would

involve drawing on work done by others, collaborating, and transferring

licence savings to the end client.

Free software projects may be approached as normal projects from the point

of view of software engineering and project management. However, a closer

look will reveal certain differences and specific features that are often only

dealt with correctly with experience and whose omission can affect and even

bring about the failure of some projects.

In the light of this, the use of a comprehensive methodology for the

implementation of free software systems is essential, particularly because:

GNUFDL • PID_00148382 27 Free software implementation, projects and companies

• It gives clients� more� confidence in the quality of the products and

processes, whether we are developing a new programme or application,

migrating an existing system or starting up a new one.

• It allows providers to systematise the procedure for the�implementation

of�free�software�systems and become familiar with their features, which

results in improved efficiency and allays fears of change.

1.4. Management of free software projects

Project management is traditionally divided into nine areas of

knowledge:

• Scope

• Time

• Integration

• Cost

• Quality

• Human Resources

• Communication

• Risks

• Supplies

This section will look at each of these in turn and study their specific features

when applied to projects implementing free software systems.

1.4.1. Scope management

Scope management involves defining the aims of the project so that we can

check to see that they are being met and, if needed, change them. In other

words, scope management ensures that the project carries out all necessary

work – and only the necessary work – so that the initial aims can be met.

Definition�of�the�project�scope

To define the scope of a project, the project manager must establish the

project work breakdown structure (WBS), which divides the project into work

packages, usually represented in the form of a logical tree. A work package

is the smallest unit into which a project can be divided in order to make it

independently manageable.

GNUFDL • PID_00148382 28 Free software implementation, projects and companies

We therefore need to identify everything that needs to be done in the project

through its WBS, briefly describing its work packages and the deliverables that

each one needs or facilitates.

Changes�to�project�scope

It may sometimes be necessary to modify the scope and aims of the project

during its execution. This can be due to the following:

• Shortcomings in the original project plan, especially incorrect definition

of the scope.

• Changes to the needs and requirements of the client established in the

initial project plan.

• Changes to the context of the project and hence, to the hypotheses

considered when the initial project plan was drawn up.

These contingencies may have a significant impact on project execution,

modifying and even preventing it from achieving its aims. Thus, it is essential

to control changes and to take into account risk management.

Scope�management�in�free�software�projects

The features of scope management in free software projects are the same as

those of any other software project. It is essential to obtain and conduct a

detailed analysis of client requirements – and of the current situation of the

system if dealing with a migration project.

The definition of the scope of free software projects will generally depend

on the motivation for the project: cutting costs, system improvement,

independence of distributors or regularising the software licence situation.

Lastly, it is important to note that clients may not always be aware of the

consequences of changes to the project once it is underway.

1.4.2. Time management

The purpose of time management is to ensure that the project is carried out

within the set deadlines. This means that we will need to define the sequence

of activities to be performed, along with their duration and coordination.

Good time planning is an essential part of project management because it

establishes the model by which the project will be carried out. Moreover, it

allows us to ensure that the aims are being met, it lays the foundations for

integrating time, costs and resources, and it sets down a common framework

for the various individuals and partners taking part in it.

GNUFDL • PID_00148382 29 Free software implementation, projects and companies

Project�network

The WBS we saw in the previous section is used to identify the activities

needed to conduct the project, taking into account the fact that an activity

is the smallest part of work into which a project can be divided for planning

purposes.

Following on from this, we need to identify the order in which the activities

will be carried out: independent activities can be carried out simultaneously

while dependent activities require the result of a previous activity for their

performance.

Gantt�chart

A Gantt chart is a tool used to help solve the problem of scheduling activities

(i.e. their organisation on a calendar) and represent in pictorial form the

duration of each activity, its start and end dates and hence, the total time

needed to complete the project. Gantt charts also enable us to monitor the

project's progress because they indicate the completed percentage of each

activity and detect advances or delays in the initial planning.

Gantt charts have a system of coordinates representing:

• Horizontal axis: time scale, in the appropriate units for the project (usually,

days, weeks or months).

• Vertical axis: work packages, activities and subactivities identified in the

WBS, whose duration is represented on the horizontal axis.

The main advantage of Gantt charts is that we do not need masses of

information to be able to use them; in fact, all that is needed is a rough outline

of the project. Hence, they are straightforward to use and particularly effective

in the initial planning of the project. However, once the project is underway,

particularly if it is very complex, Gantt charts can become confusing.

Critical�path�method�and�PERT

To overcome the limitations of Gantt charts, other tools have been developed,

such as the critical path method (CPM) and the PERT method.

The critical path of a project is the sequence of activities that generates

the maximum accumulated time. It determines the shortest time taken to

complete the project if we have all of the necessary resources. To do so, we

need to identify all of the activities correctly and know their duration.

GNUFDL • PID_00148382 30 Free software implementation, projects and companies

To represent the activities and time dependencies, directed graphs are used,

whereby each arrow represents an activity identified by its name and duration,

so their status changes as the project progresses. Each status is represented by

a node between two or more arrows. Thus, some tasks can be conducted at

the same time whereas others cannot.

The main difference between CPM and PERT is their time estimates. CPM

considers activity times (m) to be known exactly and to vary according to the

resources allocated to them. PERT, on the other hand, assumes that activity

times (Te) are determined by a probability distribution generated by the most

likely time estimate (m), the most optimistic time estimate (a) and the most

pessimistic time estimate (b). Thus, the most pessimistic and most optimistic

times give a measure of the uncertainty of each activity.

The following steps are taken to calculate the critical path:

1. Calculate Te or m for each activity, depending on the method used.

2. Calculate the early start dates of each activity (ES) and the last start dates

of each activity (LS).

3. Calculate the float of each activity

The float of an activity

The float of an activity is the spare time we have to determine this activity:

• Float of an event: Hs = LS of the event – ES of the event.
• Float of an activity: Ht = LS of the subsequent event – ES of the previous event –

activity duration.

4. Identify the critical path of the project

A critical activity is one whose start and end points cannot be changed without

modifying the total duration of the project. Critical activities have no float and

the sequence of these critical activities is the critical path. To put it another

way, in a critical activity, the early start date will coincide with the latest start

date and the earliest finish date will coincide with the latest start date of the

activity.

Time�management�in�free�software�projects

The features of time management in free software projects are theoretically

the same as those of any other software project.

Calculating the ES

The ES of each event is
calculated as the maximum
duration of the previous
activities plus the ES of the
previous event. The LS is
the last date on which the
events can take place without
delaying project completion.

See also

To find out more about each
of these methods, see the
bibliography at the end of the
module.

GNUFDL • PID_00148382 31 Free software implementation, projects and companies

In projects developing programmes and applications in which the community

of free software developers plays a key role, correct calculation of software

development deadlines is essential. To do this, we need to know the

background of the community and discuss the future implementation plan.

It is also a good idea to get involved in the community and learn about how

it works before starting the project.

In migration projects, we need to set aside the right amount of time for

training users and introduce a degree of flexibility for the migration of users.

As a result, some free software projects can be accompanied by a degree of

uncertainty, so we recommend the use of the PERT technique to characterise

the most optimistic and pessimistic scenarios in the project plan.

There are many free applications to create and maintain PERT and Gantt

charts.

1.4.3. Integration management

The purpose of integration management is to ensure that the different parts

of the project are coordinated correctly. This includes developing the project

plan and the project execution plan and tracking any changes that may occur.

Integration�management�in�free�software�projects

The features of integration management in free software projects are generally

the same as those of any other software project, but we need to bear in mind

a few points.

By and large, integration in free software based projects has certain advantages

over that of proprietary software projects, mainly due to their open source

and the use of open standards for interoperability between applications,

particularly with those developed outside the project.

In development projects carried out in collaboration with a community not

forming part of the project, it is important to make known and discuss the

implementation plan both of the project and the community, in order to

identify possible incompatibilities that could affect integration.

1.4.4. Cost management

The purpose of cost management is to conclude the project with the budget

approved at the start. This means planning the required resources and

estimating and monitoring costs.

Cost�management�in�free�software�projects

Free applications

Examples of free applications
include GanttProject (http://
ganttproject.sourceforge.net/)
and OpenWorkbench (http://
www.openworkbench.org/).

GNUFDL • PID_00148382 32 Free software implementation, projects and companies

Cost management in free software projects differs considerably from that of

proprietary software projects.

The main difference lies in licence costs, which are normally non-existent for

free software. In contrast, we will need to take into account the costs of services

provided by third parties, in accordance with any of the models of business

based on free software.

1.4.5. Quality management

The purpose of quality management is to ensure that the project meets the

needs for which it was initially designed. We must therefore plan, assure and

continuously monitor the quality of the project in accordance with these

needs.

Quality�management�in�free�software�projects

The features of quality management in free software projects are theoretically

the same as those of any other software project.

On the one hand, we need to consider quality from the user's point of view,

adopting the standards required in each case. And on the other, in the case

of projects in which we work with the free software community, whether

contributing to an existing project or creating a new one, we need to take

into account the quality of the code produced from the point of view of the

developer.

We will need to follow the recommendations on programming style, naming

conventions, documentation, error logs and formats, languages, etc. With new

projects, it is a good idea to circulate these recommendations.

1.4.6. Human resources management

The purpose of human resources management is to employ the individuals

participating in the project as efficiently as possible. The activities carried out

as part of this management include the organisational plan, hiring of new

employees and team development.

Human�resources�management�in�free�software�projects

The features of human resources management in free software projects are

theoretically the same as those of any other software project, but you should

bear in mind a few points.

Standard programming
styles

Remember that you should
follow the programming
styles that have already been
defined and accepted by the
community, such as the Java
Code Conventions or Linux C
kernel style.

GNUFDL • PID_00148382 33 Free software implementation, projects and companies

Most importantly, you will need to consider the possible participation of the

free software community and the effective contribution it may bring to the

project. It is generally a good idea to appoint somebody in charge of relations

with the free software communities connected to the project.

1.4.7. Communication management

The purpose of communication management is to ensure the correct

generation, collection, circulation, storage and elimination of project

information within set deadlines.

Communication�management�in�free�software�projects

The features of communication management in projects based on free

software are theoretically the same as those of any other software project. It is

very important to ensure the communication and circulation of information

within the project, particularly when collaborating with the free software

community. If you are not working with the free software community but

there is a possibility of releasing the code or the client would like access to

the latter, it is also important for the source code to be readable and well

documented.

The configuration and correct use of software forges or collaborative

development environments (CDEs) will therefore play a key role. Most forges

have tools for general project management, bug tracking, forums, mailing

lists, etc. Public forges also have these same tools and offer the advantage of

more visibility from the free software community.

Communication tools include mailing lists, IRC channels, blogs, forums and

wikis. Relevant decisions made through these tools should be documented

correctly and made available to all developers.

We recommend defining rules that should be followed when drafting the

documentation, together with the tools that will be used for its automatic

generation.

1.4.8. Risk management

The purpose of risk management is to identify, analyse and respond to events

that could jeopardise the project plan in the form of delays and increased

costs.

These risks must be correctly identified and quantified, and have their

appropriate response mechanisms. A risk is always characterised by

uncertainty – since the event associated with the risk may or may not occur

Software forges

For examples of software
forges or collaborative
development environments,
see the following websites:
Gforge, LibreSource and Trac.

Further websites

You can find an example
of a public forge at
the following website:
http://www.sourceforge.net.

GNUFDL • PID_00148382 34 Free software implementation, projects and companies

– and by loss – because if the event eventually does occur, it will result in

negative consequences or losses for the project. Thus, to be able to characterise

the risks, we need to evaluate their probability and associated losses correctly.

There are several risk classifications. In this initial approach, we can consider

the following three types of risk:

• Management risks, related to problems with scheduling, budgets and the

organisation of staff and resources.

• Technical risks, which jeopardise the quality and scheduling of the

project and pose obstacles to its development and implementation. The

most common technical risks concern potential problems with design,

implementation, verification and maintenance. They usually arise from

ambiguities in requirements and specifications and the use of outdated or

very new technologies.

• Business risks, which raise questions about the feasibility of the project.

For example, developing a project for too small a market or one that does

not mesh with the company's sales line.

Risk�management�in�free�software�projects

The features of risk management in free software projects are theoretically the

same as those of any other software project.

A classic example of risk in free software projects is the fear and uncertainty –

of both the organisation and users – regarding technological change on a new

and possibly unfamiliar platform.

It is useful to introduce communication and training methods at the start

of the project in order to cancel out any negative effects of the rejection of

technological change. It is good practice to earmark a time for presentation,

communication and user training that will be continued and built on

throughout implementation in order to provide an outline of free software

and of the specific applications and tools.

Another classic example of risk in free software projects are the possible legal

incompatibilities between free licences for the use of code development and

reuse.

It is wise to check at the start of the project that the licences applied to

the different parts of the code are coherent among themselves and that the

planned development will not generate incompatibilities. This check should

GNUFDL • PID_00148382 35 Free software implementation, projects and companies

be carried out before every release. It is good practice to keep a licence chart

indicating the licence under which each of the software packages is distributed

and the individual interactions between them.

1.4.9. Supply management

The purposes of supply management are to ensure that the materials and

resources needed to execute the project are available at the right time and in

the right place.

Supply�management�in�free�software�projects

The features of supply management in free software projects are theoretically

the same as those of any other software project.

The migration and implementation of a free software system is usually a good

time to renew equipment or to modify the structure of the organisation's

network. The project plan must therefore include orders of new equipment

and materials in order to take into account and prevent possible delays.

GNUFDL • PID_00148382 36 Free software implementation, projects and companies

2. Free software projects

A project is an organised, structured process of managing resources in order

to achieve a specific aim, usually strategic. While, in the first part, we looked

at the key aspects of the functional management of resources, this module

will focus on the stages that the project needs to complete in order to achieve

its aims.

We can generally define seven key stages in projects to implement free

software systems:

• Study of the current situation

• Study of the implementation requirements

• Analysis of free software solutions

• Formalisation of the proposal

• Development

• Implementation and migration

• User training, documentation and support

As we can see, these stages are the result of development of the phases

described in the first section of this unit and they apply specifically to free

software. Nonetheless, the development described is fairly generic and can be

applied to other implementation processes.

This section describes the life cycle of the project and outlines the process,

its stages and its relationship with the management of the project and the

resources allocated to it.

The subsequent seven sections will detail the stages of the project, linking and

expanding on the concepts introduced in the first part of this module.

2.1. Life cycle

This first section introduces the main methodological and functional

characteristics of the life cycle of the project in order to provide an outline

of the process.

The life cycle of the project links the methodical aspects, intrinsic to the

development of the implementation stages, to the functional management of

the project. Thus, the life cycle guides the execution of the various stages over

time and with the available resources.

By and large, the life cycle of a project has two main aims:

GNUFDL • PID_00148382 37 Free software implementation, projects and companies

• Firstly, it establishes the relationships and dependencies between stages,

whether time-based or functional.

• And secondly, it allows us to reduce project risk by dividing its complexity.

The project life cycle can be used to monitor the evolution of the stages, the

schedule of execution and the financial cost of the project. The management

of this cycle is dynamic, so decisions to modify and adapt can be taken as time

passes in order to readjust our estimates of the initial parameters on the basis

of actual events.

Broadly speaking, the life cycle has four key areas: the project, the stages,

execution and the results.

2.1.1. The project

See also

To find out more about the
management of risks, see the
section on risk management in
the previous unit.

Like any other project, systems implementation projects are designed

to achieve a series of aims within a set period and with a given series

of resources.

Minimising the time or resources spent on a project will usually minimise the

aims that can be met or affect quality, and vice versa. In contrast, minimising

project time while maintaining its aims requires us to increase the resources

allocated to it. Project management seeks to find the most acceptable balance

between these three elements.

In all events, changes in the relationship between these three elements have

direct financial repercussions that will need to be assumed in the event that

we are updating. The management of the project also has a financial cost from

the point at which the project begins (when it is decided to allocate time of

one or more staff to take on this management).

The main factors influencing the time and resources required to conclude

a project normally refer to the size and complexity of the system to be

implemented. In this sense, the features of free software tend to reduce the

time and financial costs of the project:

• Variety�of�applications. The maturity of the free software market means

the availability of a wide variety of direct implementation products that

are reliable, consistent and secure.

• Licence�cost. Free software is usually obtainable without licence costs and

can be downloaded directly from the official website or from other public

pools.

See also

To find out more about
project management, see the
section on the management
of free software projects in the
previous unit.

GNUFDL • PID_00148382 38 Free software implementation, projects and companies

• Source�code�modification. The open nature of the source code allows the

expansion, modification and adaptation of products that would require

a new development to evolve the product if proprietary licence models

were applicable.

It is important to note that free software also helps to reduce the overall risk of

the project because it provides the freedom to view, use and modify the source

code, allowing evaluation and assessment of all aspects of the application in

depth.

Additionally, the project can be managed and executed internally or outside

the organisation. Broadly speaking, we can differentiate between two main

cases:

• Insourcing: this is the case when an organisation develops a project

launched as a result of a strategic action. In other words, the organisation's

IT department manages and executes the project.

• Outsourcing: this definition applies when an organisation delegates the

management and development of a project to an external organisation

that manages and executes projects5. In other words, the organisation

reduces its direct exposure to the development of the project.

Thus, the format of the project development will take into account

the capacity and experience of the organisation that must assume the

development of the project, the associated costs, the implementation schedule

and the specialisation of the external organisations present in the project.

Lastly, the project is evaluated in terms of tangible and intangible benefits.

Here we can come across cases in which a surcharge for time or financial costs

may be feasible in order to obtain the intangible benefits – usually strategic –

required by the organisation. For example, improving corporate image with

the use and diffusion of free software and the free philosophy.

2.1.2. The stages

The project life cycle is implemented in the form of successive and possibly

simultaneous stages. Each stage meets a clear, set aim in a scenario related to

the project, with the result that, taken together, these stages meet the aims

of the project.

(5)One example might be
technology consultancies, which
carry out projects for other
companies.

GNUFDL • PID_00148382 39 Free software implementation, projects and companies

Broadly speaking, a stage can be considered a process that receives

inputs and produces certain outputs. In other words, it requires a prior

scenario with information about the environment in order to produce

certain results.

Hence, a relationship is established between the diverse stages of the project,

since each stage achieves part of the global aims. This relationship usually

takes two forms:

• Dependence: between two stages indicates that a stage requires the result

of the execution of the other in order to complete its task. This means that

the stages must be executed sequentially over time: the stage generating

the results first, followed by the stage that uses these results. For example,

the development stage requires the study and analysis of the systems

implementation requirements in order to complete its task.

• Independence: between two stages indicates that two stages have no

direct relationship with each other and no specific prerequisite. This

means that the stages can be executed simultaneously, though more

resources may be required. For example, the system implementation stage

can be executed at the same time as the user training stage.

Moreover, the stages also allow for a distributed execution of the project,

that is, one or more stages are assigned to different teams, either internal or

external to the organisation (insourcing and outsourcing).

Extreme cases may arise if several stages are assigned to different external

organisations. It will all depend on the characteristics of the project, the

specialisation of the external organisations and the associated costs.

All this highlights the importance of deliverables between stages. The

importance of documenting results in the form of deliverables is threefold:

• Since the documentation of the stage summarises its development and

results,

• since the result of the stage is important for the stages that depend on it,

and

• since the result of the stage is a result that can be evaluated for the

development of the project.

The connotations of the internal or external execution of each stage highlight

the importance of deliverables. It should be noted too that their importance

is proportional to the complexity and size of the project.

GNUFDL • PID_00148382 40 Free software implementation, projects and companies

2.1.3. Execution

Execution of the project will begin in accordance with the initial proposed

planning, with careful monitoring by the organisation in which the system is

to be implemented. By and large, three key parameters need to be monitored:

• Time. Time monitoring and management are essential for project

monitoring because any change to this parameter will have direct

financial consequences. It is also particularly important for the sequencing

of the different stages, particularly if they are assigned to different teams.

• Outsourcing. Monitoring the outsourcing of the stages or perhaps the

entire project is important if we are to ensure that the work and its results

meet the aims of the project and the organisation. We need to pay close

attention to the monitoring and quality of deliverables and make sure that

we follow the schedule correctly.

• Quality. The quality control of the tasks completed during execution

of the project will have a major impact on the end quality of the

implementation. Communication and the transfer of information within

the team developing the project and in the organisation itself must also

be qualitative in order to guarantee the aims of efficiency and efficacy.

In practice, the execution of the stages can be delayed for a number of

reasons that may or may not be linked to the project and its management.

Examples of these include a lack of synchronisation in the delivery times of

the necessary material, the temporary absence of analysts or programmers and

the complexity of a development not initially envisaged. Delays usually have

financial consequences.

When a delay occurs, two types of decision can be taken:

• Firstly, the delay can be worked into execution of the stage, concluding

it and accepting a delay in all stages that depend on it and, as a result,

the overall project.

• Secondly, a project delay may be considered unacceptable and more

resources are allocated to one or more stages in order to keep up the pace.

Nonetheless, the allocation of more resources does not always lead to

production improvements proportional to the resources earmarked.

Delays should not generally have a direct effect on stages executed at the same

time as the stage that has been delayed. However, it may be worth considering

a schedule adjustment to take into account the delay affecting other stages.

GNUFDL • PID_00148382 41 Free software implementation, projects and companies

For example, if implementation of the system is postponed because of an

excessive delay in the reception of materials, we could consider the option

of delaying the user training phase until implementation. This would avoid

a gap between user training and application of their knowledge of the newly

implemented system.

2.1.4. Results

The results of the life cycle of a project should be directly related to the

strategic aims of the project and the organisation. Life cycle in itself is

merely a methodical and rigorous way of coming up with a solution

for a given problem by dividing the inherent complexity of the project

into different stages.

To an extent, life cycle is one way of reducing the overall risk of the project.

The execution of the stages as successive fine-tuning periods for solving

problems contributes to the gradual adaptation and solution of problems that

can be highly complex.

We need to consider the importance of the project management team, which

plans and coordinates the project to ensure that it is concluded successfully.

Management is a dynamic task that must help to reconcile the differences

between planning and the reality of the project during its execution.

The results of a systems implementation project are generally grouped into

the following areas:

• Organisation. For the organisation, the project needs to meet the

expectations of the strategic action from which it derives. We need

to stress here the qualitative operation of the system, its integration

with the organisation's methodology, user adaptation and competitive

improvements to the organisation.

• System. The system needs to meet all of the aims and expectations of

the organisation and its operation needs to meet the aims of the strategic

action of the organisation. The system and its interaction with direct

and indirect users must meet these aims qualitatively, offering functional

efficiency and efficacy.

• Users. One of the aims of the system is to provide technological support

to the organisation's operation through its users. The importance of the

inclusion of users in the implementation project is strategic, since without

their participation in the process and their acceptance of the system,

GNUFDL • PID_00148382 42 Free software implementation, projects and companies

implementation could prove problematic or unfeasible and have financial

repercussions.

• Documentation. As with any project, documentation is crucial to the

quality of the implemented system for its current integration and future

evolution. From deliverable documents between stages to the final

documentation or user manuals, all of these materials are crucial to the

maintenance and support of the system.

• Support. The system must have a support team in place from the start

of the project, although it is particularly important in the development,

implementation and user training stages. The team needs to guarantee

interaction and communication between all those involved in the project

during and after implementation, acting as a support team for ongoing

training or answering questions and solving problems.

In all events, a systems implementation project must allow the organisation

and its users to evolve towards new strategic challenges. Creating a climate of

confidence and acceptance of change is essential if it is to achieve its aims.

2.2. Study of the current situation

This section will define systems analysis and describe its main characteristics

and special features. It will detail the various phases of the study, the main

factors influencing its development and the results that the analysis should

produce.

Systems analysis is a chiefly theoretical form of investigation designed

to provide a clear and accurate view of the status of the organisation's

system within the scope of the project, based on the strategic action

from which it is derived.

Systems analysis covers two complementary aspects:

• Part of the analysis involves the technological application of the case

study, with a qualitative evaluation of the system from a methodological

and procedural perspective.

Case study

Case studies are a scientific method that allows us to explore an object or circumstance in
depth through the use of empirical strategies in order to understand the object of study.
It is usually used in the initial exploration and in combination with other techniques
such as the quantitative approach (statistics related).

Acceptance of change

This process is usually called
change�management and
covers all of the aspects and
procedures that enable us
to manage and solve any
problems and misgivings with
the implementation of a new
system in the organisation,
especially those implemented
in free software.

See also

For more information about
the relationship between the
implementation project and
the organisation's strategy,
see the sections on the
organisation's strategic plan
and the origin of systems
implementation in the first
module.

GNUFDL • PID_00148382 43 Free software implementation, projects and companies

• And part of the analysis involves the study of the compliance or

competence of the organisation's system, with a quantitative evaluation

of the system from a functional and technological perspective.

The theoretical implications of the investigation reveal the importance of a

methodical, rigorous and exhaustive approach. Errors in appreciation at this

stage can generate problems later on and possibly raise doubts over continuing

with the project because of biases affecting the project, the current system and

the organisation's strategy, with the ensuing financial repercussions6.

Although this section describes the features of the initial study for a system

that has already been implemented, this structure is equally applicable to

newly implemented projects if we transfer the object of study to the scope

of the organisation, the current and past markets, future technological trends

and similar projects begun previously.

This first stage of the project may also bear no direct relationship with

free software, since the aim is to analyse and evaluate the implemented

system or the current market, regardless of the form of implantation or trend,

respectively.

Broadly speaking, we can divide systems analysis into three main phases:

identification of the system, preparation or development of the case study and

the final evaluation.

2.2.1. Identification of the system

The purpose of identifying the system is to define the object, scope and aims of

the study. The definition of these parameters is directly related to the strategic

action on which the project is based and must allow us to set up the scenario

for evaluation.

It is important to remember that a system already in place is not simply a set

of technological parts; it is also a series of features, methods and procedures

that have a direct impact on users and the organisation in general.

Hence, the study scope must cover the technological aspects of the

implementation, the features currently covered by the system, the procedures

and methods of action deriving from its interaction with the organisation's

operation and the impact on the use of the direct and indirect users of the

system.

We need to determine two key aspects of these parameters:

(6)It is not only necessary to take
into account the direct financial
costs of time spent on the project,
but also all indirect costs, such as
the cost of abandoning a project
that has been started and the cost
of the lost opportunity.

GNUFDL • PID_00148382 44 Free software implementation, projects and companies

• Firstly, we must determine the different sources of information that will

allow us to obtain data for the subsequent analysis of the system.

• And secondly, we must identify the quantitative or qualitative nature

of the data we will obtain from the sources of information, since data

extraction techniques vary widely.

Quantitative and qualitative data

Quantitative data are numerical variables that quantify characteristics or attributes. For
example, the number of active users in the system per unit of time.

Qualitative data are variables that differentiate between characteristics or attributes but
do not quantify them. For example, the colour combination of an application's user
interface.

The result of this phase is a working document indicating the object, scope

and aims of the study, along with a list of the data that must be obtained and

the source of this information.

2.2.2. Case study development

This phase is used essentially to collate all of the important study data

indicated in the system identification phase.

In practice, information can be gathered from a range of sources: historical

documents, detailed interviews, results of technological audits, performance

counter tools, the documentation of previous projects, technological

specifications and even issue reports.

As we collect data, we may come across interesting aspects that were not

considered in the system identification phase. In all events, data collection

needs to be rigorous and meet the criteria on structure and organisation.

Nonetheless, we can differentiate between two generic groups in data

collection:

• Quantitative� data. This type of data is usually collected directly from

technological media. The implemented system may have counters for

performance, transactions, capacity, volume, etc., which can generate

interesting statistical results, as in the case of time or cost units.

• Qualitative� data. This type of data is usually collected from written

documents, meetings or staff interviews. The procedure for obtaining

information from interviews and meetings is crucial here, because they

must be painstakingly prepared and conducted if we are to obtain quality

information.

See also

The following section on case
study development describes
the main differences between
techniques for obtaining
sources of information.

GNUFDL • PID_00148382 45 Free software implementation, projects and companies

It is very important to use a methodical process to obtain both quantitative

and qualitative data, since the system is a support tool for staff and the

organisation itself. All information is beneficial when it comes to assessing

and evaluating the system.

This phase usually marks the beginning of the development of the hardware

and software inventory and the current system's network diagram. Besides

being useful for determining the current status, it can also be efficient and

help with the planning of a possible system migration.

The end format of the case is usually an investigative report in which all of

the aspects dealt with above are organised and evaluated. The report must

back up the data and results it describes, relating them to one another and the

definition of the project and seeking out possible relationships of dependence

or independence.

Depending on the type of information described, it may be convenient to use

statistical results, tables, graphs and charts, and generally anything that will

help with the description, understanding and evaluation of the data included

in the report.

See also

You can find out more about
hardware and software
inventories and network
diagrams in sections 2.7.3 and
2.7.4 of this module.

One of the most common tools used for the presentation of executive

summaries are SWOT7 analyses, which present the main conclusions of the

study of the current system from a strategic point of view. If the features of

the project require, we can produce SWOT tables by classifying the various

features of the system according to the result of their evaluation, such as if the

current system's hardware is a weakness for carrying out the strategic action

successfully.

2.2.3. Final evaluation

The final evaluation of the system is the first control point of the project and

its aim is to determine the feasibility of the current system in the light of the

organisation's strategic actions and hence, evaluate the need to continue with

the project.

Generally speaking, there are four large groups of features that we need to

consider:

• Operating. These relate to the functional interaction of the users with the

implemented system, ergonomics, performance, efficiency, efficacy and

usefulness.

• Organisational. These concern the methods and procedures generated by

the implemented system, together with their benefits and disadvantages

for the organisation.

(7)SWOT is an acronym for
Strengths, Weaknesses,
Opportunities, and Threats.

GNUFDL • PID_00148382 46 Free software implementation, projects and companies

• Functional. These relate to the efficiency and efficacy of the tasks

carried out by the implemented system, in addition to scope, reliability,

performance and malfunctions.

• Legal�and�financial. These relate to the cost of the implemented system

and its legalisation, covering aspects such as maintenance, licensing and

system administration.

Evaluation of the system can bring us to three main groups of conclusions:

• The� system� is� feasible. The study and evaluation conclude that the

current system is ready to take on the strategic actions of the organisation.

These conclusions are usually drawn in cases where a study has been

conducted to find out the status of a large and/or complex system whose

evolution could be difficult to gauge on a superficial level.

If the current system obtains a positive evaluation, the implementation

project must be cancelled because there are no indications that a new

implementation is required.

• The�system�is�partially�feasible. The study and evaluation conclude that

the current system needs minor updates before it can take on the strategic

actions of the organisation. These changes usually involve updating or

changing a small series of elements, such as replacing devices or updating

software.

A partially positive evaluation of the current system requires continuing

with the implementation project but it is convenient to revise the aims

and scope in order to adapt them to the needs detected.

• The�system�is�unfeasible. The study and evaluation conclude that the

current system cannot assume the strategic actions of the organisation.

This type of conclusion is usually drawn in cases of migration from older

systems that are unreliable or perform poorly and hence need to be

completely updated.

A negative evaluation of the current system tells us that we should

continue with the project to implement a new system. It may be necessary

to revise the aims and scope of the project because replacing the current

system may require more resources than those initially envisaged.

Both the report on the analysis and the final evaluation of the current system

are submitted to the organisation by the project monitoring committee. The

final decision on whether or not to continue with the project is usually made

by the management of the organisation.

The result of this stage is twofold:

GNUFDL • PID_00148382 47 Free software implementation, projects and companies

• Firstly, we obtain a comprehensive report on the current status of the

system, highlighting the main features of the system from the point of

view of the organisation's strategy.

• And secondly, the organisation makes a decision as to whether or not to

continue with the project and any actions required to adapt the system

to the latter's strategy.

2.3. Study of the implementation requirements

This section will define the study of systems implementation requirements

and describe its main characteristics and special features. It will detail the

various phases of the study, the main factors influencing its development and

the results that it should produce.

The study of the system requirements is a process requiring a

methodological analysis of the problems that need to be solved.

There are two main aims to the requirements study:

• To�define�the�implementation. Requirements studies allow us to detail

all the features that the system to be implemented must have and

permit. To a certain extent, they define the specific, functional aims of

implementation.

• To� reduce� risks. Requirements studies also allow us to reduce the risk

of the project and its management by specifying and progressively

fine-tuning the characteristics of the solution to be implemented.

Requirements studies for systems implementation projects usually require a

great deal of effort for two main reasons:

• Firstly, because it can be difficult to specify and methodologically structure

the ideas and expectations of users and the managers of the organisation

regarding the new system, bearing in mind that user requirements can

evolve over time.

• And secondly, because they are crucial to the subsequent development of

the project, since errors in appreciation made in this phase and detected

in later stages will affect the timing and financial aspects of the project or

generate unplanned extra costs that could jeopardise completion of the

project8.

(8)Errors made during the system
design stages detected and solved
in the development stages have a
possible cost ratio of one to ten.

GNUFDL • PID_00148382 48 Free software implementation, projects and companies

A requirement is a feature that the new system needs to have. In other

words, it is an attribute that must allow the system to meet the set aims.

Requirements are usually written as text but can take the form of tables

and charts if these help to clarify and specify the aim.

In general, we can define four different types of requirement:

• Strategic� policy. Requirements linked to the organisation's strategic

policy cover general aspects of the project, its management, outcome, or

the approach to adopt. These include corporate ethics and image or the

traditional attributes of the organisation.

• Methods�and�procedures. The implementation of a new system is usually

a good time to update and improve the methods and processes of

the organisation and/or system. Besides a thorough revision of current

procedures, we will also need to bear in mind the specification of future

methods and procedures resulting from new aims or features that the new

system will need to encompass.

• Operation� of� the� system. The operating requirements of the system

derive from the interaction of users with the system. We will need

to distinguish between functional and non-functional requirements:

functional requirements correspond to specific actions that the system

will need to execute, whereas non-functional requirements correspond to

limitations or restrictions while executing actions, which allow the actions

to be linked to the methods and procedures.

• Key� factors� and� priorities. Most systems have a specific number

of basic elements that form part of the core of the system. In

new implementations, we need to give preference or priority to the

components considered essential for the operation of the system and the

organisation; other components not considered essential can be given a

lower priority.

The requirement collection stage is not exclusive to free software because free

software systems implementation must meet the same requirements and aims

as any other type of implementation.

Broadly speaking, we can divide the study of system requirements into five

main phases: identification and definition, specification and structuring,

verification, validation and the final evaluation.

GNUFDL • PID_00148382 49 Free software implementation, projects and companies

2.3.1. Identification and definition

This first phase of the requirements study pinpoints and defines the problems

that need to be solved, indicates the project typology and determines the main

sources of information for data collection.

The requirements study stage uses documentary information from the analysis

of the current status stage, so part of the task of pinpointing the problems has

already been completed.

We will need to identify the resources and elements from the organisation

that are directly or indirectly involved and define the scope of the problems

for the organisation and for those resources and elements that are directly

and indirectly involved, whether human, material, functional, organisational,

procedural or technological. All these elements will usually allow us to recover

vital information for defining the new system, which we can use, together

with the report on the current status, to establish a corpus of knowledge for

making decisions.

The direction in which the market is heading is also important when it

comes to defining requirements. Familiarity with the features of similar

systems, organisations from the same sector, recent innovations and the

future trends of the project theme can all be helpful when it comes to

specifying, proposing, evaluating and understanding the requests of users and

organisation managers.

The result of this first phase is usually presented in a working document with

a detailed definition of the aim and scope of the project, a list of the elements

to consider, sources of internal information on the organisation and a list

of elements or market trends that may contain relevant information for the

project.

2.3.2. Specification and structuring

The aim of the specification and structuring phase is to collect relevant

data on all of the elements indicated above and to organise them using

methodological criteria to create a reliable corpus of knowledge that accurately

represents the reality.

This phase is based on the working document produced in the previous phase,

providing an initial outline of the elements and sources of information that

may contain relevant information for the project. Nonetheless, the practical

development of the study may lead us to consider new sources of information

and new aspects of relevance to the project that were not taken into account

in the previous phase. Deadlines permitting, we should try to investigate all

of the details that may appear.

See also

See Section 1.2 of the first
module to find out about
the different types of systems
implementation projects.

GNUFDL • PID_00148382 50 Free software implementation, projects and companies

We can identify two tasks in the development of this phase:

• Collection� and� specification. This task attempts to resolve the

functionalities of the system. In other words, what the system has to do,

not how it has to do it. Some information sources tend to focus on how

actions should be done instead of determining the specific features of the

task itself.

• Structuring� and� organisation. This involves organising data

methodically and comprehensibly. It may be useful to prioritise certain

requirements over others, in accordance with the elements of the system

required for its operation.

As with the study of the current status, data collection may respond to

quantitative or qualitative criteria:

• Quantitative� data. These usually come from technological media and

can be bulk processed in order to obtain statistical results to verify and

justify qualitative data and to model and extrapolate results to new

functionalities.

• Qualitative�data. These are usually taken from interviews and meetings

with those involved and provide us with functional and non-functional

results regarding the system and the procedures and methods affected by

the project.

Systems implementation requirements relate to the basic elements of the

whole system, such as the hardware, software, infrastructure, staff, procedures,

functionalities and even languages, documentation, formats and standards.

Requirements are usually presented as text, organised according to the

characteristics of the project, system and the special features of the

requirements themselves. Tables, graphs and charts can also be used to

improve the definition, arguments and evaluation of the ideas covered.

The result of this phase usually takes the form of a working document

that describes all of the requirements, organised, structured and reasoned in

accordance with the ideas of the project. The clarity and precision of this

document is crucial for the entire project, since all subsequent development

and the organisation's acceptance of the terms of the final implementation

both depend on it.

GNUFDL • PID_00148382 51 Free software implementation, projects and companies

2.3.3. Verification

The requirements verification phase evaluates the requirements contained

and described in the previous phases and assesses them in the context of the

system's coherence and the aims of the organisation.

This phase uses the working document from the previous phase, which

methodically organises the requirements obtained in the study.

The formal verification of the requirements can be split into two main

processes:

• Technological� analysis. The technological analysis of requirements

is a process aimed at analysing and concluding that all of the

requirements complement one another and form a logical system whose

implementation is feasible.

Antagonistic requirements resulting from the diversity of information

sources are usually detected in this phase. This conflict can be resolved

by checking the other characteristics covered by the requirements

and/or validating the options with those directly involved or with the

organisation.

• Functional� analysis. The functional analysis of the requirements is a

process aimed at analysing and concluding that the system deriving from

implementation of the requirements meets the requirements and aims of

the project and the organisation.

In this phase, we can detect inaccurate assumptions in the requirements,

which can contradict the aims of the project. The conflict can be resolved

by a review and consultation of the problematic aspects with those directly

involved and/or with the organisation.

Requirements verification is a fundamentally technological and

methodological process that analyses the coherence and feasibility of the

future implementation and introduction of the system defined in the

requirements.

It can be interesting to have a number of people participate in the review of the

requirements. Different perspectives can help pinpoint and solve any errors

or shortcomings more effectively.

The review can also stimulate the appearance of new issues or situations not

previously considered, which may generate a loop between the collection of

requirements and their verification until convergence and coherence have

been established in the results (a similar process to top-down methodology).

GNUFDL • PID_00148382 52 Free software implementation, projects and companies

Top-down methodology

Top-down methodology takes the general definition of a problem and creates a loop by
specifying and refining each item until a sufficient level of detail is considered to have
been reached. The result is usually displayed as a process tree.

The result of this phase is that the working document with the requirements,

created in the previous phase, is updated. This updating has allowed a

detailed review of the concepts of implementation and the identification and

resolution of any errors in the initial requirements.

2.3.4. Validation

The requirements validation phase is designed for reaching an agreement

on the requirements of implementation of the new system – following the

study – with the organisation. Agreeing on the requirements is crucial to the

contractual formalisation of the implementation of the system.

This phase requires the active participation of the organisation, which must

conduct a thorough analysis of the requirements proposal resulting from

the previous phases. The transfer of information between the two groups

is essential because the characteristics of the implementation of the system

depend on the understanding of the requirements study.

The internal working document containing the requirements may not be

entirely appropriate for presentation to the project's monitoring committee.

In this case, it may be necessary to create new documents or presentations

to transmit the information in a clearer and more effective way, using charts

and diagrams.

The organisation's validation of the requirements may conclude with new

revisions of the requirements. These revisions or adjustments usually involve

the addition of new functionalities to the system by the organisation that were

not initially planned in the project.

Nonetheless, these revisions cannot continue indefinitely because they could

have a direct impact on the feasibility of the project and its implementation

schedule, not to mention the financial implications of the increase in the

number of requirements to implement.

The result of this phase is closely related to the final evaluation phase of

the systems requirements study. It usually generates the last revision of the

working document with the requirements of the new system, agreed and

validated by the organisation and the team that conducted the requirements

study.

GNUFDL • PID_00148382 53 Free software implementation, projects and companies

2.3.5. Final evaluation

The final evaluation of the requirements study is the second control point

of the project, the aim of which is to determine the feasibility of the

implementation project in the light of the requirements of the new system

and hence, the need to continue with the project.

This phase is closely related to the validation of the requirements, since the

main working document represents the last definition of the requirements for

implementation of the system, agreed on by the organisation. The validation

and final evaluation phases may be merged for making decisions regarding

the need to continue with the project.

The feasibility of the system requirements is evaluated by taking into account

their suitability for the current system, the organisation and the strategic

action that launched the project. The requirements study is the first formal

step towards the new system and early estimates of the volume and cost of

the changes.

In a way, the evaluation of the requirements is similar to the evaluation of the

current status that we looked at in the first section, which bases its assessment

on financial, technological, functional and legal aspects. We can also evaluate

other aspects relating to the strategy of the organisation, such as the latter's

capacity to evolve, the intangible benefits of the change, management quality

and corporate ethics.

The evaluation of the proposed requirements for the new system can lead to

three main groups of conclusions:

• The�project�is�unfeasible. The evaluation of the requirements of the new

system by the organisation concludes that implementation of the new

system is unfeasible and the project is abandoned.

There may be a number of reasons for reaching this conclusion, some of

which could even be outside the scope of the project. This outcome is

usually related to economics, financing, competition or the abandoning

of the strategy that launched the project.

• The�project�is�partially�feasible. The evaluation of the requirements of

the new system by the organisation concludes that it will be carried out

in part, meaning that only certain elements of the new system will be

implemented.

This outcome is usually related to economics and financing. In some cases,

partial implementation can be carried out progressively or in stages9. In

these cases, it is important to introduce guarantees to ensure cohesion

between the different implementations over time.

(9)Some organisations prefer
to spread the burden of
the investment of a new
implementation over several
accounting years.

GNUFDL • PID_00148382 54 Free software implementation, projects and companies

• The�project�is�feasible. The organisation has made a positive evaluation of

the requirements of the new system and the project will continue without

major limitations or restrictions that could affect the basic definition of

the project.

The result of this stage is twofold:

• Firstly, we obtain a full report on the requirements of the new system to

implement, validated by the team and the organisation.

• And secondly, the organisation makes a decision as to whether or not to

continue with the project and on the scope of the implementation of the

new system.

2.4. Analysis of free software solutions

This section will define the analysis of solutions for the implementation

project and describe its main characteristics and special features. It will detail

the various phases of the analysis, the factors influencing its development and

the results that this stage should generate.

Solutions analysis is a process whereby the various technological

options available are analysed methodically and rigorously in line with

the project requirements.

This analysis has three complementary aims:

• To�know�the�market. The analysis of solutions allows us to study and

evaluate the current market situation in terms of the definition, scope

and aims of the implementation project. The variety of solutions currently

available means that an deep, careful analysis is required.

• To�adapt�the�solution. The analysis allows us to select the solutions that

best fit the problems of the project and the implementation of the system.

Moreover, the open nature of the source code inherent to free software

allows for the fine-tuning and final adaptation of the chosen solutions in

the form of derivative products.

• To� reduce� risks. The analysis of solutions allows us to reduce the risk

of the project and the implementation of the system because the study

allows us to adapt the solution and control the main repercussions of its

implementation.

GNUFDL • PID_00148382 55 Free software implementation, projects and companies

With free software, the solutions analysis stage takes place in a scenario limited

by two main conditions:

• Project�typology. The project typology, the characteristics and the scope

of the system to be implemented will determine the scope of the search

for and analysis of possible solutions, together with the feasibility of the

various proposals.

• Analysis� of� requirements. The analysis of system requirements must

determine the functional and operating behaviour of the solution in terms

of the project aims.

As we could expect based on what has gone before, this stage uses the

documents on the definition, aims and scope of the project and on the system

requirements agreed with the organisation. The report on the evaluation

of the current situation can also be useful here because it indicates the

characteristics, special features, and conclusions on the viability of the current

system. All of this must help us to focus on the characteristics of the analysis.

This stage focuses mainly on the strength and diversification of the market's

current supply of free software. The search for and selection of free solutions

that meet the requirements is essential for the implementation project.

Hence, our analysis must reflect the competitive attributes of free software in

comparison to private solutions, with a special emphasis on freedoms of use

and source code adaptation.

Broadly speaking, the free software solutions analysis stage can be divided into

three main phases: the search for solutions, the analysis and assessment of

candidates, and the final evaluation.

2.4.1. Search for solutions

This first search phase is aimed at identifying solutions whose implementation

in the framework of the project is feasible. It is used to make an initial selection

of systems with a similar aim to those of the project.

Free software is a valid and viable option for systems implementation since it

offers a wide range of freedoms of use, operation, access and modification of

source code, and licensing of derivatives.

These features not only allow them to be used freely by organisations

and private individuals, they also permit independence from proprietary

providers, savings on licences and royalties, learning from the original source

code, monitoring of obsolescence with guaranteed product maintenance,

quality and reliability, and guaranteed security, privacy, interoperability and

software convergence.

GNUFDL • PID_00148382 56 Free software implementation, projects and companies

Free software implementation can traditionally be divided into two main

areas:

• Implementation in infrastructure services10

Since it first emerged, free software has maintained a very close

relationship with systems architecture and network services. It is now the

undisputed leader of certain sectors11, ahead of proprietary software.

• Implementation for home users or clients12.

As a result of various past initiatives, free software has now embarked on

a new path and spread to the environment of the end user, entering into

competition with the de facto standards of the home environment.

The market now offers a wide variety of free software systems in very diverse

fields. Most important projects have their own websites to promote the

knowledge, diffusion, downloading of and collaboration with the project13.

There are also public pools14 allowing the creation and development of and

collaboration on new free software projects, together with the downloading

of the resulting applications. These pools often act as a launch pad for

community projects.

It should be remembered that there may be no one solution for the

implementation project, whether due to scope or the specialised nature of the

aims. In these cases, we need to categorise our search for solutions into more

generic typologies, so that a number of specialist systems can be put together

to form a joint solution to the project requirements15.

The search for solutions should generate a document with the results of the

research that covers the following aspects:

• Definition� and� identification� of� the� search� for� solutions. Here we

indicate the characteristics used to direct our search, explaining their

relationship with the project definition, aims and scope, and the

definition of the agreed requirements.

• List�of�solutions. The document must contain a list of the solutions we

have come across in the search process, briefly defining the solution and

its relationship with the project aims for each.

• Summary� of� technical� features� of� the� solutions. The summary of

technical features of each solution must tell us about the main

characteristics of the system, such as the definition of the project, the

pools in which it is found, the monitoring and maintenance of the

product, the languages it supports, the community collaboration, its end

(10)For instance, local network
servers form part of the basic
infrastructure services of the
organisation.

(11)For example, the
implementation of Apache Web
Server on web servers is superior to
that of other environments.

(12)For example, the Ubuntu
distribution competes directly
with Microsoft's operating systems,
debunking many myths about
difficulties with the installation,
management or use of GNU/Linux
environments.

(13)Examples include the Ubuntu
distribution (www.ubuntu.com
), the office suite OpenOffice.org
(www.openoffice.org) and
the browsing suite Mozilla (
www.mozilla.org).

(14)For example, SourceForge.net (
sourceforge.net).

(15)For example, if we are
looking for a solution for the
management of a web database,
one option might be to search
for a separate operating system,
web server, database manager
and programming tool that can
work together to offer the required
functionalities. This is the case of
the LAMP environment (Linux,
Apache, MySQL and PHP), which is
currently very popular.

GNUFDL • PID_00148382 57 Free software implementation, projects and companies

licence and other requirements specific to the product, such as ergonomics

of use, execution requirements and the main functionalities.

If there is no single solution for the problems of the project and we need

to split it into different individual solutions, the document can be organised

into categories by typology (for example, operating systems or office suites)

or by function (such as a database server with a web interface for access and

programming).

A SWOT table is also sometimes included for each of the options found.

This table is very important in meetings and executive decision-making, and

its aim is to identify and summarise the main characteristics and specific

advantages and disadvantages of adoption of these options.

2.4.2. Analysis and assessment of candidates

The aim of the analysis and assessment of candidates phase is to identify the

solutions most suited to the project and the organisation and to the special

features of the development, implementation and migration.

This phase uses the document from the previous phase, which lists the most

suitable current solutions for the project and details their main characteristics.

The purpose is to methodically and carefully select the best candidates for

implementation from among the diverse alternatives identified.

A series of technological parameters directly related to the project,

organisation and implementation process are usually analysed, considered

and evaluated. The individual assessments produce an organised classification

that will determine how well suited each solution is to the implementation

project.

We can generally use the following parameters to assess and evaluate a

solution:

• Project�and�organisation. We must assess its adaptation to the project

aims, the organisation, the definition of methods and procedures, the

ethics and traditional standards of the organisation and the strategic

action that launched the project.

• System�and�interoperability. Here we need to assess how well it meets

the needs of the system and confirm its guaranteed operation with current

or future hardware, software and network resources, the feasibility of

the methods and procedures, implementation of the strategic action,

interoperability with existing systems and standards in the organisation

and the possibilities for future expansion and evolution.

GNUFDL • PID_00148382 58 Free software implementation, projects and companies

• Functionality�and�ergonomics. We need to assess how well it meets the

functional and operating needs of the project and the organisation, and

confirm the ergonomics of its use and implementation of the methods

and procedures with guaranteed operation and that it will meet the

expectations of the users and the organisation.

• Efficiency�and�performance. We need to assess whether it can guarantee

efficient operation at all times, the use and performance of allocated

resources and maintenance of a suitable balance between resources and

performance over time, to allow evolution.

• Efficacy� and� reliability. We need to assess whether it guarantees

performance of the functions set down in the project aims, maintains

functional compliance with the aims at all times, preserves the balance

between resources and compliance over time and that allows evolution.

• Implementation�and�migration. We need to consider how well suited

it is to the system implementation process and confirm that it allows

efficient and effective migration from an earlier system, minimises the

consequences of impact on the everyday operation of the organisation

and that it guarantees tools for the support, training and adaptation of

users and any other systems currently in place.

• Maintenance�and�management. We must assess whether it will equip the

system with management and configuration tools adapted to the project

aims, minimise physical and logical maintenance operations, guarantee

a balance between operation and maintenance over time, and allow

evolution.

• Support�and�commitment. We must evaluate whether the support and

monitoring of its creators for the system and its users are guaranteed,

and whether it contributes to the community commitment to evolution,

future improvements, problem solving and generally all aspects that could

cause the system to become obsolete.

• Licences. We must evaluate whether it guarantees compliance with the

legislation in force, establishes a scenario for use and operation, allows

a clear and effective distinction to be made concerning actions that can

be performed with the system and specifies the licences for any products

derived from it.

• Economics. We need to evaluate how it adapts to the economy of the

organisation, the planned project financing, the costs of management,

maintenance and its efficient and effective operation throughout the

expected life of the system and the costs of training and educating the

users of the system.

GNUFDL • PID_00148382 59 Free software implementation, projects and companies

As we can see from the above list, the parameters seek to assess candidates

in different areas (technological, strategic, operating, financial, etc.), in

order to detail, analyse and evaluate the impact of implementation on the

organisation.

The result of this phase is a document that numerically classifies and considers

the various candidates (possibly by category), organising the solutions

according to how well they adapt to the project and the organisation.

Given that different solutions could obtain the same technical score, it may

be necessary to conduct another study on these alternatives that, despite

differing in their characteristics, have similar degrees of adaptation to the

project. In these cases, it may be useful to draw up a SWOT table for each

solution in order to reveal the differences that could help us to make our final

choice.

2.4.3. Final evaluation

The final evaluation of the analysis of free software solutions is the third

control point of the project and its purpose is to determine the development

of the implementation project, i.e. the form of the project and its final

implementation.

This phase uses the documents from the previous phase, which classify the

existing solutions based on how suited they are to the project, and the

summaries of technical features and/or SWOT tables analysing them in detail.

This phase has two main aims:

• Final� selection�of� candidates. Although the previous phase indirectly

proposes the most appropriate solutions for the project and

implementation (by scoring and classification), it may also be necessary

to evaluate the overall integration of all of the solutions.

• Development�of� the�project. The choice of the solutions meeting the

project requirements will have direct consequences on its development,

such as its cost in terms of time and financial resources.

Remember that the components of the system will not be separate from one

another, so the best solutions will be those that generate a stable and operative

system besides meeting the requirements of the project.

GNUFDL • PID_00148382 60 Free software implementation, projects and companies

In some cases, it may be useful to carry out integration tests to determine

the quality and performance of the cohesion of the diverse elements, since

the integration of solutions that have obtained high scores in their respective

categories does not necessarily guarantee an overall performance of the same

level16.

The choice of solutions will generate adaptations in the project, particularly

during the development phase. Overall, we can consider three different types

of implementation:

(16)For example, if the connector
between the two systems is
inefficient or limited due to
compatibility with other systems.

• Direct�implementation. Solutions most suited to the needs of the project

and the organisation can be implemented directly, either because they are

of general use or because the project aims meet the specific needs of a

large group.

Nonetheless, differences between the requirements of the project and the

functionalities of the solution do not automatically rule out adoption.

• Evolution�of�the�solution. The solutions most suited to the requirements

of the project and the organisation can only reveal significant differences

at certain points. Their adoption requires an evolution of the source code

to adapt the possible shortcomings of the original solution in the event

of problems with the system.

The freedoms allowed by free software make it a valid and viable option

in practice, while the proprietary software alternative may require a

completely new development, with the ensuing financial implications.

• New� development. There are no solutions that adapt sufficiently to

the problems of the project and the organisation, so a completely new

development is required to solve them.

These cases may occur in systems with very specialised requirements, such

as robotics. In exceptional cases, proprietary solutions may not exist in

the usual marketing channels.

In all events, the freedom for studying, analysing and reusing the source

code of free software allows us to improve the quality, efficiency and

efficacy of the new development and cut associated costs.

The evaluation of free software solutions can lead us to three main types of

conclusion:

Solutions for direct
implementation

Examples of direct
implementation solutions
include operating systems,
office automation packages,
e-mail clients or web browsers.

• Feasible�direct�implementation�project. The project is feasible and the

implementation requirements can be met by existing solutions. Any

differences between the solutions to be implemented and the problems in

the project are not insurmountable17.

• Feasible� project� subject� to� conditions. The project is feasible but the

implementation requires the use of a process to create or adapt solutions.

(17)For example, MS Word can be
replaced with OpenOffice.org and
functional differences can be dealt
with by user training.

GNUFDL • PID_00148382 61 Free software implementation, projects and companies

Time and money implications will be dictated by the scope of the process,

which will be at its largest when a completely new development is

required.

• The�project�is�unfeasible. Although it is not usual to abandon the project

at this stage, the organisation can sometimes decide not to continue with

it. For example, if financing for a specific development is not available or

if the organisation changes strategy.

The result of this stage is twofold:

• On the one hand, we obtain free software solutions adapted to the

requirements of the project and the organisation.

• And on the other, we obtain a preliminary evaluation of the costs involved

at the development stage of the project (direct implementation or the need

for further development).

2.5. Formalisation of the proposal

This section will define the formalisation of the project implementation

proposal and describe its main characteristics and special features. It will

detail the various phases of the process, the main factors influencing its

development and the results that this stage should generate.

The formalisation of the proposal is the stage of the project in which

we detail, specify and link all of the results obtained in the early

methodological phases of the project – called design stages – with the

aim of putting forward a formal solution to the problems associated

with implementing systems in the organisation.

This stage has three specific aims:

• To� characterise� the� project. Formalisation of the proposal collates,

clarifies and lists all of the results from the initial design stages of systems

implementation. The result of this stage should serve as a guide for the

subsequent development of the implementation, hence it is a key part of

the project.

• To� obtain� validation� from� the� organisation. The formalisation of

the project also serves to present the implementation project to the

organisation, which must then evaluate it. The resulting evaluation will

determine the project's future, viability, development and execution.

GNUFDL • PID_00148382 62 Free software implementation, projects and companies

• To�reduce�risks. Formalising the proposal allows us to reduce the risk of

the project and implementation of the system, and delimit the scenario

of the project's evolution by detailing solutions and the development of

the implementation.

This stage is related to the functional management of the project because it

allows us to detail aspects of project planning such as management of time,

resources and project costs using the information obtained from the results

of the previous stages.

Overall, the proposal needs to cover two main aspects:

• Methodological�aspects. Methodological aspects refer to the results of the

analysis and systems implementation design stages that we have seen in

this unit. Specifically, these are analysis of the current system, analysis of

requirements and analysis of free software solutions. The aim here is to

detail the characteristics of the system to be implemented using a rigorous

and methodical process.

• Management�aspects. Management aspects cover the special features of

the operation and execution of the project, such as scheduling, financial

planning or others relating to the human resources needed to conclude

the project. The aim is to detail the project execution parameters in order

to obtain a clear vision of the requirements needed to meet the objectives.

From the preceding paragraphs, we can conclude that communication and

collaboration with the organisation is important if we are to convey all of the

information regarding the project correctly. By and large, we can identify two

main aspects of the information that need to be conveyed:

• The�project. Understanding of the project, the results obtained from the

analysis and the solution most suited to the project characteristics. The

relationship between the project proposals and the strategic action of the

organisation must be clear.

• Free�software. Understanding of the use of free software, its philosophical

basis and the features of its licences, together with the special features of

the solutions proposed and the benefits obtained by the organisation.

Broadly speaking, we can divide the formalisation of the proposal into four

main phases: drafting, design, presentation and the final evaluation.

See also

See these and other aspects
of project management in the
"Management of free software
projects" section of the first
unit.

GNUFDL • PID_00148382 63 Free software implementation, projects and companies

2.5.1. Drafting of the proposal

This first phase of the formalisation of the proposal is designed to recover all

of the information that can be incorporated into the proposed solution. Here,

we should obtain the documents resulting from the various stages of study,

analysis and project planning.

One of the main aims of this first phase is to generate advanced results from

the initial data. In other words, we should create summaries, diagrams, tables,

charts and graphs to clarify the concepts in the technical documents drawn

up throughout the project.

Another result of this phase is the updating of the project planning using the

information contained in diverse analytical documents. The most important

aspects for the organisation are usually:

• Solution� to� be� implemented. The definition of the solution to be

implemented, the aims and scope of the project, the strategic problems

solved and the systems to be implemented are all important.

• Time�costs. Time costs are related to the scheduling of resources and of

implementation or migration itself.

See also

See the "Time management"
section for more information
about the time costs of the
project.

• Financial�costs. Financial costs are related to the financial repercussions of

implementing the system in the organisation (materials, resources, time,

training, etc.) and the project management (project management team).

Remember that you will need to take into account the financial costs of

the project from the outset18.

It may also be useful to prepare the following aspects:

• Seek out classical misconceptions about free software, particularly

concerning the proposed solutions, and provide arguments for and

against. The aim of this exercise is to provide a working basis for justifying

and establishing the grounds for the proposal in the event of a possible

reticence to change19 observed in its presentation.

• Obtain and present information on free software licence typologies in

an attempt to prove certain assumptions wrong and to transmit the free

philosophy and its relationship with the proposed solution in the right

way.

• Draw up SWOT tables to represent and justify situations where it has been

necessary to make decisions based on the study and evaluation of different

See also

See the "Cost management"
section for more information
on the financial costs of the
project.

(18)As mentioned in the "Resources
of a systems implementation
project" section, the project starts
when it is allocated resources for
the first time.

(19)FUD (fear, uncertainty and
doubt).

GNUFDL • PID_00148382 64 Free software implementation, projects and companies

options. In these cases, it may be useful to evaluate and consider each of

the alternatives presented.

This phase generates a series of documents with results on two main aspects:

• Firstly, a set of references to technical analysis documents from the design

stages and diverse advanced results and information relating to the project

and free software.

• And secondly, an update to the project management planning, which

includes all aspects deriving from the analysis and design stages, shaping

continuance of the project.

2.5.2. Design of the proposal

The design phase of the proposal is used to draw up all documents

and presentations that must be submitted to the organisation and which

summarise the work carried out in the study and analysis stages of the systems

implementation project.

This phase uses the documents from the previous phase, with references to

technical documents, information on the project and free software, advanced

results and updates to scheduling and financial planning. The aim is to

structure, organise and present all available information so that it can serve

as a guide for the subsequent development of the project.

By and large, we can generate two main types of document:

• Reports� and� schedules: these are documents presenting the results of

a deep study. Their aim is to present the contents in a structured and

methodical fashion using accuracy, order and rigour so that they can be

used as a guide or handbook for the project.

• Presentations: these are documents that reveal the general lines of the

study. Their aim is to describe the main concepts of the study in an orderly,

synthetic and graphical way, so that they can be used as the summary of

the project.

Reports should only be presented after editing and formatting and they should

adopt a formal and precise language. Reports normally contain the following:

• Executive�summary: this is a brief summary that positions the systems

implementation project and its contents in terms of time, space, its aims

and its solutions.

GNUFDL • PID_00148382 65 Free software implementation, projects and companies

• Introduction: this describes the strategic position of the organisation

and the need to carry out a systems implementation project in specific

circumstances.

• Analysis� of� the� current� situation: this should include a summary of

the study, an analysis and the conclusions on the organisation's current

system in relation to its strategy.

• Definition,�aims�and�scope: this describes the systems implementation

project, the general concepts of the proposed solution, justification of the

use of free software and its suitability for the organisation's strategy.

• Architecture� of� the� system,� infrastructure� and� technology: this

describes the general and functional architecture of the system, the

infrastructure it requires, the technology and standards it uses, and the

end licences. Integration tests for the different elements may also be

included.

• Human� and� material� resources: here we describe the human and

material resources needed for the everyday operation of the system in the

organisation.

• Implementation�and�maintenance: this describes the implementation

methodology used, the features of migration, user training, adaptation of

the organisation and the necessary maintenance of the installation over

time (usually over a period of five years).

• Scheduling: this details the monitoring and relationship between the

stages of the project over time, taking into account the resources allocated

at any one time. It usually takes the form of a chart in which the stages

are plotted against the time axis.

• Financial� planning: this describes the assessment of the cost of

conducting the project, breaking down the cost of implementation

into various items (e.g. cost of project management, necessary human

resources, material expenses, software development and adaptation,

infrastructure installation, etc.).

• Synergies�with�the�free�software�community�and�other�projects�and

bodies: depending on the characteristics of the organisation, we can

include a section describing the relationship between the solutions used

and the free philosophy sector, the use of similar projects and relations

with other bodies or with the free software community.

GNUFDL • PID_00148382 66 Free software implementation, projects and companies

• Conclusions: we need to highlight the project features that meet the

strategic needs of the organisation and the benefits obtained from the use

of free software.

• Technical� appendices: these can come in useful for the subsequent

development of the project. For example, for the analysis of the system

requirements.

We obtain two documents from this phase:

• The report or project plan, which is presented as technical documentation

of the project.

• The presentation, which will be used at the executive meeting in the

subsequent phase.

2.5.3. Presentation of the proposal

In this phase, we present the proposal to the organisation, usually during an

executive meeting with its management body. The purpose is to inform the

organisation of the final results of the analytical stages so that the organisation

can evaluate the proposed solution and the monitoring of the project, and

consider its continuity.

This phase is usually implemented by presenting all of the aspects of the

project in the form of charts and summaries, using the presentation document

from the previous phase. In addition to the presentation, we must deliver the

project plan with the results of the design stages.

It is particularly important in this phase to focus on the communication and

transfer of information, highlighting the relationship between the proposal

and the strategic aims of the organisation. Though not the norm, we may be

asked to reformulate some aspects of the proposal, which will, in any case,

need to be fairly minor in quantitative and qualitative scope.

The committee in charge of validating the implementation of the system may

be reticent to the use of free software, so it may be wise to justify the proposal

by questioning certain preconceived ideas, explaining the advantages and

disadvantages of its use and even discussing the free philosophy in general and

licence models. The document drawn up in the design phase of the proposal

on issues related to the project and free software may prove useful here.

This phase is closely related to the subsequent phase, the final evaluation,

since decisions on whether or not to continue with the project are often made

at presentation meetings.

GNUFDL • PID_00148382 67 Free software implementation, projects and companies

2.5.4. Final evaluation

The final evaluation phase of the formalisation of the proposal is the fourth

control point of the project, designed to evaluate the work carried out in the

design stages of implementation and the proposed project solution. It must

also resolve the feasibility and continuity of the project for the development

and system implementation stages.

This phase is closely related to the previous one because the presentation of

the project plan and exchange of information between the organisation and

the team that came up with the design is essential if we are to take into account

all of the implications of the proposed solution. The proposal presentation

and validation phases may be merged for making decisions regarding the

continuity of the project.

The importance of this control point is twofold:

• Firstly, because the formalisation of a proposal closes the theoretical and

conceptual cycle of the analysis and design of the system and its associated

implementation project. The subsequent stages will be mainly practical.

• And secondly, because the organisation will finally determine whether or

not the project will be concluded and meet the aims of the strategic action,

implementing the series of changes considered in the proposal.

Hence, as explained in the previous sections, the organisation must evaluate

the aspects of the project it considers to suit its strategy; for example, the

characteristics of the solution to be implemented and the financial costs of

the project and implementation of the system.

It might also be a good time to analyse, evaluate and adapt certain specific

details of the implementation of the system in the organisation, considering

and defining certain aspects of change management, implementation

scheduling, pilot tests and user training.

The organisation's evaluation of the proposal can end with one of three main

types of decision:

• Feasible�project. The organisation accepts the proposed solution without

making any major changes to its specifications. Any adaptations relate to

the implementation schedule or the inclusion of certain financial items,

for example.

• Feasible�project�subject�to�conditions. The organisation considers certain

adaptations to the proposed solution to be necessary. These changes may

or may not be minor, but part of the proposal will have to be drawn up

again if the project is to be given the go-ahead. The changes may be related

GNUFDL • PID_00148382 68 Free software implementation, projects and companies

to the tools implemented or to the partial execution of the project, for

example.

• Project�unfeasible. The organisation considers the project unfeasible and

abandons the implementation of the system. Although this does not

usually occur at this stage in the project, a drastic change in organisation

strategy or the inability to secure financing to conclude the project are

possible reasons for abandoning implementation.

The result of this stage is twofold:

• Firstly, we obtain the project plan, which is agreed and validated by the

organisation.

• And secondly, the organisation makes a decision as to whether or not to

continue with the project implementation.

2.6. Development

This section will define the development stage of the implementation project

and describe its main characteristics and special features. It will detail the

various phases of the process, the main factors influencing its development

and the results that this stage should generate.

The development of the system is the stage in which the solutions

described in the project plan are implemented, together with all of

the requirements for its start-up. The purpose is primarily to adapt,

collect and produce all of the necessary elements in order to perform

implementation with the utmost guarantees of efficiency and efficacy,

and to minimise intervention time.

This stage uses documents from the previous stage, mainly the project

plan and analysis of the system requirements to be implemented. These

documents are essential for the preparation, structuring and organisation of

the development of all components needed to implement the project.

This stage has two specific aims:

• To�implement�the�solution. The purpose of development is to implement

the solution set out in the project plan and the study of requirements,

regardless of the form of the development type.

• To�reduce�risks. Development also attempts to reduce the overall risk of

the project by preparing, specifying and building the solution without

directly affecting the operation of the organisation.

See also

The "Requirements
Verification" section of this
module describes three
project typologies: direct
implementation, the evolution
of existing tools and the
development of a new
solution.

GNUFDL • PID_00148382 69 Free software implementation, projects and companies

In general, development needs to cover two main aspects:

• Methodological� aspects. Methodological aspects relate to the project

typology, so the development stage is directly related to the purpose of

implementation. In other words, the development methodology to be

applied will depend on the aim of the project.

See also

For more information on
project typologies based
on aims, see Section 1.2.2
"Classification by project aim".

• Management�aspects. Management aspects concern the people involved

in the development, i.e. those who implement the tasks set down in

the project plan. Broadly speaking, we can have internal development

(insourcing) or external development (outsourcing).

In general, we can divide the development stage into three main phases: the

allocation of resources, the configuration or development of the software and

the final evaluation, although the individual existence of these stages will

depend largely on the project typology.

The allocation of resources and software development phases can be executed

at the same time, depending on the project type. It is also possible for these

two phases to overlap rather than being simultaneous, perhaps because of

differences in the delivery dates of the various resources.

We also need to remember that the development stage is closely related to

the subsequent stage: implementation or system migration. In this case, some

tasks may overlap or be carried out at the same time in order to cut short the

project schedule, though this could have financial consequences that need to

be taken into account, caused by aspects such as the need for more human

and material resources.

2.6.1. Allocation of resources

The aim of this first allocation of resources phase is to select and obtain all

of the necessary resources to implement the system in the organisation, in

order to obtain all of the elements directly required for the implementation

and operation of the new system.

See also

For more details about internal
and external development, see
the "Resources of a systems
implementation project"
section of the first unit.

One of the main aims of this first phase is to equip the organisation with the

necessary infrastructure for system start-up, i.e. all of the material resources,

organisations and configurations that will allow the new system to become

operative20. Therefore, if the project includes the total or partial migration of

the system, it may be useful to link this phase to the migration planning phase.

Material resources are usually allocated after evaluating the characteristics of

provider proposals based on a set of specific conditions. This set of conditions

must be created using the system requirements to ensure that it adapts and

integrates with the rest of the project.

(20)Examples include installing a
local area network, enlisting a local
technician or purchasing switches,
computers and servers.

See also

To find out more about
migration planning, see
the sections on "Migration
strategies", "Hardware and
software inventories" and
"Network and structure
diagrams".

GNUFDL • PID_00148382 70 Free software implementation, projects and companies

Evaluation of the diverse proposals is specific to the project, system and

organisation. Broadly speaking, we can assess the following:

• System�and�interoperability: we need to evaluate each element alone and

its adaptation and integration with the system, project and organisation.

• Functionality� and� ergonomics: we must assess the ease of handling

and configuration of each element and the knowledge required for its

fine-tuning and everyday use.

• Efficiency�and�performance: we need to assess functional and operating

performance in line with the needs of the system.

• Efficacy�and�reliability: we must evaluate the reliability and coverage of

the aims in relation to the system requirements.

• Implementation� and� migration: we should evaluate the ease of

introducing the element into the organisation and the tools it offers for

migration from the current solution.

• Maintenance,�support�and�guarantee: we must evaluate the operation

and maintenance needs of the element, and the support and guarantees

offered by providers.

• Economics: we need to evaluate the cost of the element in terms of its

promised results and the advantages and disadvantages of the impact on

the organisation's operation.

Implementation of the project may also require the allocation of human

resources to the organisation, for either direct or indirect system handling.

Since the project stems from a strategic action within the organisation, a

change in methods and procedures may require a restructuring of the staff

involved.

The biggest changes in this regard would take place in new organisations

or existing ones that do not use computer equipment in their day-to-day

operation. The demand for technological profiles goes hand in hand with

the level of technological implementation, the type of project and the

characteristics of the organisation.

In all events, the selection of human resources will have to be integrated

into the typical recruitment methodology of the organisation but we should

stress the need for the candidate profile to correspond to the technological

requirements of the organisation.

GNUFDL • PID_00148382 71 Free software implementation, projects and companies

2.6.2. Software configuration and/or development

The aim of the software development phase is to implement all adaptations

required by the free software solution in order to adapt it to the project plan.

This phase can also include the development of tools to help with data or file

conversion for systems migration.

The main aim of this phase is to ensure that the free software solution matches

the project requirements, with the adaptation and encoding of all necessary

changes, taking advantage of the open nature of the source code and the

freedom to develop it.

The length of this phase will depend directly on the changes that need to be

made to the proposal. Generally, we can distinguish between three different

cases:

• Direct� implementation. When the software is to be implemented

directly, the development scenario is limited to adaptation of the

configuration files or software parameters.

For example, the operating system configuration (language, network

access, etc.) or the parameters of office automation tools (templates,

language, etc.). This case requires minimal investments in time and

financial resources in comparison to the other two.

• Software� evolution. Software evolution encompasses the extension or

adaptation of the source code of one or more free software solutions to

adapt its operation to that of the organisation.

The importance of the results means that we must proceed with the usual

rigour of software engineering, establishing an adequate life cycle for each

modification; it could also include software re-engineering.

One example might be the introduction of additional calculations in

accounting management software or the modification of the downloading

manager of a web browser.

• New�development. New code is developed when no solutions can be

found to meet the specific needs of the organisation. Nonetheless, it can

still prove useful to study and reuse the source code of open applications

to save time and ensure reliability.

New developments are the most laborious in terms of time and cost. This

means that we must proceed using software engineering methodologies

adapted to the project. For example, the creation of industrial design or

architectural or electronic device control software.

Hence, any software development project will be guided by its specific life

cycle and will establish the relevant control and quality milestones, while

evaluating monitoring and results using the most appropriate methodology.

See also

For more information on
free software production,
see the subject on "Software
engineering in free software
environments".

GNUFDL • PID_00148382 72 Free software implementation, projects and companies

Regardless of the development format, in this phase, it is useful to generate the

documentation for the software adaptation process with a list and description

of all details subject to modifications, using the same rigour as for new

developments. In these circumstances, we need to take into account the end

licence for the evolving solution, since the freedom of the source code is

usually inherited from the original solution.

It may also be useful in this phase to develop the materials for training the

system users and to adapt the support manuals of the free software solutions,

since we will now have all of the necessary elements to perform this activity.

In these cases, we also need to take into account the characteristics of the

licences for the manuals we wish to edit.

2.6.3. Final evaluation

The final evaluation phase of the development stage is the fifth control

point of the project and its aim is to ensure that the development meets the

requirements of the project plan. It is also designed to reduce the overall risk

of the project by validating the viability and adaptation of development to

the organisation's strategy.

The evaluation of this stage usually depends on the typology of the

development:

• Resources,� installations� and� infrastructures: these are evaluated

according to whether or not they meet the aims of the design and the

provider's proposal. Delivery deadlines are very important here as they

have repercussions on the scheduling of other stages.

• Direct� software� implementation: we must evaluate whether or not

the aims are met by the proposed adaptation of the configuration and

operation. The main evaluation is based on operating tests.

• Software�evolution�or�development: the complexity of the evaluation is

proportional to the scope of the changes made. The evaluation resulting

from the software engineering process is normally taken into account.

Support manuals

Frequently asked questions
(FAQs) or the standard
manuals for completing
specific tasks (How to...
) which, although highly
technical, can still be very
useful.

This phase is closely related to the implementation and migration of the

system since, depending on the project type, we can implement tailored

solutions to conclude the development. It can also be related to user training

and pilot tests because it can be useful to find out user opinions in order to

fine-tune certain aspects of the development21.

The importance of this control point is twofold:

(21)For example, the graphical
interface, system response or the
characteristics of the procedures
that it implements.

GNUFDL • PID_00148382 73 Free software implementation, projects and companies

• Firstly, because it revises, evaluates and assesses the qualitative

development of the solutions and their adaptation to the strategic

requirements of the organisation.

• And secondly, because it supposes the completion of the process of

creating and adapting the solution, and the start of the definitive

implementation and integration of the system in the organisation.

The development evaluation phase is generally a good time to introduce users

to the features of the system, and the situation can be regarded as the start of

the training and adaptation of users to the new environment. These actions

can take place as part of the management of the change that the organisation

needs to carry out in order to overcome any misgivings or fears among users22.

The final evaluation of the development stage can end in one of three main

types of decision:

• System� implementation� is� feasible. The evaluation determines that

the system meets the requirements of the organisation and that all

modifications of the original solution have been developed and integrated

correctly. Implementation of the system in the organisation may begin.

• System�implementation�is�partially�feasible. The evaluation determines

that the system partially meets the project requirements on the control

date. This situation is normally due to production delays, which can occur

as a result of unexpected events, such as the lack of material resources,

long delivery delays or the lack of human resources for production.

In all events, the feasibility of the project is not affected, but we will need

to take into account the fact that implementation will be delayed.

• System� implementation� is� unfeasible. Although it is rare for the

development of a solution to be unfeasible, there may be exceptional

factors affecting the decision that could not be solved during this stage.

This type of problem is normally associated with factors outside the scope

of the project, such as sudden changes in strategy or a lack of funds.

Abandoning the project at this stage will have serious financial, functional

and moral implications for the organisation and will make it difficult to

take any further action in the future.

The result of this stage is twofold:

• Firstly, we obtain the system to be implemented (tested and integrated),

which will meet the project requirements and the strategic needs of the

organisation.

(22)FUD (fear, uncertainty and
doubt).

GNUFDL • PID_00148382 74 Free software implementation, projects and companies

• And secondly, we will have assessed the feasibility of implementation and

made any adjustments to scheduling as a result of the evaluation of pilot

tests.

2.7. Implementation and migration

This section details the technical aspects of migration to free software systems

and their implementation.

Most implementation projects are also migration projects because they

start off with a scenario in which there is a computer system based

on proprietary software already in production. Implementation from

scratch takes place in new organisations that look to free software

solutions to start up their first system or in organisations that currently

have no computer system, which is rarely the case.

Implementation from scratch is always much more straightforward than

migration in terms of the technical problems that the project will need to

solve, mainly because there will not be any compatibility problems with

existing systems. Nonetheless, we do need to bear in mind that the users of

the new system will usually be familiar with proprietary operating systems

and applications, so planning the training is just as important in migration

projects.

This section will refer exclusively to migration projects because they are

the most difficult and because projects implemented from scratch can be

considered a subset of migration projects with the particular feature that they

allow greater freedom to decide on the final scenario. This freedom comes with

the condition that more attention must be paid to non-functional aspects of

the system, such as correct dimensioning.

We will begin by describing the different types of migration project and the

most crucial aspects of the planning. We will then offer advice and guidance

for executing the migration and evaluating its results. And finally, we will

conduct a detailed study of all the services involved in the migration project

and the most popular free software solutions for each.

2.7.1. Types of migration

We can carry out a range of possible types of migration to free software systems

in organisations: aims-based, or depending on the elements of the system that

will be migrated; and scope-based, or according to the number of elements

that will be migrated.

GNUFDL • PID_00148382 75 Free software implementation, projects and companies

Aims-based:

• Migration� of� services� and� servers: this affects the servers of the

organisation, the applications they run and the services they carry out,

such as authentication or printing services, among others. In this case,

there is no change to the clients' applications, so we only need to plan

for system administrator training and not for end users. These are among

the easiest migrations to carry out. The servers, which use GNU/Linux,

operating systems from the BSD23 family or other free systems tend to

be more reliable and offer better performance, which will increase the

productivity of the organisation, both by systems administrators and end

users (lower server response time).

• Migration�of�users�and�clients: this affects the client machines of users

and the applications running on them. In this case, we will need to train

and accompany the end users, who are generally less receptive to the use

of new applications and will be most affected by the change, which could

cause a temporary loss of productivity.

• Migration� of� applications: this only affects some of the applications

running on client machines or servers, the operating system of which does

not necessarily have to be GNU/Linux or any other free operating system.

More often than not, the operating systems continue to be proprietary.

It is sometimes a preliminary step towards migration of the operating

system. These are fairly straightforward migrations, such as those to

OpenOffice.org or MySQL Community Server.

Scope-based:

• Complete�migration: this is the result of combining the migration both

of servers and client machines. This type of migration must be planned

in such a way as to ensure that clients are not left without access to the

services provided by the servers at any time. Hence, the first step is usually

the total or partial migration of servers, followed by the migration of client

machines.

• Partial� migration: this is the result of a combination of the partial

migration of the servers or part of the clients, which means that there

will still be machines based on proprietary software in the system.

One common scenario is that where a single system contains clients

based on free software and clients based on proprietary software, whose

configuration will depend on the needs or preferences of the end users.

• Migration�based�on�virtualisation: this can be viewed as a type of partial

migration where we migrate servers and client machines at the same time

as we continue to install and run proprietary software applications that

could not be included in the migration, whether because there are no free

(23)OpenBSD, FreeBSD or NetBSD.

See also

The "Network and structure
diagrams" section details the
migration features for each of
these services.

GNUFDL • PID_00148382 76 Free software implementation, projects and companies

software equivalents or for other reasons. With virtualisation, we can start

up a proprietary operating system on a free operating system and use it as

normal with proprietary software applications.

We also need to remember that while the typical migration scenario is one

where we switch from a proprietary operating system to GNU/Linux, there are

other possible combinations, such as:

• From a proprietary operating system to a free operating system, such as

those of the BSD family.

• From a free operating system to another free operating system.

2.7.2. Migration strategies

As with any project, correct planning is essential if we are to migrate

successfully to a free software system. There are as many ways to plan as

there are projects and they will all be valid to an extent if they meet the

requirements and features of our migration scenario. Nonetheless, depending

on our migration planning, we can extrapolate four main migration strategies:

• Single-step�migration: this involves carrying out the entire migration

process in a short space of time, in a single day or during public holidays if

possible. The strategy requires identifying and defining all of the tasks that

need to be performed, since a mistake in any of these could leave the entire

system inoperable, with the subsequent risk of delays and user rejection.

This is the most economical strategy and is usually used for small systems

with few clients and a single server, as is the case of small companies.

• Pilot�migration: the first step is to migrate a small part of the system,

which will be used for practising and evaluating the success of the

migration before we implement the rest of the system. The pilot system

usually consists of a number of servers and client machines, but it can

also be a single server and a single client machine. Although it is very

important to plan correctly, this strategy offers greater flexibility for

modifying the migration approach and correcting possible problems.

The drawback to the strategy is that it requires far more resources and

is therefore usually used in organisations with medium-sized or large

systems.

• Group� migration: this involves defining user groups based on their

functional characteristics and carrying out migration progressively with

each of these groups. One of the main advantages of this strategy is that

it enables us to minimise risks and learn from each migration. Moreover,

since migration only affects part of the system, we can reduce productivity

losses. The disadvantage is that we often need to keep the previous systems

The OpenBSD operating
system

The OpenBSD operating
system is renowned for
the quality of its security
mechanisms and its integrated
cryptography, making it ideal
for servers or other machines
whose integrity could be
compromised.

GNUFDL • PID_00148382 77 Free software implementation, projects and companies

running while we set up the free software system. It is usually a good time

to renew hardware when carrying out group migration, and vice versa.

• User�migration: this is similar to group migration, the difference being

that only one user is migrated each time. As a result, the strategy

requires very few resources but is unfeasible in large and medium-sized

organisations, where migration would take too long due to the high

number of users. It could, however, prove useful for the migration of

critical systems and users that require special monitoring.

These strategies are not mutually exclusive and several of them can be used

in any one project. For example, in an organisation that has some smaller

or less important departments, single-step migration can be carried out in

these, while pilot migration can be carried out in others before moving on

to complete implementation. Similarly, group migration can be seen as a

combination of single-step and pilot migration.

2.7.3. Hardware and software inventories

In order to plan migration, we need to identify the hardware and software

available in the initial situation that we wish to maintain after migration. As a

result, we must carry out a detailed inventory of both hardware and software.

The hardware inventory should include all machines available for migration

including those that have been withdrawn, since we may be able to use some

of these again.

Hardware can be grouped into the following categories:

• Hardware�with�full�GNU/Linux�support: this includes hardware with

out-of-the-box support in the Linux kernel or free drivers, and hardware

for which we need to use proprietary drivers, either directly or using

adaptors. Most hardware has good support on GNU/Linux, so it will fall

into this category. We will describe each of these situations in detail later

on.

• Hardware� with� limited� GNU/Linux� support: this includes hardware

that only works with older versions of the Linux kernel not used in

the more recent distributions of GNU/Linux, hardware that runs with

very old drivers whose maintenance has expired, and hardware with free

drivers that have functional limitations in comparison to the proprietary

drivers24.

GNU/Linux distribution

The production of a GNU/Linux distribution involves checking that all the packages
included in the distribution are compatible with one another and, most importantly,

(24)For example, graphics adapters
with 3D acceleration whose free
drivers are only available in 2D.

GNUFDL • PID_00148382 78 Free software implementation, projects and companies

with the kernel version. Thus, there will always be a gap of some months between the
date of the appearance of the distribution and that of its kernel, which is older.

• Hardware� with� no� GNU/Linux� support: this includes hardware that

does not work on GNU/Linux. In actual fact, there is very little hardware

without GNU/Linux support but when this is the case, it is either because

the hardware is very new and the relevant drivers have not yet been

developed, or because the hardware is very old and incompatible with

the newer versions of the Linux kernel or because the hardware is

dependent on a specific operating system and cannot therefore be used

with GNU/Linux25.

We can also classify hardware with GNU/Linux support by the type of support,

as follows:

(25)In this case, however, a
virtualisation solution could still be
possible.

• Hardware�with�out-of-the-box�GNU/Linux�support: most equipment

and devices have adequate support in the recent GNU/Linux distributions

so there is no need for external drivers. It is easy to find lists of hardware

with GNU/Linux support on the Internet.

• Hardware� with� free� driver� support: although they do not have

out-of-the-box GNU/Linux support, many devices work correctly with

drivers maintained by the free software community. The package

managers included with the GNU/Linux distributions often propose the

installation of these drivers when they detect the hardware.

• Hardware�with�proprietary�driver�support: the free software community

does not maintain drivers for this type of device so we will need to use

proprietary drivers, often supplied by the manufacturer. This is usually

the case of hardware with very specific functionalities, such as graphics

accelerators. Nonetheless, support for this type of device is gradually

increasing and the manufacturers themselves often open up their drivers.

• Hardware� with� adaptor� support: this hardware is supported by

proprietary operating systems but not by GNU/Linux. Fortunately, tools

called adaptors are available so that we can use the drivers of these

proprietary operating systems in GNU/Linux.

Once we have classified the hardware correctly, we will obtain a clear idea

of the available resources and the need to purchase any new equipment.

Moreover, as we mentioned earlier, the hardware requirements of GNU/Linux

systems are considerably lower than those of proprietary operating systems,

so obsolete machines can be reused for services such as printing or e-mail.

Website

You can find out
which hardware has
GNU/Linux support at:
http://hardware4linux.info/.

Website

NDISwrapper is a free
software project enabling the
use of wireless network cards
with GNU/Linux through
the use of Windows drivers.

GNUFDL • PID_00148382 79 Free software implementation, projects and companies

Once we have completed the hardware inventory, we will need to do the same

with the software. We will have to identify all of the proprietary software

applications used in the system before migration and the best free software

applications for replacing them.

There are many lists on the Internet indicating equivalent proprietary and

free applications. However, a detailed study of the functionalities of each

application is sometimes required in order to select the best candidate from

the free software options.

There are many options for the more common applications, such as office

automation, but there is often one application or package of applications that

stands out above the rest. There are communities of developers and users for

applications with more specific uses and it can often be a good idea to ask

their advice or even get involved.

If there are no free software applications or projects that meet the

organisation's needs, it may consider developing a new application and

opening it up with a free licence, provided that it has the resources to do so.

The benefits are clear: the potential contribution of external developers and

users and increased visibility for the organisation.

2.7.4. Network and structure diagrams

This section describes two essential elements of systems migration: the

network diagram, which illustrates the connectivity between the diverse

elements of the system, and the structural diagram, which indicates its

physical location.

Website

The SourcePYME project
publishes a fairly extensive
and up-to-date list of
applications and services (
http://www.sourcepyme.org/
?q=node/13). There are also
many resources available in
English.

See also

The "Evaluation of migration"
section contains the available
alternatives for migrating
the core services of an
organisation.

Thus, once we know which hardware and software will be affected by

migration, we can represent the system on a network diagram. This diagram

must contain the following elements:

• Servers. Indicate the name of the equipment, together with the main

services offered by each server.

• Client�or�user�equipment. Indicate the name of the equipment and the

network devices exposed to the other systems.

• Printers. Indicate the name of the printer and the print server or client

computer on which it depends.

• Other�network�equipment. Indicate the main equipment forming the

system network enabling connectivity between the various machines. For

example, hubs, routers, switches and wireless access points.

Website

An excellent free software
application for creating
network diagrams as well as
other types of diagram, is Dia
(http://live.gnome.org/Dia).

GNUFDL • PID_00148382 80 Free software implementation, projects and companies

• Connectivity�between�elements. Indicate the wired and wireless network

connections between the various elements of the system. Indicate the

organisation's local network connection to external networks such as the

Internet, virtual private networks (VPN) and virtual organisations (VO).

It is very important for each machine to be uniquely identified in the network

diagram.

First of all, we need to draw up a network diagram illustrating the status of the

system before migration. This diagram will be used to study the possibilities

for optimising the current network, such as alleviating server bottlenecks or

connecting certain local printers to a central print server. We will also decide

which new equipment and network elements will be introduced in the system

as new servers, which old equipment can work with GNU/Linux or discuss

the implementation of a wireless network.

With these elements we can create a network diagram for the system after

migration. This diagram will be essential for defining the planning and

strategy of the migration and will serve as a guide during implementation.

Thus, it is a good idea to keep the network diagram up to date, ensuring that

it offers a true picture of the system status.

As explained at the beginning of the section, the structural diagram reflects the

physical location of the equipment inside the organisation; in other words, it

tells us what equipment there is in each room.

As we did with the network diagram, we will create a structural diagram to

illustrate the status of the system before migration, which can then be used

to decide on the location of the equipment after migration.

One of the most common consequences of migration is the introduction of

servers for a small number of services, sometimes even exclusively. As a result,

the servers are usually grouped together in the same physical location (usually

a server room) that meets the specific requirements for climate control, power

supply and accessibility, among others. Another example is the connection

of printers (thus far local) to a print server, which can be located in the same

room.

Although structural diagrams are not very important in small organisations

with just ten or so machines, in bigger migration scenarios, it is essential to

know the location of each piece of equipment and network component.

GNUFDL • PID_00148382 81 Free software implementation, projects and companies

2.7.5. Execution of migration

When carrying out any migration, regardless of the strategy adopted,

there is a series of technical tasks that almost always crop up again and

again: equipment installation, data migration, production of backup

files, emulation of applications, etc. Besides these technical tasks, it is

important to have a management plan in place to deal with any risks

that may appear during migration.

This section will look briefly at each of these tasks and offer guidelines for

their completion:

• Equipment� installation. Automatic equipment installation tools are

available for easy installation and configuration of more than one in a

short space of time.

One such tool is SystemImager, which automates the installation of clones

of the GNU/Linux system installed on an initial piece of equipment.

SystemImager also allows us to distribute new applications or data on the

system equipment and make changes to the configuration or install system

updates on networks with GNU/Linux equipment. However, if the hardware

of the equipment is not identical, they may need to be manually configured.

• Migration�of�user�data.

The names and addresses of users are usually stored in directory services,

normally accessible through the standard LDAP protocol, which facilitates the

migration of these data at system level.

However, in the case of the applications that use these data, such as e-mail

clients or groupware, different data schema are often used to structure

the information. As a result, the data are rarely interoperable and external

programmes must be used to synchronise the data between applications.

• Making�backups.

Backup is the term generally used to refer to the copying of data to allow

a system to be restored after loss of information. The implementation of

GNU/Linux systems often involves the formatting and partitioning of the

equipment involved in the migration, so we need to make backups of the

existing data in order to restore it later on the new system.

Website

You can find out more about
SystemImager at http://
wiki.systemimager.org/.

SystemImager

SystemImager allows you to
save a clone of a GNU/Linux
system in production before
making changes to the system,
which means that you can
revert to the original situation
if need be.

See also

See the section on "Hardware
and software inventories" for
more details on the migration
of directory services.

GNUFDL • PID_00148382 82 Free software implementation, projects and companies

If the organisation has an up-to-date backup mechanism, one option is to

use this to recover all the information that needs to be copied to the new

equipment.

If the organisation has no backup mechanism, we can set up a storage service

exclusively for the storage of the data that needs to be migrated. Another

option is to implement the storage service envisaged in the project plan first

and then provide access to the system users so that they can store their data

before the user equipment is migrated. In both cases, the participation of users

is fundamental.

Once migration is complete, we will need to set up an incremental backup

mechanism26. As a general rule, the original system and the backup must be

as independent as possible so that an error in one will not affect the other.

• Emulation�of�applications�and�virtualisation.

Performance of the software inventory will serve to determine which

applications cannot run natively on GNU/Linux and cannot be replaced

by an equivalent free application. If these applications are essential and we

need to continue using them, we have two possible solutions: emulation or

virtualisation.

Wine, the most popular free solution

Wine is the most popular free solution for running native Windows applications on a
GNU/Linux system. Although Wine (http://www.winehq.org/) is usually referred to as
an emulator, it is more correct to say that Wine provides a layer of compatibility for
Windows applications. Wine is in fact an acronym of Wine Is Not an Emulator.

Wine does not need to install a Windows partition but it can be useful to have some
native Windows libraries in some cases. Applications that run with Wine can access
the file system, network and printing services in a completely transparent way. The
Wine website contains information on the supported applications and their level of
functionality.

For applications that do not run correctly with Wine, it is possible to run them on a
virtualised operating system. As explained earlier, virtualisation allows us to run one
operating system over another. In this case, we would run the application on a virtual
Windows system on a GNU/Linux system. The most popular free virtualisation solutions
are QEMU, Xen and KVM. In all events, virtualisation should always be considered as a
last resort because we will have to carry on using and paying for proprietary licences and
because it is a big consumer of system resources.

• Risk�management.

(26)There are many solutions
available, including RSync (
http://samba.anu.edu.au/rsync)
and Amanda (http://amanda.org
).

Migrating to a free software system is not without risks, so it is important to

draw up a management plan and keep to it for the duration of the project.
See also

See the section on "Risk
management" for more
details on how to draft a risk
management plan.

GNUFDL • PID_00148382 83 Free software implementation, projects and companies

The risks and their relative importance will depend on the migration scenario

and the features of the organisation. For example, some organisations may

consider it a priority to guarantee the security and integrity of certain

confidential data, so this contingency will need to be provided for and a plan

drawn up to solve it in the event that it does occur.

As a general rule, we suggest that you keep the migration process reversible

until you have fully verified the new system, i.e. that you will be able to

return to the starting point in the unlikely event that migration fails or proves

unfeasible.

2.7.6. Evaluation of the migration

In any migration project, it is essential to evaluate both the end system

and the migration process. This evaluation can be done once we have

completed the migration, but it can also be carried out during the

process, if it is not conceived as a single-step process.

Hence, the project plan must include a series of clear indicators. These

indicators may include some of the following, which refer to the operating

system, servers, applications and users:

• System� indicators. Have the reliability, performance and security of

the system increased since migration? How has the real (as opposed to

estimated) cost of system maintenance changed? Have new services been

introduced into the system? How do the administrators see the new

system? Has the number of problems with system services fallen since

migration?

• Operating�system�indicators. How many machines have been migrated

to the new system? Does all of the equipment work properly? Is all of the

hardware supported by the new system? How often have virtualisation

solutions been required?

• Application� indicators. For how many existing applications has an

equivalent application in free software been found and implemented?

What functionalities have been gained and lost with regard to the

original applications? How many applications run through emulation or

virtualisation? How many applications was it necessary to modify? How

many applications have had to be developed from scratch?

• User�indicators. How many users have been migrated to the new system?

What is their opinion of the functional and non-functional aspects of the

new system and the new applications? How has their productivity varied

GNUFDL • PID_00148382 84 Free software implementation, projects and companies

in the short and long term? Has the number of user problems fallen since

the new operating system was installed?

2.7.7. Migration of the services of a system

Most organisations have a series of basic services that must be paid

special attention when planning and executing migration:

• File system

• Printing service

• Directory and authentication services

• Network service

• System management and administration

• Web servers

• Databases

• Desktop environments and office automation applications

• Corporate applications

This section will describe the main characteristics of these services and

indicate the most popular free software solutions. There is generally more

than one alternative so the final choice will depend on the characteristics and

requirements of each scenario.

The importance of each of these services will also vary according to the

characteristics of the organisation. Some of these services may not exist in the

initial situation and will not therefore be included in the migration.

Nonetheless, migration is an excellent opportunity for analysing and revising

the current status of the system and designing an architecture that meets

both the current and long-term needs of the organisation. Hence, we need to

consider the inclusion of new services not present in the original system.

File system

We can be faced with two situations when migrating the file system,

depending on whether all or only a number of the clients are being migrated:

Migration�of�the�storage�system�server�but�not�the�client�server

In this case, the most popular solution is Samba, a free protocol

implementation used in Microsoft Windows shared file systems for Unix

systems that allows computers with GNU/Linux to act as servers or clients in

Windows networks.

Clarification

Although most of the free
software solutions described
in this section are in the
mature stages of development
and used in many scenarios,
technology evolves constantly,
so it is a good idea to visit the
websites of the projects to
obtain more recent technical
information and research other
solutions that could improve
on existing ones.

GNUFDL • PID_00148382 85 Free software implementation, projects and companies

Migration�of�both�the�storage�system�and�client�servers

In this case, we will usually use NFS or OpenAFS.

NFS allows us to access remote files in the same network as if they were local

files. NFS is included in the GNU/Linux operating system by default. Similarly,

OpenAFS27 is a distributed file system generally used in clusters and distributed

computing scenarios.

The choice of one or the other (or the choice of another system) will depend on

the migration requirements. It is possible to use NFS or OpenAFS in networks

that include Windows and GNU/Linux clients.

For the migration of servers operating with GNU/Linux, there are several file

systems but the most widely known are Ext3 and XFS. Their functionalities

include journaling, assignment of quotas and access privileges based on ACL

(Access Control List) by file and directory.

When migrating file systems, we need to pay attention to the mapping of the

Windows ACLs to Posix ACLs, since we can lose granularity here. In practice,

this does not usually occur because organisations usually do not make full use

of the granularity permitted by Windows ACLs.

Printing service

Printing is one of the most common sources of problems in organisations,

generally because printers are installed with no planning, which leads to

numerous several technical issues and, very often, a waste of resources

(paper, ink, electricity). Migration to a free software system is actually a good

opportunity to optimise the printing service.

Of the available free software solutions, CUPS is the print server used by

most GNU/Linux distributions and is in fact the best option for almost all

migration scenarios. One of its main advantages is that it provides us with

a print service both for GNU/Linux clients and Windows clients, because it

implements Internet Printing Protocol or (IPP).

IPP is a printing standard for both LAN and WAN networks that supports

communication between clients and servers, between different servers and

between the selected server and printer. It is supported by all modern printers.

Before carrying out migration, we need to check the support and drivers for

each printer.

(27)OpenAFS is a free
implementation of a file system
originally developed by Carnegie
Mellon University that also
influenced the design of NFS.

GNUFDL • PID_00148382 86 Free software implementation, projects and companies

Directory and authentication services

The purpose of a directory service is to ensure that certain information is

available to all network users. This information is usually composed of objects

organised hierarchically, originating from a root object. The most common

access protocol is LDAP.

For example, a fairly common use for a directory service is to store system

user accounts together with their privileges so that all the system applications

and services can access it to obtain this type of information, which should be

complete given its nature.

Thus, a directory service needs to offer the following functionalities:

• The available information must be modified and organised into a

hierarchical structure.

• Use of a standard data schema to ensure compatibility and interoperability

with as many applications as possible.

• User authentication and guaranteed interoperability with other

authentication services.

• Administration of access rights to the information in the directory service.

• Secure transfer of information between clients and the directory service.

For authentication with a directory service, the most common free software

solution is a combination of OpenLDAP and Samba, where the latter serves as

a database of user accounts and OpenLDAP acts as a directory service. There

are many applications compatible with LDAP, including the office automation

package OpenOffice.org.

LDAP (Lightweight
Directory Access Protocol)

LDAP initially referred only
to the access protocol but
it has come to mean the
combination of the database
containing the information
and the protocol for accessing
it.

The GNU/Linux system offers various LDAP tools28 for modifying the

information stored in the directory service and there are also web-based

graphical interfaces available for the administration of users and groups.

A directory and authentication service based on OpenLDAP and Samba will

also allow the simultaneous use of Windows and Linux clients. In fact,

OpenLDAP also acts as part of the authentication service and as an integration

tool in mixed scenarios with GNU/Linux and Windows clients. If we are

carrying out a complete migration to GNU/Linux, authentication is also

possible with Kerberos. Kerberos is an authentication protocol that allows two

computers to reveal their identities to one another securely.

(28)These include ldapsearch,
ldapad and ldapmodify.

GNUFDL • PID_00148382 87 Free software implementation, projects and companies

Network services

The entire TCP/IP network infrastructure (DNS, DHCP, NTP, router

connection, filtering, VPN) can easily be implemented with free software

solutions, due mainly to the fact that all Internet protocols are open standards,

both in their definition and in their implementations.

One aspect to consider when migrating network services is the use of

open standards, even when they are not needed (as in the case of small

local networks) as this does away with the need for specific modifications

from hardware manufacturers, which can eventually cause compatibility

problems with other systems when new services are implemented and even a

dependency on the manufacturer.

The network services include the following:

Note

For more information about
open standards, see Appendix
II of this module.

• DNS�(�domain�name�system�)

The free software implementation of reference is BIND (Berkeley

Internet Name Domain), currently maintained by the Internet Systems

Consortium (ISC). BIND is the most popular DNS server on the Internet.

Its latest version is BIND 9, which includes DNSSEC (DNS Security

Extensions), TSIG (Transaction Signature), DNS notification, nsupdate

and Ipv6, among other functionalities. It is available on all GNU/Linux

systems.

• DHCP�(�dynamic�host�configuration�protocol�)

The implementation of reference in free software is dhcpd , also now

maintained by the ISC. dhcpd allows the administration of individual

clients and group configurations for classes and subnets. Moreover, dhcpd

offers load balance functionalities and high availability. It is available on

all GNU/Linux systems.

• NTP�(�network�time�protocol�)

NTP is an Internet protocol for synchronising the clocks of computer

systems through packet routing, thus avoiding the problems caused by

variable network latency. The NTP Project provides NTP support and offers

an implementation of reference, available on all GNU/Linux systems.

• WINS�(�Windows�Internet�Name�Service�)

WINS allows us to resolve the names of the different Windows services and

systems. This function can be replaced by nmbd, included in the Samba

package.

Internet Systems
Consortium

The Internet Systems
Consortium is the non-profit
organisation that succeeded
the Internet Software
Consortium, also known as
ISC.

GNUFDL • PID_00148382 88 Free software implementation, projects and companies

System management and administration

Most system control and management applications are not native to

the operating system and manufacturers often supply versions of these

applications for different operating systems. The downside to this is that while

there are many systems management applications for GNU/Linux, they are

not based on free software.

In all events, the management and control of free software systems is very

different to that of systems based on proprietary software, such as Windows.

Administrators of free software systems normally use a series of management

tools rather than just one, each specialising in a part of the system. Thus,

administrators have much more freedom to make adjustments and correct

problems with their systems, which is one of the reasons for the well-known

reliability and security associated with free software.

An initial option for the automation of administration tasks in GNU/Linux is

the use of cron and at. The former (cron) is an administrator of background

processes that runs programmes at regular intervals. The at command also

allows programmes to be run at specific times.

All GNU/Linux systems offer the basic functionality of administration from a

remote terminal ssh on another client or server in exactly the same way as if

it were a local machine, even through the graphical interface of the desktop.

The combined use of ssh, cron and at covers many of the maintenance tasks

of the administrator.

Other system utilities such as strace, lsof and netstat offer diverse

functionalities for detecting and analysing errors, and can be useful in server

management.

Network�management

The solutions available for the management of TCP/IP networks as free

software include Nagios and OpenNMS.

Nagios allows us to monitor servers and services in order to detect network

problems in systems based on GNU/Linux. A background process controls

the specified services and servers and sends the information to the Nagios

server, which informs the system administrator if it detects a problem. By

means of a series of plugins, Nagios can actively and passively monitor typical

network services such as web and mail servers, besides others such as database

management systems.

GNUFDL • PID_00148382 89 Free software implementation, projects and companies

OpenNMS is a network management application that uses the FCAPS model

and allows us to determine the availability of the different services, store the

information and generate reports, and inform of events.

However, the management of more complex systems and networks may

require the use of tools that are not available as free software.

Software�management

Software management involves client installation and restoring, standard

and specific applications distributions and the management of updates and

patches for the entire system.

The solutions available as free software include m23, a software package for

systems based on the Debian distribution that allows initial client installation,

including the definition of partitions and the detection of hardware, the

distribution and updating of software and the restoring of clients.

Web server

Apache is the main alternative for migrating and implementing an

organisation's web server. Apache is present in over 60% of web servers and is

distributed freely under the Apache licence.

Its functionalities and performance are excellent and have been thoroughly

tested in a wide range of production scenarios. Apache has a modular

architecture consisting of a kernel that contains the basic functionalities of the

service and numerous easy-to-install modules for specific applications, such

as support for certain programming languages (PHP, Java, Perl, etc).

The Apache project

Apache is one of the
most successful projects
developed by the free software
community that, due to
certain features of its licence,
can be used in proprietary
software products.

The migration of web projects29 to an Apache web server requires a study

of the individual features of each project, which can sometimes create

incompatibilities. Apache offers trouble-free support of both static content

(developed in HTML) and dynamic content (developed in languages such

as PHP or Perl). The modifications needed to ensure compatibility of these

projects in Apache are minimal or non-existent.

Projects developed in proprietary technologies such as ASP are a special case,

since considerable effort is required for them to work on Apache. Wherever

possible, it is preferable to implement the web project again in alternative

technologies such as PHP to ensure technological independence in the future.

This obviously involves more work but the opportunity can be used to

optimise the web applications and contents of the organisation.

(29)The term web project refers
to a website (for example, the
organisation's website) and to web
applications that can be accessed
through a browser.

GNUFDL • PID_00148382 90 Free software implementation, projects and companies

It is now increasingly common to see PHP used as a web programming

language and LAMP platforms (Linux, Apache, MySQL and PHP) have become

popular over recent years for offering web contents and applications.

Databases

There are many free software alternatives for the implementation of database

management systems, but the most common are MySQL, PostgreSQL, Firebird

and MaxDB. Choosing one solution over another will depend on the

requirements of migration.

In all events, free databases are mature products that have been tried and

tested in production environments and can in fact be regarded as one of

the leading areas for free software and the GNU/Linux system in business

environments. These solutions also have versions for proprietary operating

systems so they could be used when migrating applications only.

Some proprietary databases such as Oracle30 also have a GNU/Linux version, so

in special cases where it is not advisable to migrate the database management

system, we could migrate the operating system to GNU/Linux.

Most databases have fairly standard administration and query mechanisms,

which theoretically encourages interoperability and the use of other solutions

along with easy migration of data from one management system to another.

This means that applications can continue to access the data transparently

and without the need for further modifications.

Thus, database migration involves two operations:

• Migration� of� data� to� the� new� database. The effort required for this

operation will depend on the initial status of the data. If the data can

be accessed by SQL queries, an export or data transfer operation with

subsequent importing to the new database should suffice. If the data

are stored in a proprietary format or even as text files, we will need to

implement a parser and subsequently import them to the new database.

• Verification�of�data�access�from�applications. If the applications use a

standard data reading mechanism (such as SQL queries), access will have

to be set up in the same way, unless we are using commands that do

not satisfy the standard. If the applications use standard drivers such as

ODBC or JDBC, or a proprietary interface, it will be necessary to replace

the original database driver with that of the new database or to implement

a new interface. In both cases, this step could require considerable effort

and cause problems with interoperability.

(30)Oracle is usually used in fairly
complex environments with a
series of requirements that cannot
always be met by free solutions.

GNUFDL • PID_00148382 91 Free software implementation, projects and companies

As a general rule, for easier database migration, we need to avoid as far as

possible the use of predefined query procedures and specific manufacturer

extensions for accessing the data from the applications. Instead, it is advisable

to use standard drivers like ODBC and JDBC, which are easily interchangeable,

and to implement SQL queries in the most modular way possible and separate

from the rest of the programme.

Desktop environments and office automation applications

There are two main desktop environment options in GNU/Linux systems:

GNOME and KDE.

Both GNOME and KDE provide an intuitive desktop environment with a

user-friendly windows manager suitable for all users and a development

platform for building applications integrated into the rest of the desktop and

between one another.

The choice of one or the other is largely a matter of personal preference. KDE is

generally more similar to the Windows interface and has more customisation

possibilities, but this could introduce further difficulties for new users.

Although there are many office automation applications for GNU/Linux

systems that offer good integration with the Gnome and KDE desktop systems,

there are two solutions that stand out above the rest: OpenOffice.org and

StarOffice.

OpenOffice.org is an open source, free software, office automation package

that is freely distributed. It is available for many free and proprietary

platforms, so it is often cited as an example of application migration. In

most cases, it is compatible with Microsoft Office and supports the ISO

OpenDocument data exchange standard, which can be used freely.

OpenOffice.org is actually based on the StarOffice project. StarOffice is the

proprietary office automation package of Sun Microsystems, sold as such, with

some additional functionalities31 not available in OpenOffice.org, which Sun

Microsystems continues to support.

OpenOffice.org and StarOffice contain different applications, each with

specific function, but they integrate perfectly with one another:

• Word processor (Writer)

• Spreadsheets (Calc)

• Presentations (Impress)

• Mathematic formula editor (Math)

• Drawing (Draw)

• Databases (Database)

(31)Similar TrueType fonts to those
used by Microsoft, extra templates
and picture galleries, additional
updates and patches, among
others.

GNUFDL • PID_00148382 92 Free software implementation, projects and companies

OpenOffice.org32 uses an XML-based compressed file format for all of its

applications, which differs from the binary formats used by proprietary office

automation applications. With this format, we can easily separate the contents

of the file from its data, styles, version control and the pictures included in the

document. In addition, OpenOffice.org allows us to work with other formats

also based on XML.

Migration�of�files�in�Microsoft�Office�format

OpenOffice.org has mechanisms to convert and import files in proprietary

formats, such as those used by the Microsoft Office suite. It also allows us to

save files created with OpenOffice.org in proprietary formats.

However, this compatibility is not perfect and while the quality is usually

acceptable in most cases, there are sometimes differences in the format of the

documents, particularly those containing complex elements, such as macros

or other special features. In this case, it may be necessary to re-edit some of

the documents if we require the format to be identical to the original.

Hence, before converting and migrating the documents, we need to study

their features and classify them according to their use and technical

complexity:

• Editable documents: these need to be converted to a new interoperable

format such as ODT, so that they can be edited in the future.

• Read-only documents: these can be converted to PDF format, which

simplifies the migration process considerably.

• Basic documents: these do not contain macros, proprietary graphics,

formats or complex elements or styles such as footnotes, tables and

indices. They can be easily migrated by batch processing.

• Complex documents: these contain macros, proprietary graphics and

vector graphics, OLE objects, active objects, cross references, etc. They can

be migrated but will most likely require individually processing.

OpenOffice.org offers the possibility of converting several documents by

batch processing. All of the documents must be located in a source directory

and we will need to specify a target directory to which all of the converted

documents will be saved. In all events, we recommend checking the

conversion with a representative sample taken from all the documents.

In addition, we have two possibilities when it comes to dealing with complex

documents:

(32)Most of the OpenOffice.org
features mentioned in this section
are also applicable to StarOffice.

GNUFDL • PID_00148382 93 Free software implementation, projects and companies

• Convert the documents one by one so that we can correct any differences

with the original document before saving it in the new format.

• Revise the documents one by one to eliminate elements that could affect

the conversion process and then batch process them all.

Corporate applications

The term corporate applications is used to refer to applications

developed to meet the specific needs of the company or organisation

in which migration is being performed.

For migration purposes, we can distinguish between the following types of

corporate application:

• Applications that can be run problem-free on a free operating system,

such as multi-platform applications (those written in Java, for example)

or web-based applications (in PHP for instance, as we saw in the section

on web servers).

• Applications requiring slight modifications to be able to run on a free

operating system, such as those for correct database access for instance, as

we saw in the section on this topic, or for configuring new environment

variables.

• Applications that can run by emulation or virtualisation.

• Applications that cannot run on a free operating system, such as

applications implemented in languages exclusively for the proprietary

operating system.

Most corporate applications are proprietary so the company will not have

access to the source code. If it is not possible to run the application by

emulation or virtualisation, the best option is to implement the application

again as free software based, if possible, on an existing free software project.

2.8. User training, communication and support

Thus far, we have looked mainly at the technical aspects of the

implementation of free software systems. The importance of the technology

should not detract from the fact that one of the factors in the success of

any implementation project, particularly migration, is acceptance of the new

system by its users.

GNUFDL • PID_00148382 94 Free software implementation, projects and companies

This section will first describe the key elements of the free software training

plan of an organisation and some good practices to introduce and encourage

user acceptance. To conclude, we will take a look at the main channels of

communication and key elements of a user support system.

2.8.1. Training

Correct user training plays a very important role in the success of the

project. As a result, we should include it in our project plans from the

very start.

To plan the training, we need to identify first of all which user groups will

use which specific types of application. This will enable us to study the

differences between the proprietary and free applications, and hence evaluate

the difficulty in the adoption of the new applications for users. These elements

will allow us to plan user training to meet their real and individual needs.

Some free applications, such as browsers, e-mail clients and office automation

applications, are very similar to their proprietary equivalents. Obviously, less

training will be needed in these cases.

Materials

There are many materials on the Internet that can be used to train users or to

help us prepare our own materials.

Manuals and documentation are often only available in English, which can

be a problem for some users, and the interfaces of certain applications are not

translated or the translation is incomplete. In this case, we could think about

publishing our own documentation to overcome language barriers.

The European SELF project has a platform for creating and sharing educational

materials relating to free software and open standards.

Training�manager

The training may be held in the organisation, in collaboration with an outside

company or using an online learning platform.

In any case, it is important to facilitate access to training and materials

as much as possible. Attendance of training activities may or may not be

compulsory as this will depend on the organisation's policy.

GNUFDL • PID_00148382 95 Free software implementation, projects and companies

Online learning platforms have the advantage that users can adapt their

learning process and training access to their needs. Moodle is a free course

management system used to create what are known as online� learning

communities in which students can follow the training and communicate

with one another.

Another good option is to combine on-site training with an online learning

system.

Finally, we should not rule out the possibility of offering users some sort of

incentive to encourage them to attend the training, for example, awarding

certificates of attendance and achievement.

Types�of�user

Not all users are alike. Firstly, there will always be some users who are more

receptive to the new software than others. In most cases, however, once users

overcome their initial misgivings about the use of free software, they find it

very similar to proprietary software and are satisfied with its use, so we should

not worry too much if their first experiences are negative.

Secondly, remember that technical and non-technical staff will need a

different type of training and monitoring.

Technical staff will need more intensive training than normal users,

particularly if they have no previous experience of free software and are

used to working with a proprietary system that, in contrast, they are very

knowledgeable of. The participation of technical staff is also key to ensuring

the smooth running of the system after implementation. It is good practice to

motivate them and get them involved in the implementation process so that

they can get to know the system while it is being implemented.

2.8.2. Introduction to free software

In addition to training, another of the practices that can lead to a successful

free software migration project is the gradual introduction of the new

applications and services. This gives users time to get used to the new

environment and means that they are not confronted by a completely

unfamiliar system.

Installation�of�bridge�applications

GNUFDL • PID_00148382 96 Free software implementation, projects and companies

Many popular desktop applications are now available on GNU/Linux as well

as proprietary systems, such as the OpenOffice.org office automation package,

the Firefox browser or the Thunderbird e-mail client. Many server applications

and services can also be run on both systems, such as the MySQL database

manager or the Apache web server.

These types of application are called bridge applications and can be very useful

in the early stages of migration33 and for evaluating the response of users and

estimating their training needs much more accurately.

Staggered�migration�of�services

The primary aim of any migration is to produce a smooth transition from

one system to another without the users noticing any major differences or,

if possible, without them noticing any differences at all. One strategy for

achieving this aim is to start migration on the servers, so that users can

continue working as normal until the system is prepared for the migration

of clients.

Services that can easily be migrated at the start include network services (DNS,

DHCP, etc.), web servers and database servers. It may be necessary to use

technological solutions that work well on heterogeneous systems, such as

OpenLDAP in combination with Samba.

This gives us enough time to train technical staff too, whose support can be

very useful for migrating clients and providing support to other users.

Both the introduction of bridge applications and the staggered migration of

services should be taken into account in the project planning.

2.8.3. Project communication

As we have seen, the implementation of a free software system and migration

to this system is a process that involves all of the organisation's users, not only

the technical staff responsible for its complete introduction and maintenance.

The mechanisms must be put in place for effective communication between

users and the technical and administrative managers of the organisation,

and we must ensure transparency throughout the process. As of result, the

communication activities must be set down in the project plan, which must

include:

• Initial�group�communication�to�all�users. We should use informative

meetings, notes, internal e-mails and advertisements on the organisation's

intranet to explain the reasons for the project and detail its general

planning before it is implemented.

(33)This would be a simple
applications migration, like the
one we saw in the section on types
of migration.

GNUFDL • PID_00148382 97 Free software implementation, projects and companies

• Regular�communication�of�the�project's�progress. We should explain

which parts of the system will be migrated and when, along with any

changes made to the project. Meetings with a small number of users

should be organised at each phase of migration.

• Regular�meetings�after�conclusion�of�the�project. We should evaluate

the success of the project and conduct general monitoring of its results

and the experiences of system users.

2.8.4. User support system

A key element of the new system is the introduction of an issue management

system for users, allowing them to find the answers to their questions and

solve the technical problems caused by the situation. It is important to give

a fast and efficient response to all these problems, particularly just after

implementation.

When designing a user support system, we need to answer the following

questions as they will define the main features of the system:

• Who are the users?

• How does the organisation operate?

• What type of support do the users need?

• What type of support is offered to each type of user?

• How much support will be offered?

• How will the support be offered?

Pilot tests can be used as a basis for characterising most of the problems

encountered by users and for preparing a procedure for solving each one.

Similarly, we will need to identify the critical services and users of the system,

as these will be given preferential support.

We also need to bear in mind that more support means higher costs. It is

possible to provide more support in the weeks immediately after migration,

when the number of queries and issues is higher. In all events, the key to an

efficient user support system is fluid communication with users, to make them

aware that their problem is being looked into.

Lastly, it may be the case that a user support system was in place before

migration existed. If this system was based on proprietary software, we will

need to evaluate the diverse free alternatives.

Website

There are many solutions.
For a comparison of some,
see http://en.wikipedia.org/
wiki/Comparison_of_ticket-
tracking_systems.

GNUFDL • PID_00148382 98 Free software implementation, projects and companies

3. Free software companies

This third unit of the "Implementation of free software systems" subject

outlines the main concepts and characteristics associated with the business

side of free software.

Ever since it emerged, free software has always been present in information

technologies and its evolution has been influenced by the structural changes

that have taken place in technology, economics and society.

As time has gone by, a number of philosophies on the creation, production

and diffusion of software have been developed. We can generally distinguish

between two basic and antagonistic trends:

• On the one hand, the proprietary philosophy, which defends the

protection of software by closing and privatising the source code,

combined with the use of licences with heavy usage restrictions.

• And on the other, the free philosophy, which defends the freedom of the

software and source code with licences guaranteeing user rights to run the

programme, study and adapt the source code and redistribute and publish

any improvements made to it.

These two philosophies have generated business models with conflicting

ideologies, operation, development and economics:

• The privative software model normally establishes a financial value that

has to be met by restricting the use of a binary format copy, which makes

it impossible for people or organisations without copyright or the explicit

authorisation of the copyright owners to adapt, correct or improve the

source code. Many proprietary licences prohibit the transfer of user rights

to third parties without the prior agreement of the copyright owners.

• The free software model tends to focus on the development and

adaptation of free and qualitative solutions to meet the needs of users and

organisations, and on complementary services for their implementation

and day-to-day operation. Hence, the business model based on free

software allows actions that are prohibited or restricted in the privative

software model.

The unique philosophical understanding of free software does not only

have a direct impact on the business model and business strategy, but also

on the definition, management, organisation and operation of technology

companies. Aspects such as the maturity of free software, the presence of a

See also

To find out more about the
history of free software, see
point two of the materials
for the "Introduction to free
software" subject.

GNUFDL • PID_00148382 99 Free software implementation, projects and companies

world community of free software project collaborators and the viability of

its business models seriously question the traditional concept of a business

project.

The first section of this unit defines the different business models based on

free software, which are valid and viable to be put into practice as a business

strategy.

The second section focuses entirely on the drafting of the business project

and details the main aspects of the creation, organisation, production and

operation of a free software company.

The third section introduces free software production and describes the main

features of the creation, organisation, communication and development of

the source code.

Lastly, this unit has two appendices that briefly and systematically describe

the main free licences and open standards directly related to the free software

business.

3.1. Business models

This first section introduces the main free software business models, together

with the characteristics and features setting them apart from business lines

based on proprietary software.

By and large, the biggest difference between free and privative software

from a business perspective is the licence. Broadly speaking, a licence

is a contractual model by which the author of the product (or whoever

owns the copyright) establishes the rights and duties of the users of the

product and the scenario in which it can be used.

However, free licences34 are based on four basic principles of freedom that

relate to the software and its source code:

• The freedom to run the program for any purpose.

• The freedom to study the source code and adapt it to one's own needs.

Hence, access to the source code is necessary.

• The freedom to redistribute copies of the software.

• The freedom to improve the software and release improvements. Hence,

access to the source code is necessary.

(34)There is a debate between
the Free Software Foundation
(http://www.fsf.org) and
the Open Source Initiative (
http://www.opensource.org) over
the implications of the terms free
and open.

Internet resource

You will find the original
definition of free software at
http://www.gnu.org/
philosophy/free-sw.html

GNUFDL • PID_00148382 100 Free software implementation, projects and companies

The basic freedoms of free software conflict with the privative model focusing

on the sales of licences for restricted use of the binary format35, although free

software does not necessarily have to be obtained without payment. However,

much of the free software currently available can be obtained by direct, free

download from the Internet site of the organisation that manages it.

Direct or free downloads

Examples of direct or free downloads include:

• Debian GNU/Linux from http://www.debian.org/distrib/
• FreeBSD from http://www.freebsd.org/where.html
• KOffice from http://www.koffice.org/download/
• OpenOffice.org from http://download.openoffice.org/

The philosophical opening up of free software encourages business models

based on human capital, knowledge, customisation and the adaptation of

products, not to mention the constant evolution of the software. Hence, we

need to highlight the role played by the community of free software users,

which helps monitor the quality and evolution of free applications with a

level of performance that would be difficult to match in proprietary models.

(35)This is known as right-to-use
licensing.

Over time, the free software model has managed to consolidate an offer that

covers most sectors with a privative software presence, shaping a mature,

qualitative and secure market on which to base a business strategy covering

both software development and complementary services.

To an extent, the free software business strategy bases itself on

the aspects that set it apart from the proprietary model, such

as increased functionalities, tailored adaptation, numerous and

continuous revisions, guaranteed product security and quality of

operation, and a whole range of complementary services for its

implementation and day-to-day operation.

The following sections introduce the main business models deriving from the

conceptual philosophy of free software: development, consulting, installation

and integration, migration, maintenance, and support and training.

The business models described should be seen as complementing one another

rather than being independent. In other words, a combination of one or more

business models may be necessary to cover the business strategy.

Internet resources

At http://freshmeat.net/ and
http://sourceforge.net/, you
will discover a wide range
of free software projects
in the key areas where the
technology is used.

GNUFDL • PID_00148382 101 Free software implementation, projects and companies

3.1.1. Development

The software development business model involves the total or partial

production of a product based on free software in order to be marketed

either directly or as part of a third-party implementation project, such

as those described in the second unit of this subject.

The definition of free software makes no reference to the strategy of selling

a free product at a price per copy sold but the characteristics of free

licences make this a secondary option, albeit one used intensively by some

organisations.

Packaged free products

Some organisations decide to offer their free products in packages (boxes, discs, manuals,
documentation, etc.) in exchange for the payment of an amount that, while lower than
the price of alternative solutions, is still greater than cost price. For example, the Ubuntu
distribution can be purchased at http://www.ubuntu.com/getubuntu/purchase.

Free software production is mainly a response to the sale of complementary

services with added value for clients, which also serve to extend the continuity

of the software, such as customisation or adaptation to a specific environment.

The materials for the "Introduction to free software" subject include a

classification of the possible alternatives to the development of free software,

which we will summarise below:

• Better�knowledge. This is based on the idea of doing business with the

knowledge of one or more free products, offering tailored developments,

modifications or adaptations (among others that we will describe later).

Active participation in the creation and development of free products is

the added value introduced by the company in the eyes of its clients and

the competition.

• Better� knowledge� with� limitations. This is similar to the previous

model (better knowledge) but with a mixed implementation of free and

proprietary licences (or patents) to reduce competition. This model may

prove not to be viable if the free product forks into a branch supported by

the free community, causing the competitive edge to fade.

• Source� of� a� free� product. This is similar to the first model (better

knowledge) but with the difference that the company produces almost

all of the code. The client evaluates the positioning and competitive

advantage over the competition. This model receives the support of the

free community.

• Source� of� a� product� with� limitations. This is based on the previous

model (source of a free product) but with an implementation aimed at

See also

You will find more information
and examples of this
classification in Section 5.2
"Business models based on
free software" in the materials
of the "Introduction to free
software" subject.

GNUFDL • PID_00148382 102 Free software implementation, projects and companies

reducing competition, such as beginning distribution with a privative

licence and opening it up afterwards or limiting the initial distribution to

company clients.

• Special� licences. This involves the production of a single product

distributed under different licences (free and proprietary). The proprietary

product offers special implementations of the product, such as integration

with other proprietary products.

• Sale� of� a� brand. This involves the distribution of free products with

the image of a corporate brand, offering quality and added value from

the point of view of clients. These products are usually accompanied by

numerous complementary services for clients.

The choice of the type of software development business must go hand in

hand with the business strategy and be suited to the target market. Hence, an

organisation may decide to use a customised typology for each of the products

it plans to introduce on the market, based on the strategy and specific target

market of each product.

The free software development business model also requires a careful selection

of the licences of the source code it uses:

• The licence for the source code it modifies if the end product improves

an existing application.

• The licence for the source code it links to if the end product needs to

implement function calls to external libraries in order to operate.

• The licence for the source code it creates, i.e. when the source code is

completely new.

• The licence for the source code of the end product, which encompasses

the combined source codes of the end product.

The importance of carefully determining the licences associated with each part

of the source code used lies in the differences between the various free licences.

In other words, although all free licences guarantee the basic four freedoms,

they differ in their policies for licensing the redistribution of modified code,

which is precisely the object of the free software development business model.

Appendix I of this unit briefly describes the most important characteristics of

the main free software licences and explains the redistribution policy and the

compatibilities of linking and derived work.

GNUFDL • PID_00148382 103 Free software implementation, projects and companies

The selection and correct combination of licences will have a direct effect on

free software production and may have legal implications if it is not done

properly. The last section of this unit on free software production looks in

detail at how to select the relevant licence based on the product parameters.

Lastly, we should be aware that free software promotes and uses public

specifications called open standards to promote the universality and

interoperability of the formats handled. Appendix II of this unit includes a

brief description of the main characteristics of open standards together with

some examples.

3.1.2. Consulting

The consulting business model is based on the generation of

professional services to complement free software for users and

organisations.

To a certain extent, this business model is based on providing quality external

professional technology services to organisations that are not fully in control

of the creation, management, development and evaluation of their internal

technology projects.

Consultancies can offer a broad range of professional services, which will

depend on the strategy and context of the business. Nonetheless, they will be

closely related to the study, analysis, design and evaluation of the free software

systems implementation project described in the second unit of this module.

There now follows a brief classification of the main services that consultancies

can offer their clients:

See also

For more information on
the typology of production
projects, see the "Classification
by scope" section of the first
unit.

• Project� management: this involves the creation and functional

management of the free software implementation project. The tasks

carried out as part of this service cover the life cycle of the project,

management of the teams of professionals involved at each stage of the

project, control of the effective progress of the project and generally

all tasks concerning the coordination, information, management and

monitoring of the project.

• Execution� of� the� project� analysis� and� design� stages: this requires

carrying out one or more analysis and design stages of the free software

implementation project. The tasks of this service are those that the

organisation outsources to the consultancy, such as the study of the

current system, study of the requirements of the new system, analysis of

More information

The "Project typology" section
of the first unit and the "Life
cycle" section of the second
unit contain more information
on the management and life
cycle of free software projects.

GNUFDL • PID_00148382 104 Free software implementation, projects and companies

free software solutions and/or design of the new system, in accordance

with the stages indicated in the second unit of the module.

• Evaluation� and� auditing: this requires carrying out professional

technological assessments of one or more characteristics of systems

in operation. The tasks of this service may be typical of a systems

implementation project, such as the execution of stages we saw earlier,

but they can also be carried out independently and in isolation. The

evaluation or audit evaluates one or more aspects of the system, such as

security, performance, efficiency or efficacy, among others, and may be

performed before and/or after implementation of the system.

• Advice: this service is geared towards offering support and professional

help and advice for technological decision-making in the organisation.

These tasks can be carried out prior to the start of any implementation

project or during the study, analysis and design phases. In all events,

they form part of the professional support provided for strategic

decision-making on technological aspects affecting the future of the

organisation.

This list is by no means exhaustive or exclusive because the business model

can provide two or more services to cover its business strategy. In addition,

the consulting business model can be combined with other business models

to offer clients a comprehensive technology service.

Hence, the best knowledge of the technology platforms in place (or to be

implemented), and excellence in the analysis and extraction of information

and conclusions, or the scope and complexity of the project, are decisive

characteristics that affect an organisation's decision to outsource management

or stages of implementation.

Consulting work is normally formalised through open or closed contracts.

In open contracts, the relationship begins when a specific service is

commissioned and, depending on the result of this service, the contract may

be extended with the commissioning of new services. For example, open

contracts may be used for the execution of one or more stages of the project.

See also

The "Study of the current
situation", "Study of
the implementation
requirements", "Analysis of
free software solutions" and
"Development" sections of
the second unit contain more
information on the study
of the current system, the
study of system requirements,
the analysis of free software
solutions and system design,
respectively.

GNUFDL • PID_00148382 105 Free software implementation, projects and companies

In contrast, closed contracts are awarded for the completion of a specific aim,

task, result or assignment and there is no direct possibility of extending the

contract in the same scenario. For instance, closed contracts may be used for

the independent auditing of a system, given that these tasks are carried out in

isolation and at specific points in time.

3.1.3. Installation and integration

The installation and integration business model is based on the direct

implementation of free software systems for users and organisations,

usually as part of free software projects.

In a way, this business model considers free software as the object of the

production of its services, rather than a product in itself. This creates a market

offering substantial benefits to clients:

• The organisation does not have to pay for licences for free software

products that are freely distributed so it can cut the costs of technological

implementation.

• The organisation does not need to practice product piracy and thus will

not breach the applicable legislation.

• The organisation can directly adapt the free solutions, thus cutting the

cost of the implementation of specialist systems.

• The organisation can adopt integrated direct implementation packages,

and hence reduce the risk of technological implementation.

A number of services can be offered under this business model, the main ones

of which are listed below, although this list is not exhaustive and does not

exclude other services:

• Configuration: this model carries out the tasks of setting up and fine

tuning36 a system already in place in order to formalise the initial set-up,

enhancing its performance or adapting it to new purposes not considered

initially. In all events, the fine-tuning does not affect the source code of

the application, only the configuration of the components that can be

adapted to the specific features of the installation.

(36)Also known as set-up or
tune-up.

GNUFDL • PID_00148382 106 Free software implementation, projects and companies

• Tests: the aim of these is to provide benchmarking for systems,

applications or free software solutions from a given perspective. We may

need to conduct a comparative analysis of free solutions, testing of a

new system design or testing of directly implemented software on specific

hardware, either as part of an implementation project or as independent,

one-off tests.

• Integration: this involves carrying out and/or checking integration

between two or more free software solutions in order to provide a single

package to resolve a specific operating function37. This integration can

usually be resolved with a configuration to suit each element and possibly

an additional component allowing more efficient integration.

• Installation: this involves the bulk installation of software for direct

implementation on client machines or servers38. This service may require

the configuration and fine-tuning of both the free software to be installed

and the hardware on which it will be installed. It may also be necessary

to integrate the diverse solutions we wish to install. When the same

software needs to be implemented on a series of computers with identical

hardware, it may be useful to use pre-configured image distribution and

cloning software to save time and money and to improve the efficiency

and efficacy of the process.

More information

The "Analysis of free software
solutions", "Development"
and "Implementation and
migration" sections of
the second unit contain
more information on the
analysis of free software
solutions, system design and
system implementation and
migration, respectively.

(37)For example, LAMP (Linux,
Apache, MySQL, PHP) is an
integrated software package
with diverse individual aims but
which, as a whole, solves a specific
problem efficiently and effectively.

(38)This is similar to the term
Installfest, though applied here to
a structured business.

• Distribution: this involves redistributing free software to clients, either in

the original format39 or in customised configurations related to the scope

of the business, such as tool integration, operation geared towards clients,

servers or a work station, among others. The redistribution of integrated

software is subject to the licences of the specific solutions. Appendix I

describes the main free software licences and their compatibilities.

As we can see from the above classification, these services are closely related

to the stages of free software solutions analysis and of implementation

and migration of the implementation project described in the second unit.

Hence, a better knowledge of the technology platforms and excellence

and efficiency of services or the scope and complexity of the project are

decisive characteristics affecting an organisation's decision to outsource the

installation and integration of its system.

3.1.4. Systems migration

The systems migration business model is based on transferring the

operating function from the system in place to the system to be

implemented.

(39)At http://freshmeat.net/ and
http://sourceforge.net/, you will
discover a wide range of free
software projects in the key areas
where the technology is used.

GNUFDL • PID_00148382 107 Free software implementation, projects and companies

Migration is a complex process that must be carried out with accuracy

and rigour, since the data and configurations we are dealing with are the

organisation's capital.

The diversity of situations encountered by companies that migrate systems are

the result of a combination of the source and target platforms of migration.

A thorough knowledge of the platforms and experience in migration are the

basis for offering added value to clients.

The following list indicates the main services offered under this business

model, although it is not exhaustive and does not exclude other services:

• File system services, both for the server and clients.

• Printing services, between clients and between servers.

• Directory services and centralised authentication services.

• Network services, particularly automated management protocols for

network control, communications and clients.

• System management and administration, for network and software

management.

• Web services, for static and dynamic platforms.

• Databases, for data migration and access verification.

• Desktop environments and office automation applications, for

applications and user data.

• Corporate applications, for applications that can be run directly and those

that require tuning or virtualisation.

The complexity and scope of migration, the ability to carry out the process

carefully, efficiently, effectively and as quickly as possible, and the best

knowledge of the source and target technology platforms of the migration

are decisive aspects that can persuade organisations to outsource migration of

their systems.

As we can see from this classification of services, the migration process may

need other services, such as installation, configuration, integration or testing

to ensure that we meet our aims.

Free software uses and promotes open standards for interoperable data

exchange and its role in systems migration is particularly important. For

instance, starting off with a system that does not store data in open standards

could complicate migration because of format conversion, especially if

the original is privative. Appendix II of this module introduces the open

standards, defining them and the organisations behind them, and offers some

examples.

See also

The "Implementation and
migration" section of the
second unit details the
characteristics of systems
migration. In the "Migration
of the services of a system"
section, you will find more
information about the services
described here.

GNUFDL • PID_00148382 108 Free software implementation, projects and companies

3.1.5. Systems administration and maintenance

The systems administration and maintenance business model involves

carrying out management and monitoring tasks for a system already

implemented and operating.

The main aim of the services offered under this business model is to keep the

entire system up and running, adapting the configuration to changes, solving

any problems that may arise and repairing malfunctions that affect the normal

operation of the organisation.

The following list indicates the main services offered under this business

model, although it is not exhaustive and does not exclude other services:

• Administration: consists of providing basic management of the system,

the adjustments required as time goes by, supervision of its operation, the

implementation of new functionalities and the evolution of the system.

Many administrative system tasks can be carried out remotely40.

• Maintenance� and� evolution: consists of supervising, monitoring and

redressing issues in the system that could affect its operation, together

with the control and evolution of the obsolescence of its components.

Examples include malfunctions and the deconfiguration of hardware or

software, the control and updating of software versions, and the evolution

plan for the hardware and software.

• Security: this consists of managing the security of the system, controlling

risks, maintaining policies for prevention, contingencies, diagnosis and

debugging. Examples include backups or the control and maintenance of

keys and certificates.

Given the characteristics and features of these services, many organisations

decide to keep staff on for these tasks, but some small and medium-sized

organisations are unable to create such a position.

(40)For instance, through the
combined use of ssh, cron and
at.

The outsourcing of some services, such as intranet and extranet servers, can

also lead to the contracting of external administration and maintenance

services. These services are normally contracted for a fixed monthly or yearly

fee and cover a specific service level.

Intranet and extranet

Intranet and extranet web
services are easily outsourced
because of the proliferation of
data hotels and data centres.

GNUFDL • PID_00148382 109 Free software implementation, projects and companies

3.1.6. Support and training

The support and training business model involves providing

professional technical assistance for the technological training of users

and the resolution of issues and problems relating to use of the system.

The implementation of free software systems may initially require user

support and training measures, particularly if the previous system was based

on privative software. As we saw in the second module of this subject, the

implementation project must take into account the need for user training

in order to promote positive change management, whose features make it a

service that can be easily outsourced to companies specialising in this sector.

The following list indicates the main services offered under this business

model, although it is not exhaustive and does not exclude other services:

• Training: this service provides education and training on free software

tools, including operating systems and office automation tools, to end

users. The service can also include specialist software training as a result

of the development of the systems implementation project, so it may be

useful for change management purposes to coordinate this task with the

implementation team.

• Support: this service provides technical assistance to users in order to

solve everyday problems. Many of these services are provided from call

centres, but it can be a good idea to provide e-mail addresses for resolving

issues or instant messaging with professionals. It can also be convenient

to combine these tasks with those of the systems implementation project

in order to fix possible bugs in the implemented software.

This business model generally requires human, technological and material

resources adapted to the aims of the training:

See also

The "User training,
communication and support"
section of the second unit
contains more information
about user training and
support.

• Human resources with an deep knowledge of the issues and the ability to

transfer knowledge and solve problems.

• Technological resources suited to training and support, such as

technological platforms for learning or call centres offering technical

assistance.

• Material resources adapted to the training, such as specific documentation

and manuals on free software41 with free licences.

Internet resource

Moddle is an example of a
virtual learning platform
based on free software.
http://moodle.org/.

(41)The European SELF project has
a platform for creating and sharing
educational materials relating to
free software and open standards (
http://selfproject.eu/).

GNUFDL • PID_00148382 110 Free software implementation, projects and companies

The quality of these parameters is essential if the organisation is to outsource

its training and support services. Training services are usually contracted in the

form of courses whose structure is agreed previously, while support services are

contracted for a monthly or yearly fee, following agreement on the services

covered.

3.2. Business plan

See also

Section 10.2 "Licences of
other free resources" of the
"Introduction to free software"
subject material contains two
licences for documentation,
materials and literary works
that are widely used.

A business plan or project is an instrument that identifies, describes

and analyses a business opportunity, studies its viability and develops

the procedures and strategies for creating the company to exploit this

business opportunity.

Taking into account this definition, the aims of the business plan will be as

follows:

• To conduct a market study to position the business plan and determine

its technical, economic and financial viability.

• To develop the measures required to achieve the aims set out in the

business plan.

• To monitor the evolution of the company and analyse deviations from

the initial business plan.

• To serve as a calling card for the project and the business entrepreneurs in

order to obtain the financing and support of third parties.

Although the first three aims are mainly internal, the last is external and

visible by people who do not form part of the project, in theory at least. When

drafting our business plan, we always need to consider this dual aim: to act

both as a plan for the project and as the presentation of the project.

Naturally, we need to avoid falling into the trap of omitting the risks or

negative parts of the project to make it look more attractive to investors. In

fact, missing out these elements could be detrimental to our business project

because it would be based on false suppositions. A true picture of the technical

and economic aspects is thus one of the basic requirements for drawing up

a business plan.

Any business plan needs to respond to a series of questions about the project

we wish to introduce: Who?, What?, Why?, Where?, When? and How much?

• Who?

Clarification

In this section, we will use the
term business plan because
our aim is to describe the
elements required to set up
a free software company,
as in the case of Cometa
Technologies, which we shall
see in the second section.

GNUFDL • PID_00148382 111 Free software implementation, projects and companies

The name of the company, the brand of the products or services offered,

the names and track record of the business developers.

• What?

The description of the products or services offered, the markets at which

they are aimed and the market share set as the target, among others.

• Why?

Every business plan generally seeks to obtain and maximise profits.

However, this is not incompatible with other aims, such as improved

quality of life in society or the creation of jobs.

• Where?

The geographical area where the products or services are to be marketed,

which can be regional, national or international. The distribution

channels that will be used, including possible agreements with other

companies who will allow entry to other regions.

• When?

The expected start of business and subsequent planning, including

temporary conditions or limitations that could affect the company, such

as procedures for obtaining licences, production time, obsolescence of

certain technologies or seasonality.

• How�much?

The initial investment needed to launch the business project, the

minimum and desired turnover, the threshold of profit and loss, the

reinvestment of profits and the sharing of dividends, among others.

These issues are covered in the following aspects, which are found in almost

any business plan:

• Executive summary

• Introduction

• Business description

• Organisation of production

• Internal organisation and human resources

• Market study

• Marketing plan

• Financial analysis

• Legal form

• Risk management

• Summary and evaluation

GNUFDL • PID_00148382 112 Free software implementation, projects and companies

Depending on the nature of the company or business, these aspects will have

a greater or lesser importance in the business plan and may be organised in

different ways.

The following sections will discuss each of these aspects and study their

relationship with the free software business models we saw in the previous

section.

3.2.1. Executive summary

An executive summary is a short statement42 that appears at the start

of the business plan and summarises the main points of the document.

It gives potential investors a comprehensive idea of the business plan

without having to go through the various sections in detail.

The executive summary should cover almost all of the points of the business

plan, which are:

• Description of the business model, with a particular emphasis on the chain

of value and source of income.

• Short description of the project developers, their training, knowledge and

skills, professional track record and dedication to the new project.

• Concise description of the market, including size, clients, growth potential

and barriers.

• Analysis of the functional areas of the project: production, quality and

organisation of human resources.

• Summary of the financial analysis of the project and the investment

required to set it up.

• Summary of the risks of the project and the plans to prevent them and

remedy their consequences.

Obviously, the executive summary should highlight the strong points of the

business plan, particularly for the business model we wish to adopt, the

strategy that we will use to do so and the team developing the idea.

We recommend writing this part after completing the business plan and to do

it from scratch, that is, without re-working texts that we have already written.

(42)In all events, the executive
summary should not be more than
three pages long.

GNUFDL • PID_00148382 113 Free software implementation, projects and companies

3.2.2. Introduction

After the executive summary and the index, the first part of the

business plan should be an introduction indicating the name of the

future company43 and the team of developers, together with the other

professionals involved in the drafting of the business plan.

As we have seen, the presentation of the team of developers should cover

the professional career of each of its members and the knowledge they will

bring to the business project. More often than not, the team of developers will

have members with a profile specialising in business management and others

specialising in specific technological areas, as is the case of companies that

work with free software.

Lastly, the introduction should provide a brief description of the different

sections of the business plan that will be developed later.

Mission and vision

The introduction is the place to describe the mission and vision of the new

company because it allows the reader to see how these two concepts are

developed in the business plan.

The mission and vision of an organisation are a concise definition of its main

features and aims, and its strategies for meeting the latter.

The mission is a short phrase justifying the existence of the

organisation, i.e. the basic aim of its activities and the values guiding the

activity of its employees. The mission is closely linked to the internal

values of the organisation and basically describes how to compete and

generate value for customers.

The vision is also a concise phrase describing the medium- and

long-term goals of the organisation. It is addressed to the market and

should offer an expressive and visionary angle on how the organisation

wishes to be seen by the world.

The main differences between the mission and vision can be summarised as

follows:

• The mission describes the internal aspects of the organisation and its

operation, while the vision describes the external aspects.

• The mission has a short- to long-term time horizon and highlights the

aspects that should be put into practice immediately in the organisation,

(43)If the plan describes a new
project or service for an existing
company, it is a good idea
to include a summary of the
company's activity, history.
evolution, size, etc.

GNUFDL • PID_00148382 114 Free software implementation, projects and companies

while the vision is fixed in the medium- to long-term and gives the general

lines of the future evolution of the organisation.

Corcaribe Tecnología and eZ Systems

The company Corcaribe Tecnología specialises in products and services based on free
software and has the following mission:

"Corcaribe Tecnología provides technological solutions that generate added value with
a business model that allows us to offer the best cost for results delivered to our
clients, producing authentic tangible and intangible benefits for our members and
collaborators."

And the following vision:

"To become a Latin-American reference of continued success in the implementation of
integral technological solutions, applying the principles and values of free knowledge in
a model of sustainable development."

Similarly, eZ Systems, which provides free content management software sets itself the
following mission:

"To be the leading content management platform by 2012."

And the following vision:

"To help companies to manage, publish and share information."

It is not essential to define a mission and vision in the business plan, but it can

help to summarise the short-, medium- and long-term aims of the business

project and to convey them effectively to potential investors.

3.2.3. Description of the business

We recommend you should begin this section with a description of the

company you wish to set up and a brief presentation of the project developers,

even if you have already done so in the introduction.

The main aim of this section is to describe the products or services for

which you are drawing up the business plan and the business model

adopted to offer them, as we saw in the previous section.

Special care should be taken when explaining the features of business models

based on free software since the reader of the business plan will not necessarily

be familiar with them. This includes aspects of the protection of intellectual

property and rights over products and services.

It is also a good idea to describe the needs that will be met by the products or

services and point out the main differences with the existing offer, in order to

show that the business project is well positioned in the market.

GNUFDL • PID_00148382 115 Free software implementation, projects and companies

Lastly, we will need to indicate the capacity for the production and provision

of services, which will serve as an introduction to the next section on the

organisation of production.

3.2.4. Organisation of production

The section of the business plan on the organisation of production

describes the technical tasks of the future company.

This far, we have looked at the business plan from the point of view of

describing the marketing of new products and services, without distinguishing

between them. Now, however, this section of the business plan will take one of

the following forms, depending on whether it concerns products or services:

• If the company business is the development, production and subsequent

marketing of a product, we need to detail the development and production

phases.

• If the company provides a service that does not involve a production

process, the procedures for provision of the service and the technical needs

should be described in detail.

It goes without saying that the two options are not mutually exclusive and

a business plan can contain both. For example, a company might specialise

in the migration of systems to free software but also provide training in free

software technologies to users and technical staff.

Generally speaking, a business encompassing the phases of research,

development and production will be much more complex and involve greater

risks:

• Research�and�development�phase. When describing the research and

development phase, we need to pay special attention to the estimated

duration of the research and development phase and the necessary

investment in human and material resources.

In high technology sectors in particular, as is the case of free software, the

business plan must evaluate the human resources skills and know-how

needed for the successful completion of research and development tasks.

This section should also detail the distribution of roles and duties, the

risks inherent to all research and development activities, the potential

synergies between projects, the process of innovation and continuous

product improvement and how this process will be integrated into the

production process.

GNUFDL • PID_00148382 116 Free software implementation, projects and companies

• Production�phase. The description of the production process should deal

first of all with the operating cycle44, the location of the production

facilities, their cost and their accessibility. Secondly, we will need to

describe the business premises, buildings and equipment needed for the

production or provision of services. For each of these, we will need

to indicate the modes of financing and purchasing45, their features,

availability, useful life and annual amortisation.

Special attention must be paid to quality management. Here, we should

describe the quality standards and certifications that will be applied to both

the processes and the results of the production process.

(44)This includes production
capacity in number of units and
expected production, along with
the staff and number of hours or
shifts needed for production.

(45)We can also present expansion
plans for the facilities and the
purchase of new equipment.

Lastly, we need to offer a strategic vision of the production process; for

instance, if we are outsourcing production of certain components or part of

the production process46.

Again, the description of the free software production process reveals a

number of differences with proprietary software development, which should

be explained in detail in the business plan, particularly when the reader is

not familiar with free software. We can also stress the added quality of free

software when compared to proprietary software.

In all events, remember that you should always explain the advantages and

disadvantages of the various alternatives and justify each of your decisions.

3.2.5. Internal organisation and human resources

This section of the business plan details the organisation of the team

needed to develop the business project and the profiles required for it.

(46)For example, a free software
publisher could outsource
production of the distribution
medium and packaging of its
programs.

More information

The "Free software production"
section of the third unit looks
in detail at the special features
of the production process for
free software.

Firstly, we need to include a description of the key duties and management

positions, along with the necessary profiles and even the name and

professional background47 of the people who will fill these positions if

they have already been selected. We must then describe the categories of

professionals required by the company, their duties, main tasks and the type

of contract they will have. It is a good idea to indicate the salaries of each type

of worker, regardless of whether or not they are management positions.

The internal structure of the company can easily be represented on an

organisation chart by departments and business areas, naming the individuals

occupying the management positions, if these have already been filled.

(47)This includes their professional
experience, specialisation and
main professional achievements.
The purpose of this type of
information is two-fold: on the
one hand, it boosts the confidence
of potential investors and, on the
other, it allows us to pinpoint the
strengths and weaknesses of the
management team.

GNUFDL • PID_00148382 117 Free software implementation, projects and companies

This section should conclude with a description of the company's general

human resources policy and indicate whether the creation of a specific human

resources department is necessary or, alternatively, this function can be split

across the different departments.

The need for and availability of qualified staff in a given area and at an

acceptable cost can sometimes be a major obstacle, which is the case of

specialists in free software48.

Furthermore, a company that bases its business model on free software may

require the creation of positions and responsibilities that suit its specific

features. For example, besides the traditional positions of technical director

or sales director, we can come across roles such as community director, the

person who manages relations with software developers and users, or director

of cooperation projects, who manages and coordinates projects developed in

collaboration with other companies, research centres or universities.

3.2.6. Market study

Market studies are an essential part of business plans and hence one of

the keys to its success.

A good market study will help us to assess the technical and financial

feasibility of the business project correctly and to identify potential

clients and competitors in order to come up with the right strategy for

marketing the products or services detailed in the business plan.

When drafting a business plan, it is useful to conduct the market study first,

at least as a rough version, because its results can affect various parts of the

business plan.

Thus, the market analysis needs to provide information on the following

aspects:

• Current�market�situation. We must first segment the market according

to the most relevant features of the business plan and determine its size

together with its past evolution. We will also need to determine the

decision-making process of the market and the behaviour of its customers,

particularly their reaction to the launch of new products or services.

Secondly, we need to evaluate the needs that may arise as a result of the

introduction of the products or services proposed in the business plan.

This depends largely on whether the product or service offers something

new and on our ability to influence customer habits.

• Market�growth�forecasts. Once we have established the current status

of the market, we need to be able to predict its future evolution. Is this

(48)For example, when it comes
to publishing these materials,
although free software is well
known and technologies and
solutions based on it are fairly
popular, it is difficult to find
professionals who have actively
participated in free software
projects, whether as employees
of a company or on their own
initiative.

GNUFDL • PID_00148382 118 Free software implementation, projects and companies

market developing, stable or declining? How fragmented is the market? Is

the market becoming concentrated?

Again, we need to take into account the potential influence of the new

products or services on the market. For example, the introduction of

solutions based on free software can effectively change the market because

they encourage the formation of a new sector specialised in free software.

• Identification�and�classification�of�clients. One of the primary aims of

market analysis is to discover who the potential clients of the proposed

products or services are. The task of classifying the diverse types of

client based on common features is also very important because it

allows us to define different strategies for each. For example, a company

that implements free software systems in companies will present itself

differently to clients depending on whether it is a family business or a

major corporation. We also need to remember that a product or service

may be offered to clients who are theoretically different. The flexibility

and interoperability of free software encourages this type of action.

Moreover, we need to evaluate each type of client's reception of the

product or service. Continuing with the previous example of a company

that specialises in the implementation of free software systems, a major

company with dedicated technical staff may be more reluctant to use free

software, partly because of the fear of change, whereas a family business

might be more receptive.

Lastly, if the future company already has a client portfolio or has clients

who have expressed an interest in its products or services, this can be

included in the market study.

• Analysis�of�the�competition�and�its�products. A market study should

reveal the competitors of the future company and identify their strengths

and weaknesses as well as those of the products or services they offer.

We must indicate the characteristics of their products and services,

including price and quality, and their market share and sales strategy. It is

very important to identify the market leaders for each of the products or

services covered in the business plan.

We should also be careful not to disregard potential competitors, i.e.

companies that are not yet on the market but which could enter, or

companies from other geographical regions. In our current climate,

particularly in information and communication technology sectors, as is

the case of free software, the competition tends to be global and many

companies can offer their services directly or indirectly from any location.

• Analysis� of� barriers� to� market� entry. Barriers to market entry are

obstacles that companies come up against when they enter a new market,

such as the need for major investments in the case of new companies

or the lack of an established brand. An example of this is that free

software tends to suffer from a perceived lack of quality in contrast to the

proprietary software companies and solutions already on the market.

GNUFDL • PID_00148382 119 Free software implementation, projects and companies

In the same way, however, we can also study which barriers to entry

we should focus on once we are on the market in order to keep the

competition at bay.

• Influence� of� governments. The market study should discuss the way

in which local, regional, national and international governments can

influence the market and, hence, the viability of the business plan. For

example, governments can act both as market regulators and as providers

and clients.

This is particularly true in the case of free software, which, as we have

seen throughout this subject, is a point of interest for many governments,

including the regional government of Extremadura and the Federal

Government of Brazil.

Market studies need to be planned carefully because they involve a

number of phases, which can be summarised as follows:

– Collection of general information, by which we obtain a large volume

of data on the market under study.

– Analysis of the information obtained.

– Selective search for information to obtain the missing information

required to complete the market study, which will have been identified

in the previous analysis.

To conduct the market study, we will need a great deal of information

and this is not always easy to obtain. There are countless bodies and

sources of information, both general and specialised in specific regions

and sectors: governments and national statistics institutes, local and

regional governments, private bodies such as chambers of commerce and

business associations, journals and specialist publications.

A good market study should conclude with a strategic analysis49 that

relates the results of the study to the description of the business and

planned resources, and that also highlights the potential of the business

plan.
(49)This analysis can also be supported by the use of strategic tools such as SWOT
analysis (http://es.wikipedia.org/wiki/An%C3%A1lisis_DAFO) or Porter's Five Forces (
http://es.wikipedia.org/wiki/An%C3%A1lisis_Porter_de_las_cinco_fuerzas).

3.2.7. Marketing plan

The purpose of the marketing plan is to define the commercial strategies

that will enable us to reach the predicted turnover of the financial

analysis, which we will look at in detail in the following section.

Hence, the marketing plan details the actions we need to take in order to apply

the business model and opportunity described in the business plan and to

exploit their competitive advantages.

GNUFDL • PID_00148382 120 Free software implementation, projects and companies

Thus, the marketing plan needs to take into account the following:

• Overall�commercial�strategy. The overall strategy needs to define how

the sales aspect is integrated into the business project. We need to explain

how we will identify clients and how we will contact them, why will

clients be interested in or decide on the products or services we offer, and

hence, which features of our products or services we will emphasise to

generate sales, such as price, quality, guarantee, technical support, etc.

Free software is a prime example of this, since its main attraction for

potential clients is the reduced costs it generates rather than its quality,

which is often superior to that of proprietary software. In contrast, clients

usually identify the high prices of proprietary software with superior

quality, and free software, which is more economical, with inferior quality.

Hence, when drawing up a business plan based on a free software business

model, it is essential to emphasise the superior quality of50 free software.

• Sales�strategy: defines the short- and long-term sales aims and the market

sectors in which the products or services offered will be introduced

initially and in the long run. In all events, decisions must be justified and

backed up by the results of the market study.

(50)This can be done by
emphasising the interoperability
and flexibility and the constant
revisions and improvements
undergone by free software.

• Price� strategy: first of all, we must determine the prices at which the

products or services will be sold, comparing them, if possible, with those of

the competition, estimating a gross profit margin and evaluating whether

this is sufficient to sustain the company's entire business activity51.

It is very important to justify the price policy, especially when comparing

it to that of the competition. If the price of the products or services offered

is higher than that of the competition, this should be explained in terms of

innovation and quality, features and enhanced guarantees. If the price is

lower, we will need to explain how we will make it profitable (for instance,

greater efficiency and lower production costs). Again, it is very important

to explain the reasons for the low cost of free software and the benefits

that this brings.

Lastly, the price strategy should be optimal, i.e. it should maximise the

profit margin, and hence, profitability. A higher price can sometimes

generate greater profits, even though it partially reduces sales.

• Sales� policy: this determines the composition, form of contract and

profile of the sales team, including representatives, at the launch of the

company and in its medium- to long-term evolution. It includes the sales

margin policy and the promotional measures that will be offered to sales

representatives and authorised distributors.

The sales policy also includes: estimated sales for each sales representative,

incentives, the collection periods agreed with clients, and special

promotions such as discounts, advances, rebates, etc.

(51)It is also a good idea to
compare your own margins with
those of the competition, if you
have access to this information.

GNUFDL • PID_00148382 121 Free software implementation, projects and companies

• Promotion�and�advertising: you should describe the measures that will

be taken to attract the attention of potential clients to the products or

services offered. These measures include mass e-mailing, participation in

trade fairs and events, advertising on websites, etc.

We will eventually need to quantify the cost of the promotion and its

return through consultations with clients and the sales we have closed.

• Aftersales� service� and� guarantees: you should describe the aftersales

service and the guarantees of the products or services, where applicable. In

other words, what type of service and guarantee are offered, their duration

and price (if optional) and their cost for the company.

With free software, part of the aftersales service is indirectly provided

by the community of developers and users, which constantly improve

successful products. The free software company plan should keep this

in mind and explain it as an advantage, but never as the only form of

additional support. Remember that the vast majority of clients would like

the aftersales service to be included and guaranteed in the conditions of

sale.

Lastly, we also need to assess the impact of our aftersales service and

guarantees on the client's final decision and compare our service with that

of the competition.

• Distribution� policy: the distribution policy should describe the

distribution channels that will be used and the discount, commission and

margin policies applied to each of these channels.

In free software business models, we often come across programmes

for partner companies52 in different forms: system integrators, software

vendors, etc., and those who are paid commission and offered dedicated

services and assistance and access to promotional channels.

As we explained above, free software products and services can easily

be offered on the global market, so the marketing plan must study this

possibility and its potential features, including the effect of international

laws on the company's activity, overseas collection management, etc.

3.2.8. Financial analysis

The financial analysis or study is also one of the essential parts of any

business plan, since its aim is to evaluate the feasibility and financial

potential of the business project, detect the investment needs for

its launch, identify the resources available initially and describe the

various possibilities of financing.

(52)One example is the Openbravo
free software ERP partner
programme, which you can visit at
http://www.openbravo.com/
partners/join-openbravo/details/.

GNUFDL • PID_00148382 122 Free software implementation, projects and companies

Contrary to what we may think, the financial analysis is one of the most

creative parts of drafting a business plan.

The financial statements or main headings that need to be covered by the

financial analysis are as follows:

• Cash position over the first year, broken down by months to reflect the

effects of seasonality53.

• Analysis of working capital, which allows us to determine the liquidity of

the company.

• Calculation of the balance point and alternatives if target sales are not

reached.

• Financing needs and alternatives, selecting those that are most profitable

and including elements to explain the decision.

• Annual balance sheets with a five-year view and the first year broken down

by months.

• Source and application of funds, allowing us to predict risk situations for

the company and evaluate the source and long-term use of funds.

Working capital

Working capital measures an organisation's balance of assets and liabilities and confirms
that there are more liquid assets than short-term debts. For more information, see
http://www.innovaceei.com/es/knowledgebase/index.asp?faqsRecid=385&faqRecid=385&show=4460.

Combined analysis of these financial statements is recommended as we can

draw conclusions about the business project as a whole: the amount of capital

required and when it will be required, and the necessary debt and when it

should be paid, among others.

We should also explain the expected return on our investment and indicate

when this will be recovered.

As explained above, we need to avoid falling into the trap of presenting an

overly optimistic financial analysis to investors in order to win them over,

since this will go against the company sooner or later and question marks will

be raised about its viability and credibility.

(53)Even highly technological
business plans, such as those
based on free software, can be
affected by economic seasonality
(the summer holiday period, for
instance).

GNUFDL • PID_00148382 123 Free software implementation, projects and companies

3.2.9. Legal form

If the last aim of the business plan is to create a new company54, we need to

choose the legal form of this new company, its tax system and its founding

partners. We will also need to indicate the name of all partners and investors

together with their participation in the new society.

It is a good idea to detail the procedures required to set up the new company

step by step, together with their costs and the time needed for them. We

must also indicate whether we will be using the services of external advisory

specialists and the cost of these.

3.2.10. Risk management

(54)If the business plan is for an
existing company, this section
should describe its legal nature
and any modifications that
implementation of the business
plan could bring about.

All business projects, whether to create a new company or a new line of

business, involve numerous risks that are sometimes unavoidable. Hence,

the business plan should offer a complete description of the risks and their

consequences.

Risks can be classified as internal (originating in the company) or external and

by the functional area that they affect: technical, commercial, etc.

For example, internal risks can include delays in production or a lack of

qualified staff, while external risks can be a new market regulation that

partially reduces return or the emergence of new technologies that cause the

products or services offered to become obsolete.

More information

You will find a general
introduction to this topic in
the "Risk management" section
of the first unit.

We need to define a contingency plan for each risk, which includes a series of

preventive55 actions, i.e. measures to try and prevent the risk from occurring,

and a series of actions to mitigate or remedy56 the risk, which should be

adopted if it materialises.

Some risks can have negative effects, but they can also be positive. For

example, changes in the legal or political framework that can affect the

business model but which also provide new business opportunities.

The correct identification and assessment of risks in a business project and the

drafting of suitable contingency plans for them, far from highlighting project

weaknesses, actually emphasise the management skills and precaution of the

business developers and enhance their credibility.

(55)For instance, to prevent the
appearance of new technologies
that could leave the products
or services in the business plan
obsolete, we should practice active
technological surveillance, possibly
collaborating with companies or
organisations that work in the
same area.

(56)For example, human and
material resources for other
departments could be used to
recover a delay in production.

GNUFDL • PID_00148382 124 Free software implementation, projects and companies

3.2.11. Summary and evaluation

The last section of the business plan should summarise the

strengths and weaknesses of the business project, the advantages and

opportunities it offers and its main risks and threats.

The summary is your last chance to persuade a potential investor so you need

to be very convincing and seize the opportunity to emphasise the arguments

in favour of the business project and those that its developers believe in.

However, after drafting the business plan, the project developers may find

that it will not be as profitable as they had hoped or even discover that it is

completely unfeasible. This shows how useful the business plan is as a tool to

identify the best business opportunities.

3.2.12. Business plans and free software

Drafting a plan for a free software business is not that different to the

procedure for drafting business plans in other sectors and we have already

seen some of its features in the previous sections.

In general, we need to remember that a business plan may address different

types of reader: advisors, investors, technicians, bankers, etc. Therefore, we

need to use a language that they can all understand and avoid using highly

technical vocabulary. When the use of technical terminology is unavoidable,

you should explain each concept clearly in simple terms. Investors never

invest in anything that they do not fully understand.

We also need to take the time to explain the features of free software, pointing

out the differences between it and proprietary software, and highlighting its

main advantages. Do not hesitate to use real-life examples and examples of

success to back up the arguments put forward in the business plan.

Although free software is adopting an increasingly relevant role in the media

and society thanks to the commitment of the free software community,

companies and government bodies, its nature and financial implications are

not so well known.

Again, we must take the time to explain the free software business models

carefully and be prepared to answer and possibly even anticipate the most

common questions, such as, How can you invest in and earn money from

something that anybody can copy?

GNUFDL • PID_00148382 125 Free software implementation, projects and companies

3.3. Production of free software

Many of the business models described in the first section depend to a greater

or lesser extent on free software development.

One of the problems with free software projects is that only the successful

projects are echoed in the community and only the very successful ones reach

the non-specialist media.

However, before we turn to look at free software production, we should

remember that the vast majority of free software projects are a failure for

specific reasons. It may simply be that the project fails to produce quality and

competitive software or that it does not manage to attract the attention of the

community of developers and users.

Needless to say, as we saw in the subject materials, a free software project

should be dealt with as a software project and only in the last instance, as a

simple engineering project. Hence, a free software project will pose the same

initial risks and problems as any other project.

However, given the free nature of this type of project, there are other strengths

and weaknesses to take into account. Due to the seemingly non-professional

nature of many free software development projects, their execution may

appear easier than traditional software development projects, but there can

be nothing further from the truth.

The aim of this section is to describe the features of free software development

projects, contrasting them with proprietary software development and

offering a series of good practices to encourage their success. These practices

correspond to the key areas and elements required to set up and execute a free

software project, namely:

• Creation and presentation of the project

• Necessary infrastructure

• Organisation of the community

• Development

• Releasing and packaging

• Choice of licences

Naturally, not all of these steps are compulsory. As we saw in the business

models, a free software company might initiate a project or, as occurs in most

cases, it might join an existing project.

GNUFDL • PID_00148382 126 Free software implementation, projects and companies

This last option is often the most advisable and, given the nature of free

software, it does not rule out the possibility that a new project could be created

from an existing one under the identity of the company or organisation

interested in leading the development.

3.3.1. Creation and presentation of the project

This section deals primarily with the steps required to create a new free

software project and present it to the community.

Thus, the first step to take before creating a new project is to find out whether

there is a project that already does what we propose, at least in part. If there is a

similar free software project that we can contribute to or reuse to launch a new

project, we can contact its leaders to explore the possibilities of collaboration

and their future plans.

If we decide to create a new project, the first thing we should do is choose a

name that will identify it in the community. Generally speaking, a good name

will give an idea of what the software does or at least its field of application,

and it should be easy to remember.

Generic search engines

Generic search engines are the
first step to finding existing
projects, along with news sites,
directories and public forges,
such as http://freshmeat.net,
http://directory.fsf.org and
http://www.sourceforge.net.

Whether we like it or not, English is the de facto official language of the

Internet. So, if we want our project to have a global impact – and this should

usually be the case – we should try to come up with a name that will have

some meaning in English or that is neutral57.

We should also pay attention to legal aspects, to ensure that the name does

not conflict with brands and that the associated high-level Internet domains58

are still available.

As we saw in the section on the creation of business plans, all projects must

have a clear definition of their mission that will attract the attention of users

and developers and let them decide whether or not they are interested in the

project.

Along with our mission, it is important to state clearly that the project

concerns free software, which means making a clear reference to free software

or open-source software).

Other key elements in the presentation of a free software project are:

(57)In other words, a name
common to several languages,
such as Apache, or which is
not associated with any major
language, such as Ubuntu.

(58)In other words, .com, .net and
.org.

• List�of�planned�functionalities59�and�current�requirements. This should

be drawn up in simple terms without the use of technical vocabulary. It is

a sort of detailed summary of what the software does and allows users to

find out easily whether it has the functionalities that they are looking for.

(59)These can be indicated along
with the words "in progress" or
"in development", ideally with the
date or version when they will be
available.

GNUFDL • PID_00148382 127 Free software implementation, projects and companies

The requirements should also be easy to understand so that users know

whether the application can be installed and used on their system.

• Development�status. In the free software community, users are usually

very interested in knowing how the project is coming along, both if it

is a new project and if it is an older one. Thus, we should explain the

short- and long-term aims of the project, and the functionalities currently

being developed and that will be available in future releases, etc.

• Available�downloads. The source code should always be downloadable

in standard formats, using a straightforward method that does not

complicate the process for the user60.

The installation process should also be simple and, most importantly,

comply with the standards from the very start. It is not initially necessary

to provide binary packages or executables unless the compilation process

is very complicated.

• Development� repository. Unlike users, potential developers are more

interested in accessing the working repository, where they can follow

the day-to-day evolution of the project and participate in it, either by

adding new functionalities or fixing bugs. Thus, it is a good idea to allow

everybody anonymous read access to the repository.

(60)For example, it is preferable to
avoid user registration processes
for access to the download area.

• Bug�tracking. As with the repository, the bug tracking61 database should

also be open to everybody. Paradoxically, the more bugs the project

database contains the better because this means more users and more

participation in the project.

There won't be many bugs at the start of the project. It is good practice to

log any bugs fixed internally by the project team in the database.

• Communication�channels. One of the aims of any free software project

is to create a community around it and, in order for this community to

organise itself, we need to facilitate the right communication channels.

This includes mailing lists, IRC channels, forums, etc.

In the first phase of the project, it is wise not to diversify or specialise the

communication channels too much. A single forum or distribution list for

users and developers may be sufficient to encourage interaction between

them.

• Documentation� for�users�and�developers. Documentation is essential

for any free software project, for both users and developers.

Good user documentation needs to explain how to install the software

and how to use its functions. You can also provide users with a basic

tutorial, containing a step-by-step explanation of how to perform the most

common tasks. Maintaining a section of frequently asked questions or

FAQs is the perfect complement to the documentation.

(61)We often come across the
terms bug tracker and bug
database.

GNUFDL • PID_00148382 128 Free software implementation, projects and companies

Developer documentation should include the contact details of the main

project developers, instructions for sending error reports and patches, and

a presentation of the development organisation and the decision-making

process used by the developers.

We will look at all of these elements in detail in the following sections.

To conclude this section, we would like to emphasise the importance of

appearance – that is, how the free software community sees the project – for

the success or failure of a free software project.

Many developers neglect this communicative and public relations task, but it

forms an essential part of virtually any successful free software project.

For this purpose, we will need to clearly define the aims of the new software,

which can usually be summarised as:

• To�explain�clearly�what�the�software�does: its main functionalities, the

current state of development and future plans, and its positioning vis-à-vis

existing solutions and projects.

• To� raise� the� profile� of� the� software: ensuring that it reaches the

community or market of potentially interested users and developers.

• To�promote�the�use�of�the�software: ensuring that potential users and

developers know how to use the new software and adopt it instead of the

alternative solutions.

• To�involve�new�developers�in�the�project: allowing them to contribute

to the development of the project through the implementation of new

functionalities and to state their opinion on the future direction that the

project should take.

These last two aims, obtaining lots of users and lots of developers, are often

the most important ones. However, we need to implement one strategy for

users and another for developers since, while they form part of the same free

software community, they represent two very different audiences.

We need to clearly define the message we wish to convey to each and structure

it with a gradual complexity to ensure that the level of detail corresponds to

the effort required by the reader. For example, there is no sense in saturating

the user with software architecture or explaining technical details to the

developers without first giving them a reasonable overview of the architecture.

GNUFDL • PID_00148382 129 Free software implementation, projects and companies

Finally, this message should be easily accessible, reaching its audience through

advertisements on forums or related communities, on the project website or

even in the documentation, among other options.

3.3.2. Infrastructure

All free software projects need a series of tools to manage the

information generated daily by the project, from the developed code to

communication among its members.

We introduced some of these tools in the previous section because they are

needed to implement the project:

• Website

This provides a centralised source of information about the project and

offers access to other specialist management tools.

• Mailing�lists

This is one of the most common channels of communication in free

software projects. Message exchanges are usually archived and used as

reference and to form a knowledge base for the project.

• Version�control�system

This allows developers to control the creation and management of the

code, returning to previous versions and merging different versions. With

the version control system, anybody can visualise the current status of the

code and its evolution over time.

• Bug�tracking�system

This allows developers to track the functionalities and bugs they are

working on individually and to coordinate themselves and plan new

releases. Although bug tracking is its main function, the database can also

be used to track any project task, such as new functionalities.

With the bug tracking system, anybody can find out if a bug has been

fixed or if it is being worked on. In conjunction with the version control

system, it tells us about the dynamism and logged activity of the project.

• Chats

These are a communication channel for solving queries and problems

quickly. Conversations are not generally archived so it is better for

complex discussions to take place on mailing lists.

Each of these tools responds to specific needs, mainly connected

with communication and information management. The experience and

characteristics of the community of users and developers associated with the

GNUFDL • PID_00148382 130 Free software implementation, projects and companies

project will dictate the configuration and use of these tools. Nonetheless, it

is worthwhile pointing out a few aspects that could be useful in most free

software projects.

Mailing lists are an essential part of any free software project so we need to pay

special attention to our management and use of them. It is virtually a must

to have a management system for distribution lists, whose configuration and

maintenance could be complicated in the early stages.

Internet resources

The most popular systems include Mailman (http://www.list.org), Smartlist
(http://www.procmail.org), Ecartis (http://www.ecartisorg), Listproc (
http://listproc.sourceforge.net) and Ezmlm (http://subversion.tigris.org/hacking.html).

The main options and functionalities of a distribution list management

system are as follows:

• Subscription by e-mail or a web interface

• Subscription in digest or normal mode62

• Moderating

• Administrator interface

• Configuration of message headings

• File management and querying

Mailing lists can also be integrated into other tools, such as the version control

system or the bug tracking system, to inform of aspects such as source code

changes or modifications to the error status or tasks in course.

The version control system is also essential for any free software project that

hopes to create a developer community. Almost all version control systems

operate through the existence of a remote copy, common to all developers,

whose versions can all be consulted. Each developer has a local copy of this

remote copy that he or she works on. Occasionally, the developer sends his or

her modifications to the remote copy to share them with others.

The main functionalities of version control systems are:

• Committing: integrating the changes from the local copy to the remote

copy, which will then be logged in the version control database.

• Updating: integrating the changes of the other developers in the local

copy.

• Checking�out: obtaining a local copy from the remote copy.

(62)In digest mode, subscribers
receive a regular compilation of
all messages, usually once a week
or once a month, while in normal
mode, the messages are received
immediately.

GNUFDL • PID_00148382 131 Free software implementation, projects and companies

Any document or file edited in the project can and should be subject to version

control, which should not be limited to source code files. The use of a version

control system can be very practical for editing and sharing documentation

and technical reports and generally any document created and maintained

jointly.

As explained above, the bug tracking system has many other functions besides

that suggested by its name. These include the tracking of all types of task, such

as the implementation of new functionalities, the preparation of releases and

user support.

The life cycle of a bug is usually as follows:

• The� bug� is� reported: All bugs include at least a summary and initial

description containing, where possible, the elements needed to reproduce

it. Most bug tracking systems allow us to set up specific fields. Remember

that bugs can come from both the community of users and the community

of developers.

Once archived, the bug status remains open and is not assigned to

anybody. During this time, the individuals who access the database can

read the bug description and ask the user or developer who reported it for

more information.

• The�bug�is�reproduced: based on the instructions in the bug description,

somebody manages to reproduce the bug, thus validating it. In other

words, we can now say that the bug is real.

• Bug�diagnosis: in the previous phases, a developer takes responsibility for

fixing the bug or somebody in an authoritative position in the project

assigns it to the most suitable developer.

• Bug�assignation:

this must be entered in the database so that we do not have more than

one developer working on fixing the same bug without realising it. It is

also possible to report the expected fixing date or release in which the bug

will have been fixed.

• Bug�fixing: once the developer has fixed the bug, he or she will mark it

as fixed or closed.

Bugs can sometimes be fixed quickly, so some of these phases may not be

necessary. Sometimes, the bug is not really a bug and may simply be caused

by incorrect use. In all events, no matter how easy the solution is, it is always

a good idea to log the bug and report it correctly to users.

GNUFDL • PID_00148382 132 Free software implementation, projects and companies

Another common situation is when several users report the same bug, referred

to as duplicate bugs. In this case, it is best to group all of the reports into one

so that we can concentrate our efforts and put all of the information in the

same place.

Lastly, a bug may be reported as fixed when it has not actually been resolved,

generally because the steps followed to reproduce it do not match those

indicated by the user who reported the bug. In this case, the user can reopen

the bug, adding all of the necessary information. There are numerous public

forges offering these and other tools, ready for use in free software projects.

These platforms come with a series of advantages and disadvantages.

Internet resources

The most popular public forges include SourceForge (http://www.sourceforge.net),
Savannah (http://savannag.gnu.org and BerliOS.de (http://www.berlios.de). Some
organisations also offer hosting for projects in their area of interest, such as Apache (
http://www.apache.org) and Tigris (http://www.tigris.org).

Their advantages include their capacity and available bandwidth: the success

of the project is irrelevant because the servers will always be in operation.

Keeping a high-availability server running requires a lot of extra work.

Moreover, the tools available on these forges have already been configured and

are usually very easy to use. Obviously, the main disadvantage is the limited

flexibility and configuration possibilities of the tools.

So, before starting our project, we may want to host it on a public forge

but be open to the possibility of our own hosting in the future, starting by

registering the name of the domain associated with the project. For example,

while not the perfect solution, having a website informing about the project

that redirects to a public forge for aspects of code development can be a good

compromise.

3.3.3. Organisation of the community

One of the biggest differences between free software projects and proprietary

software projects is the way in which the developer community is organised.

In proprietary software projects, the structure is normally that of

a hierarchical organisation of the team or department in charge of

development in the company. Although hierarchies can sometimes be

seen in free software projects, partly due to the merits of the individual

developers, the organisation of the developer community is more

flexible and also stronger.

Paradoxically, one of the reasons why the developer community works as

one and remains close-knit is the possibility of creating a new independent63

project from the original project. The possibility of a free software project

(63)This is known as forkability, i.e.
the possibility of forking.

GNUFDL • PID_00148382 133 Free software implementation, projects and companies

forking is usually negative for both developers and users. It is precisely this

threat that makes the community organise itself and strive to ensure that

decisions are taken as a group.

In other words, the possibility of forking makes the community strive to

achieve a more or less democratic consensus in major project decisions.

There are generally two forms of organisation for free software communities,

although most projects end up adopting a position midway between the two.

They are:

• Organisation�based�on�a�"benevolent�dictator".

A benevolent dictator is a figure of authority who makes final decisions

with repercussions for the development of the project. Nonetheless,

benevolent dictators often do not make decisions directly but act as

moderators in discussions, attempting to conciliate the viewpoints of

the developers and identify the most valuable contributions. Another

of the actions of the benevolent dictator is to delegate experts to deal

with the decisions or discussions underway. Benevolent dictators are

usually developers with sufficient experience in the project and related

technologies. However, they do not need to be the most expert developers;

they must simply be capable of understanding the project as a whole and

recognising the best contributions.

• Organisation�based�on�consensus.

The term consensus is used to refer to agreements accepted more or less

tacitly by the entire community, i.e. where nobody opposes the decisions

or the direction taken by the project. As a result, the process of consensus

is not usually formal by any means. However, if a consensus cannot be

reached on a given issue, a vote can be taken.

Most discussions that take place during the development of a project are

usually technical, so consensus is achieved when everybody agrees on

an issue, such as the design or implementation of a functionality or the

way to fix a bug. In these cases, a member also usually summarises the

discussion at the end.

Generally all communities, particularly those based on consensus, have

excellent support in the version control system, which means that they can

go back and undo any decision that turns out to be incorrect.

Projects usually begin with an organisation based on a benevolent dictator and

evolve towards an organisation based more on consensus as the community

expands. This usually occurs at certain times in the development of the

project, such as when a benevolent dictator gives up his or her position and

the authority is distributed across the community, particularly among its most

highly regarded members.

GNUFDL • PID_00148382 134 Free software implementation, projects and companies

After a time, the conventions and agreements adopted through consensus by

a community can become increasingly large, so the main points should be

set down in a document that can be used as a guide and for future reference.

This may include both the form of governance of the community and the

conventions and recommendations for developers.

Internet resources

Take a look at the guides for the Subversion project
(http://svn.collab.net/repos/svn/trunk/HACKING) or the Apache
foundation (http://www.apache.org/foundation/how-it-works.html and
http://www.apache.org/foundation/voting.html).

Lastly, we need to ask ourselves what role can companies play in free software

communities.

On the one hand, we could have a company that wishes to start up a free

software project and create a community of users and developers. And on

the other, we could have a company that joins a free software project already

underway. In both cases, the company must clearly define its aims with this

free software project and know what its participation in the community will

be.

There are many possibilities. For example, the company may seek a leadership

position in the community and lead the project, or it may simply take part in

discussions, participate actively in the implementation of new functionalities

or have just a selection of its developers deal with the problems of its clients.

Bearing in mind the difficulties of constructing a successful free software

project, it is clear that, at least in the case of projects begun by companies,

the community already exists: it is formed by the developers in the company

and its clients.

In these situations, the benevolent dictator model will probably be the most

appropriate form of organisation, to start with at least, but we will still need

to define the rules for participation in the community. The challenge lies in

converting these clients into active users who will help to improve the project

and in getting other developers involved.

The solution, albeit a difficult one, is to offer benefits or some form of added

value to the users and developers who participate in the community.

It is good practice for the company's development team to be fully integrated

in the community and to follow the development methodology for the free

software project. This means that the developers must participate in the

project over a long period of time in order to become familiar with the

operation of the community and gain credibility in it.

GNUFDL • PID_00148382 135 Free software implementation, projects and companies

3.3.4. Development

This section describes the development process for free software projects,

not from a technical perspective, as this will depend on the nature of the

individual projects, but from the point of view of project management and

developer coordination.

With development, we need to remember that one of the differences

between free software projects and proprietary software projects is

the absence of a centralised organisation. For example, when the

date of a new release draws near, a company can assign a certain

number of resources to prepare for it. The voluntary developers forming

the community, on the other hand, are not so easy to direct. Their

individual reasons are different and while some may be interested in

publishing a new release on time, others may only be interested in a

specific functionality.

Thus, the distribution of tasks in a free software project is based mainly on the

independence between them, with the general rule being that each developer

works on what he or she wants when he or she wants.

Yet this approach is ideal in part, and a person or team is needed in most

free software projects to coordinate all the voluntary developers. This team

can be formed explicitly by the initiators of the project or the benevolent

dictator or implicitly by members with more experience and influence over

the community.

Some of the basic tasks of coordination, required to carry out the project

successfully, include:

• Delegating: one of the main tasks of the project coordinators is to delegate

tasks to other developers. When somebody delegates a task to another

person and the latter accepts it, the benefits are two-fold: the coordinator

finds somebody to do the work for him or her and this person's efforts

are acknowledged in the sense that they have been entrusted with a

task. Hence, the best way to delegate a task is through a channel of

communication that can be seen by the entire community, always giving

the option of turning down the offer.

In this case, the coordinator must be aware of the skills and interests of

the community members and direct the offers on this basis. For example,

there is no sense in asking somebody to do something if they lack the

necessary skills or if they already have several ongoing tasks.

• Criticising� and� praising: the correct evaluation of contributions

from each project developer is very important for the creation of

GNUFDL • PID_00148382 136 Free software implementation, projects and companies

a friendly atmosphere within the community. Moreover, evaluations

from coordinators or higher members have greater repercussions on the

community.

Hence, both criticism and praise should be used wisely. Continuous or

unfounded criticisms will no doubt provoke negative reactions, as will the

same sort of praise. However, in a technical discussion, detailed criticism

can be constructive because it means that the person who is making it has

taken the time to analyse the design or implementation being criticised.

• Avoiding�territoriality: one situation to avoid is where some members of

a community attempt to appropriate part of the project ("their part") and

refuse to accept criticisms or contributions from other members. Although

this attitude may appear positive at first, since these members are usually

experts and spend a great deal of time on their part of the project, the

long-term result is that no other developer revises the code, which can

mean a loss of quality and lead to fragmentation of the community.

• Automating� tasks: most developers generally work on one part of

the code and do not know what the others are doing. Therefore, the

coordinators must make it their task to obtain an outline of the project

and be aware of what each member is doing. It is easy to identify a series

of tasks inherent to code development that all developers must carry out

and which it is often useful to automate and centralise.

The clearest example of this is the automation of tests64, which allows

developers to make changes and experiment with parts of the code that

they are unfamiliar with.

• Treating� users� properly: the existence of an active user community

contributing valuable information to developers is key to the success

of any free software project. However, developers and users often speak

different languages, to put it one way. Many users are not familiar

with software development or how free software communities operate.

Developers need to be able to put themselves in the place of users and try

to explain themselves as clearly as they can.

Just remember that any user could be a contributor to the community and

because the vast majority of users never address the developer community,

we need to reserve special treatment for those who do. For example, when

a user indicates that the documentation is incomplete, we can suggest that

they complete it themselves, or when they report a bug, we can ask them

to try and fix it. And of course, always thank them for their contribution,

whatever it is.

• Sharing�management� tasks: besides code development, every project

has a series of management tasks that become increasingly complex as

the project expands. The coordinators or team that initiated the project

usually take responsibility for them, but it is good to share them with other

(64)Specifically, we can create a test
package, a programme that runs
the project software to reproduce
all previously known and fixed
bugs. This allows developers
to make sure that they do not
reintroduce old bugs that have
now been fixed.

GNUFDL • PID_00148382 137 Free software implementation, projects and companies

members of the project, as we saw in the section on delegation. These

tasks include:

– Patch�management. Controlling which patches have been received

and analysing them for acceptance or, as is usually the case, to detect

their problems and report them to the author of the patch.

– Translation� management. Coordinating the translation of the

documentation and software.

– Documentation�management. Keeping the documentation and the

frequently asked questions or FAQs section up to date, introducing

changes as they appear.

– Bug� management. Managing the bug database, which includes

ensuring its integrity and checking for duplicate bugs, among other

functions.

• Permissions� management. One of the more important management

tasks is the management of permissions, i.e. deciding who has permission

to commit and hence, integrate their code into the remote copy in the

repository. Besides granting permissions, there is also the possibility that

we will have to revoke them.

Developers who do not have permission to commit can of course still

contribute to the development of the project by producing patches

to fix bugs or add new functionalities that will be analysed by the

project developers and eventually incorporated. In fact, the most common

mechanism for obtaining permission to commit is for a developer to

contribute patches to the project until the team of developers considers

that his or her contributions and knowledge of the project are valuable

enough.

To encourage the participation of new developers, it is useful to make

the procedure for obtaining permission to commit and the procedure for

withdrawal of this permission public and as transparent as possible.

3.3.5. Releasing and packaging

Preparing releases and packaging is, besides code development, one of the

most important tasks of the entire free software project.

GNUFDL • PID_00148382 138 Free software implementation, projects and companies

A new release involves changes, particularly for users. Firstly, all

known bugs from the previous release will have been solved and

it is highly likely that there will be new ones. There may also be

new functionalities and configuration options. There may even be

incompatibilities between the new version of the software and the

previous ones, in the format of the data, for instance.

Since the jump from one release to the next can have important consequences

– and not all of them good – one of the first aspects we need to decide on is

how to identify each of the releases.

There are several conventions for this, some more creative than others, but

the most common method is to number them with a series of digits separated

by decimal points. For example:

• Release 3.4.1

• Release 3.4.2

• Release 3.5

• Release 4.0

The meaning of these digits can vary. Changes to the third digit usually

indicate fixed bugs or minor improvements to some functionalities. Changes

in the second digit usually indicate the introduction of new functionalities.

And lastly, changes to the first digit indicate new groups of functionalities and

no doubt important changes in version compatibility.

It is a good idea to indicate the meaning of the numbering of the releases on

the project website.

In addition, some releases are usually identified with the words alpha or beta,

indicating their development status. For example:

• Release 3.4.1 (alpha 1)

• Release 3.4.1 (alpha 2)

• Release 3.4.1 (beta)

Generally, the word alpha is used to designate the first release, which allows

users to access the software and all of its functionalities but for which a

considerable number of bugs is expected. Users who install and run an alpha

version usually do so to evaluate the software and report bugs to the team

of developers. A beta version, on the other hand, has undergone far more

debugging and, if it contains almost no bugs, will become the official version:

this is what is known as a candidate version.

Website

See the versioning of the APR
project (http://
apr.apache.org/
versioning.html).

GNUFDL • PID_00148382 139 Free software implementation, projects and companies

For developers, a free software project is in a constant releaseprocess and they

always use the latest version available in the repository for development, so it

can be difficult to specify the exact moment of the release.

The best practice in this case is to keep a branch in the repository containing

the code that will be introduced in the next release, regardless of the trunk.

This also ensures that the developers not involved in preparing the release can

continue to work on the project.

Thus, one of the most important parts of the process for preparing a release

is its stabilisation, i.e. deciding which changes and functionalities will be

integrated into the branch of the next release. Here, the decision-making

mechanism of the free software community should come into play, giving us

two basic alternatives:

• Designating a release owner that will decide which changes to introduce

in the future release.

• Voting for the changes to be introduced in the future release, for which

we will need to define the voting rules. An intermediate solution is to

establish the minimum number of developers needed to vote for a certain

change in order for it to be included.

In addition, one or two release managers can be appointed to integrate and

validate the changes to the branch of the release.

Free software is usually distributed as source code, adequately packaged and

compressed in a standard format. The name of the package is usually formed

by the name of the package, the version number and the appropriate suffix

for the format. For example:

• myproject-3.4.1.tar.gz

• myproject-3.4.2.zip

The information that should accompany any new release includes the licence

under which it is distributed, the instructions for installation and set up, and

the changes and features added since the last release. This information is

included in a series of files with more or less standard names: LICENCE or

COPYNG, README or INSTALL, and CHANGES.

And finally, users need to compile the source code and install it on their

system, which should always follow a standard procedure in order to reach

as many users as possible. Another possibility, used especially with mature

software, is the distribution of binary packages, either as executables or

installables, which does away with the need for users to carry out the

compilation process manually65.

(65)For example, the RPM or
DEB system with GNU/Linux
systems and MSI or self-installing
executables in Windows.

GNUFDL • PID_00148382 140 Free software implementation, projects and companies

From the perspective of free software companies, the releases policy is one of

the key tools for reaching potential users of the software. Correct planning

of releases should meet the user needs of the moment, whether by adding

new functionalities or by fixing bugs, so we must determine a suitable rate of

publication for new releases.

For instance, publishing new releases too often can saturate users and they

will probably not install all of the releases. In contrast, leaving too big a gap

between releases could encourage users to look elsewhere for solutions. It is

also a good idea to guarantee the quality of the new releasesby trying to fix as

many bugs as possible before their publication. The effect of a release plagued

by bugs gives a very poor image of the project and the company behind it,

which can be difficult to remedy afterwards. It is therefore very important to

focus on the open and cooperative nature of free software in order to improve

the quality.

3.3.6. Choice of licences

The differences and advantages and disadvantages associated with the various

free software licences make this one of the most hotly debated topics. One

thing is certain though and that is the choice of a particular licence plays a

minor role in the adoption and success of the project as long as it is a free

software licence. The vast majority of users choose their solution based on the

functionality and quality it offers, rather than its licence.

The most important thing is to be clear on the project aims and the free

software company's aims for the project. On the basis of these, we should

choose the most suitable licence or create a new licence based on existing

ones66.

Many free software projects have their own licences, adapted to their needs

and aims67.

(66)Appendix I includes a short list
of the main licences used in the
production of free software.

(67)Examples include the
OpenBravo licence (http://
www.openbravo.com/product/
legal/license/) or the dual MySQL
licence (http://www.mysql.com/
about/legal/licensing/).

Free software licences and the relationships and potential incompatibilities

between them can be very complex and we sometimes have to call on lawyers

or specialist legal experts for help.

One of the main sources of incompatibility is the reuse of free components

under restrictive licences. A typical example is the GPL licence, which requires

any software that uses GPL components to be distributed under a GPL licence.

It is good practice to keep an inventory or chart of the external software and

licences used in the project, describing the parts of the code that use them.

See also

The Legal aspects and the
features of exploitation of
free software subject of the
official Master's Degree in Free
Software looks in detail at
these issues.

GNUFDL • PID_00148382 141 Free software implementation, projects and companies

Summary

Although free software technology is tested, produced and run in a variety of

scenarios and despite the fact that we can easily find news on products, events

or figures related to free software in the general media, there are still many

clichés about its real and effective implementation.

These clichés and misconceptions often have a negative impact on the

implementation of free software systems, both in domestic situations and in

organisations. Users often write off free software saying that it is for computer

experts or hackers or that free software applications are unstable, unfinished

or lack the necessary support. Business, on the other hand, takes the view

that free software does not protect intellectual property sufficiently, that it

represents a loss of competitiveness, or that, with certain exceptions, there are

no feasible business models for free software.

We can summarise most of these ideas as being concerned with a lack of

quality in free software processes and products, particularly in the quality

perceived by users. To a certain extent, however, it is fair to say that the history,

culture and nature of free software and the community of users and developers

have encouraged these ideas.

The growing commitment of governments and major organisations to

free software should encourage people to question these misconceptions.

Moreover, many experts and analysts have pointed out the potential of

free software in bolstering the development of local, European and world

economies. For example, Gartner has said that "OSS is a catalyst that will

restructure the industry, producing higher quality software at a lower cost".

The materials for this subject attempt to provide a response to some of these

clichés, training professionals to carry out projects implementing free software

systems through the detailed study – from a conceptual, methodological and

practical point of view – of this type of project in a variety of scenarios and

situations.

Generally, any free software project must be treated first and foremost as a

software project and secondly, as an engineering project, so these materials

cannot and should not be a substitute for the necessary knowledge of these

topics.

Most of the materials cover the concepts, methodologies and tools required

to carry out free software development and implementation projects. This

is the reason for the general tone of some of the contents, which gradually

introduce the reader into the methodological features of free software projects,

GNUFDL • PID_00148382 142 Free software implementation, projects and companies

attempting to organise and structure – conceptually and functionally – the

main stages and milestones of implementation. We have also explained

how business activity linked to free software, whether software development,

consulting, integration, implementation or support, can be the object of a

profitable, valid and viable business model. Similarly, and although this was

not the primary aim of the subject, we have introduced the basic aspects that

a business plan should cover, specifically those dealing with free software.

The constant evolution of free software technologies and projects will

no doubt make some of these materials obsolete, particularly those on

specific projects and solutions. However, both the methodology and the

bibliographical references should help us to find the right solution for each

project or implementation scenario.

Moreover, it is hoped that the formalisation and structuring of the

methodologies and procedures included here, together with the collection of

good practices in free software projects will make a qualitative contribution

to the community and to the development and expansion of free software in

general.

Finally, we could not end without thanking the Fundació de la Universitat

Oberta de Catalunya (http://www.uoc.edu) for its support in producing these

educational materials. We also encourage all readers who wish to send in

their comments or suggestions to contact the authors so that we can improve

future editions of this material and the everyday practice of implementing

free software systems.

GNUFDL • PID_00148382 143 Free software implementation, projects and companies

Glossary

business model  Business strategy that defines, plans, produces and markets one or more
products or services aimed at generating profits for its producers.

direct implementation  Process by which the system to be introduced does not require
the components involved to undergo complex adaptations or configurations.

free software  Series of computer programs and applications whose conditions of use are
subject to a free licence.

free software community  Group of free software users and developers.

free software licence  Licence guaranteeing the four basic freedoms: running the software
for any purpose, studying and adapting the source code, redistributing copies of the software,
improving the source code and publishing improvements.

infrastructure  Series of basic elements or components that are correctly structured,
organised and coordinated to facilitate the operation of a system.

insourcing  Strategic model consisting of the delegation or production of operations or jobs
in an internal department of the organisation, usually specialised, instead of outsourcing
them to a third party external to the organisation.

licence  Contractual model by which the author of the product (or the copyright owner)
sets down the rights and duties of the users of the product and the scenario in which they
can use the product.

life cycle of a project  Process that covers, structures, organises and coordinates all of
the stages and phases guiding the execution of a project and allows us to deal with the
complexity of the aims reducing the risk of failure.

market study  Analysis conducted as part of a project for a business initiative with the aim
of obtaining an idea of the commercial viability of a business activity, based on the general
context, competition and consumers.

methodology  Systematic analysis or study of the methods and procedures that are, have
been or can be applied to a given discipline.

migration  Process to substitute infrastructures based on proprietary software for others
with equivalent functions based on free software.

open standard  Format or protocol subject to public use and evaluation that does not
depend on closed formats or protocols. It does not contain clauses limiting its use, is managed
independently of specific interests and is available in various implementations (or in an
implementation with fair access).

outsourcing  Strategic model consisting of the delegation or production of operations or
jobs in an organisation external to the organisation, usually specialised, instead of delegating
them to an internal department of the organisation.

packaging  Process to automate the installation, configuration and uninstalling of software
packages on a computer. GNU/Linux systems in particular usually use thousands of different
packages.

project  Organised, structured and planned process of managing resources to achieve a
specific aim, usually strategic.

project management  Discipline that studies the best way to organise and administer the
available resources to ensure that all tasks required by the project will be completed by the
set deadline with the time and costs defined previously.

release or distribution  Process to make available an initial version or update a software
product for its potential users.

repository  A repository, pool or archive is a centralised location for the storage and
maintenance of digital information, usually databases or computer files. In free software
development, repositories incorporate a version control system that maintains a log of all
work and changes made to the archives (mainly source code) constituting a project and
allows different developers (sometimes long distances apart) to collaborate with each other.

GNUFDL • PID_00148382 144 Free software implementation, projects and companies

risk  Likely event that could affect the progress of the project and possibly prevent the aims
from being reached on time.

strategic plan of the organisation  Series of proposals defining the future aims or
directions of the organisation. This is normally developed afterwards in the different areas
and functional departments of the organisation.

SWOT  Acronym of strengths, weaknesses, opportunities and threats. A SWOT analysis is a
strategic planning tool used to evaluate the strengths, weaknesses, opportunities and threats
affecting a project.

system  Series of independent physical or logical elements or components that interrelate
to act as an integrated, functional unit.

system services  Series of functions that can be run, with or without user intervention, and
which are considered essential for the operation of the organisation.

systems implementation  Process through which one or more technological innovations
are introduced to an organisation as the result of an action deriving from its strategic plan.

user support  Series of services that either integrally or through diverse means of
communication offers the possibility of managing and solving all possible issues taking place
during the use of a program or application.

version  Number indicating the development level of a program or application.

GNUFDL • PID_00148382 145 Free software implementation, projects and companies

Bibliography

Abella, A.; Sánchez, J.; Santos, R., et al. (2003). Libro Blanco del software libre en España.
[Consulted on 1 March 2008]. http://www.libroblanco.com/document/1000-2003.pdf

Abella, A.; Segovia, M. A. (2005). Libro Blanco del software libre en España (II). [Consulted
on 1 March 2008].
http://www.libroblanco.com/document/II_libroblanco_del_software_libre.pdf

Abella, A.; Segovia, M. A. (2007). Libro Blanco del software libre en España (III). [Consulted
on 1 March 2008].
http://libroblanco.com/document/III_libro_blanco_del_software_libre.pdf

Clearly, D. W.; Fenn, J.; Plumer, D. C. (2005). "Gartner's Positions on
the Five Hottest IT Topics and Trends in 2005". [Consulted on 20 May 2008].
http://www.gartner.com/DisplayDocument?doc_cd=125868

Díaz, R. M. (2007). El arte de dirigir proyectos (2nd ed.). Madrid: Ra-ma, 1995.

Guitérrez, J. D. (2007). "Metodología para el análisis decisorio de la implantación de software
libre". [Consulted on 1 March 2008].
http://www.informaticahabana.com/evento_virtual/files/SWL14.pdf

Hecker, F. (1998). "Setting Up Shop: The Business of Open-Source Software". [Consulted on
1 March 2008]. http://www.hecker.org/writings/setting-up-shop.html

Kerchmer, K. (2005). "The Meaning of Open Standards". Proceedings of 38th Annual
Hawaii International Conference on System Sciences 2005. [Consulted on: 1 March 2008].
http://www.csrstds.com/openstds.pdf

Open Formats. [Consulted on 1 March 2008]. http://www.openformats.org/

Open Source Initiative. [Consulted on 1 March 2008]. http://www.opensource.org/

Open Standards. URL: http://www.openstandards.net/ [Consulted on 1 March 2008].

Perens, B. "Open Standards: Principles and Practice". [Consulted on 1 March 2008].
http://perens.com/OpenStandards/Definition.html

Qualipso Project. URL: http://www.qualipso.org [Consulted on 20 May 2008]

Sáez, D.; Peris, M.; Roca, R.; Anes, D. (2007). Migración al software libre. Guía de buenas
prácticas. Instituto Tecnológico de Informática.

SELF Project. URL: http://selfproject.eu [Consulted on 1 March 2008]

Free Software Foundation. URL: http://www.fsf.org/ [Consulted on 1 March 2008]

Vega García Pastor, I. de la (2004). El plan de negocio: una herramienta indispensable.
Instituto de Empresa.

Various authors (2005). Migration guide. A guide to migrating the basic software components
on server and workstation computers (2005). Berlin: Bundesministerium des Innern. [Consulted
on 20 May 2008].
http://www.kbst.bund.de/cln_012/nn_836802/SharedDocs/Anlagen-kbst/Migrationsleitfaden/migration-guide-2nd-edition__pdf,templateId=raw,property=publicationFile.pdf/migration-guide-2nd-edition_pdf.pdf">http://www.kbst.bund.de/cln_012/nn_836802/SharedDocs/Anlagen-kbst/Migrationsleitfaden/migration-guide-2nd-edition__pdf,templateId=raw,property=publicationFile.pdf/migration-guide-2nd-edition_pdf.pdf

GNUFDL • PID_00148382 146 Free software implementation, projects and companies

Appendix

Appendix�I:�Free�software�licences

There now follows a short list of the main licences used for the production

of free software. Some of these are discussed in detail in the materials of the

Introduction to free software and Legal aspects and the features of exploitation

of free software (Part II) subjects.

GNU/GPL�v3

GNU/GPL is an abbreviation that stands for the General Public License of the

GNU project.

It has a robust redistribution policy called copyleft, by which all derived works

inherit the original licence, even if they have been combined with others.

Linking from modules with different licences is not permitted. The protection

policy for original copyright, among other rights, means that the GNU/GPL

licence is incompatible with other licences, including the original BSD licence

and proprietary licences.

Version 3 of GNU/GPL is not directly compatible with version 2. However,

many programs licensed under the second version allow the use of subsequent

versions of the licence under the same terms.

GNU/LGPL�v3

Internet resource

For more information about
the GNU/GPL licence, see
http://www.gnu.org/licenses/
gpl.html.

Internet resource

You will find a full list of
compatibilities at http://
www.gnu.org/licenses/
license-list.html.

The abbreviation GNU/LGPL stands for the Lesser General Public License of the

GNU project, which is a licence derived from GNU/GPL.

This licence was originally created to allow the use, linking and integration

of free software libraries with other types of licence, sometimes proprietary,

to work around the restrictions of GNU/GPL licences. The practice has led

to the licensing of numerous programs, some of which are now widespread.

The programs licensed under GNU/LGPL include the OpenOffice.org office

automation package.

Version 3 of GNU/LGPL is not directly compatible with version 2. However,

many programs licensed under the second version allow the use of subsequent

versions of the licence under the same terms.

BSD�licence

Internet resource

For more information about
the GNU/LGPL licence, see
http://www.gnu.org/licenses/
lgpl.html.

GNUFDL • PID_00148382 147 Free software implementation, projects and companies

BSD is the abbreviation of the Berkeley Software Distribution licence of the

University of Berkeley.

It forms part of a group of licences (BSD-style or BSD-like licences, including

the FreeBSD licence) called permissive licences because their user rights policy

is rather unrestrictive. This policy, called copycenter to distinguish it from

the copyleft of GNU licences, allows the commercial use of the product, its

conversion to proprietary code and linking from modules with a different

licence, among other possibilities.

The original BSD licence incorporates an advertising clause making it

incompatible with GNU/GPL. The clause was removed in later versions,

producing what is known as the 3-clause BSD licence, compatible with

GNU/GPL.

MPL�1.1

The abbreviation MPL stands for the Mozilla Public License of the Mozilla

Foundation).

It is a private initiative that is a hybrid of the BSD and GNU/GPL licences. It is

considered a permissive semi-copyleft licence because it offers the possibility

of establishing proprietary licences from derived works. Linking from modules

with different licences is permitted. Article 13 allows the licensing of one or

more parts of the code with a different licence, called an alternative licence.

Only when the alternative licence is GNU/GPL – or any other compatible

licence – will the part be compatible with GPL and be able to be linked with

others if they are too.

Apache�2.0�licence

Internet resources

For more information about
the BSD licence, see http://
www.debian.org/misc/
bsd.license. You can also
see an example of a licence
derived from the original
BSD at http://
www.freebsd.org/copyright/
freebsd-license.html, called
a 2-clause BSD licence due
to the elimination of two
clauses of the original
licence.

Website

For more information about
the MPL licence, see http://
www.mozilla.org/MPL/MPL-
1.1.html.

The Apache licence is a licence of the Apache Software Foundation).

It is quite similar to the BSD licence and is considered permissive because

it allows for the possibility of establishing proprietary licences from derived

works and linking from modules with different licences. The use of patents of

this licence and the provisions for compensation make it compatible only with

version 3 of GNU/GPL, maintaining the incompatibility with the previous

two versions.

X11�licence

Website

For more information about
the Apache licence, see http:/
/www.apache.org/licenses/
LICENSE-2.0.

GNUFDL • PID_00148382 148 Free software implementation, projects and companies

The X11 licence, incorrectly referred to as the MIT licence, is a licence of the

Massachussetts Institute of Technology, MIT).

It is quite similar to the 3-clause BSD licence and is considered permissive

because it allows derived works to be licensed as proprietary software and can

be linked to modules with different licences. It is compatible with GNU/GPL

and related to the X.Org project. Hence, some older versions of XFree86

continue to use it while the more modern versions use the XFree86 1.1 licence,

which is incompatible with GNU/GPL because of its requirements applying

to all documentation containing acknowledgements.

CDDL�1.0

Website

For more information about
the X11 licence, see http://
www.opensource.org/
licenses/mit-license.php.

Website

For more information
about the X.Org project, see
http://www.x.org/.

The abbreviation CDDL stands for the Common Development and Distribution

License of SUN Microsystems.

It is based on version 1.1 of the MPL licence. The main differences revolve

around two aspects:

• The author (or copyright owner) can restrict the legal jurisdiction of the

rights and duties of the software users.

• The licence establishes the requirement of identifying all authors who

contribute to the modifications made to derived works.

It permits linking from modules with other licences and the licensing of

derivatives with a different licence, which can be proprietary. Its intellectual

property features make it incompatible with GNU/GPL.

CPL�1.0

Website

For more information about
the CDDL licence, see
http://www.sun.com/cddl.

The CPL abbreviation stands for the Common Public License of IBM.

Its aim is to promote the development of open source, maintaining the

possibility of combining the code with other licences, including proprietary

licences, though it does not permit the licensing of derivatives with another

type of licence. It also prohibits the derived code from infringing the patents

of the original, requiring the payment of any royalties. It is incompatible with

GNU/GPL due to its clauses on the legality of derived works.

EPL�1.0

Website

For more information about
the CPL licence, see http://
www-128.ibm.com/
developerworks/library/os-
cpl.html.

GNUFDL • PID_00148382 149 Free software implementation, projects and companies

The EPL abbreviation stands for the Eclipse Public License of the Eclipse

Foundation).

This is based on the CPL licence and has a permissive policy with a business

focus. The main difference between it and CPL lies in the treatment of patent

infringement by software contributors. All code licensed under EPL maintains

the licence in its derived works. However, it permits the separate licensing

of addenda under other types of licence, including proprietary. Linking from

modules with different licences is permitted. Its characteristics regarding

the permissiveness of derived works and its treatment of copyright make it

incompatible with GNU/GPL.

Appendix�II:�Open�standards

Definition

The SELF project defines an open standard as a format or protocol that is:

Website

For more information about
the EPL licence, see http://
www.eclipse.org/org/
documents/epl-v10.php.

• subject to full public assessment and use without constraints in a manner

equally available to all parties;

• without any components or extensions that have dependencies on

formats or protocols that do not meet the definition of an Open Standard

themselves;

• free from legal or technical clauses that limit its utilisation by any party

or in any business model;

• managed and further developed independently of any single vendor in a

process open to the equal participation of competitors and third parties;

and

• available in multiple complete implementations by competing vendors or

as a complete implementation equally available to all parties.

Website

For more information
about the open standards
of the SELF project, see
http://selfproject.eu/OSD.

However, there is no one definition of an open standard because every

organisation establishes a series of characteristics or practices suited

to its particular aims. These organisations can be organisations that

develop standards, supra-national councils or state governments. Some

definitions require publication under reasonable and non-discriminatory

(RAND) conditions, i.e. not totally exempt from royalties.

Example

Examples of this are the
definition of the European
Union or the ITU-T (http://
www.itu.int/ITU-T/
othergroups/ipr-adhoc/
openstandards.html).

GNUFDL • PID_00148382 150 Free software implementation, projects and companies

Other definitions focus more on the characteristics of the process that

a standard should follow in order to be considered open, such as the

recommendations of the World Wide Web Consortium (W3C), Bruce Perens

or Ken Krechmer.

Organisations

The leading organisations, associations, institutes and consortiums for

information technology standards are:

ANSI: American National Standards Institute.

ETSI: European Telecommunications Standards Institute

(http://www.etsi.org/).

FreeStandards (The Free Standards Group): independent organisation that

promotes the use and acceptance of free technologies through standards.

(http://www.freestandards.org/.)

ICANN: Internet Corporation for Assigned Names and Numbers

(http://www.icann.org/).

IEC: International Electrotechnical Commission

(http://www.iec.ch/).

IEEE: Institute of Electrical and Electronics Engineers, Inc.

(http://www.ieee.org/).

IETF: Internet Engineering Task Force

(http://www.ietf.org/).

ISO: International Organization for Standardization

(http://www.iso.ch/).

ITU: International Telecommunications Union, which groups organisations from

the private and public sectors to coordinate telecommunications and global

services

(http://www.itu.int/).

JXTA (JXTA Project): combination of open peer-to-peer or P2P standards with

open-source Java implementations.

(http://www.jxta.org/)

OASIS (Organization for the Advancement of Structured Information Standards

): international non-profit consortium that guides the development,

convergence and adoption of standards for e-business

Internet resources

For more information about
these processes, see:
http://www.w3.org/
Consortium/Process.
http://perens.com/
OpenStandards/
Definition.html.
http://www.csrstds.com/
openstds.pdf.

Website

For more information
about ANSI, see:
http://www.ansi.org/.

GNUFDL • PID_00148382 151 Free software implementation, projects and companies

(http://www.oasis-open.org/).

OpenGroup (The Open Group): international consortium of vendors for the

neutral advance of technology

(http://www.opengroup.org/).

RossettaNet (Open e-business process standards): association to promote open

standards in e-business

(http://www.rosettanet.org/).

VoiceXML (Voice XML Forum): organisation of industries to create and

promote Voice Extensible Markup Language (VoiceXML)

(http://www.voicexml.org/).

W3C (World Wide Web Consortium): global consortium for the promotion of

Internet standards

(http://www.voicexml.org/).

WS-I (Web Services Interoperability Organization):

(http://www.ws-i.org/).

Open�standards

We will now list the main open standards identified in the SELF project (

http://selfproject.eu/en/system/files/D1_WP2.pdf).

• Unformatted�text

ASCII, ISO8859 (

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28245

) and UNICODE (http://www.unicode.org/).

• Formatted�text

ODT (Open Document Text) and DocBook

(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

).

• Scientific�text

ODF (Open Document Formulae), MathML (Mathematical Markup LanguAge

) (http://www.w3.org/Math/) and TeX/LaTeX (http://www.tug.org/) and

(http://www.latex-project.org/).

• Images�(frames)

JPEG (Joint Photographic Expert Group) (http://www.jpeg.org/)

and (http://www.w3.org/Graphics/JPEG/), PNG (Portable

Network Graphics) (http://www.libpng.org/pub/png/) and (

http://www.w3.org/Graphics/PNG/), PNM (Portable Any Map) (

http://netpbm.sourceforge.net/doc/pnm.html), GIF (Graphics Interchange

GNUFDL • PID_00148382 152 Free software implementation, projects and companies

Format) (http://www.w3.org/Graphics/GIF/spec-gif89a.txt), BMP (

Bitmap) (http://atlc.sourceforge.net/bmp.html).

• Images�(vectors)

SVG (Scalable Vector Graphics) (http://svg.org/) and (

http://www.w3.org/Graphics/SVG/), ODG (Open Document Graphics).

• Video

OpenEXR (http://www.openexr.com/), Theora (

http://theora.org/), RIFF (Resource Interchange File

Format) (http://msdn2.microsoft.com/en-us/library/ms713231.aspx

), AVI (Audio Video Interleave) (

http://msdn2.microsoft.com/en-us/library/ms779636.aspx).

• Printing

PDF (Portable Document Format) (http://www.adobe.com/devnet/pdf/),

PS (PostScript) (

http://partners.adobe.com/public/developer/ps/index_specs.html).

• Hypertext

HTML (Hyper Text Markup Language), XHTML (Extended Hyper Text Markup

Language) (http://www.w3.org/MarkUp/).

• Presentations

ODP (Open Document Presentation).

• Audio

Vorbis (OGG Vorbis) (http://www.vorbis.com/) and (

http://xiph.org/), FLAC (Free Lossless Audio Codec) (

http://flac.sourceforge.net/)) and (http://xiph.org/), RIFF, WAV (Wave) (

http://www.borg.com/~jglatt/tech/wave.htm).

• Education�and�learning

LOM (Learning Object Metadata) (

http://zope.cetis.ac.uk/profiles/uklomcore), SCORM (Sharable Content

Object Reference Model) (http://www.conform2scorm.com/), IMS (

http://www.imsglobal.org/commoncartridge.html), LD (Learning Design

) (http://www.imsglobal.org/learningdesign/index.html).

• Business

XBRL (Extensible Business Reporting Language) (http://www.xbrl.org/).

