%"

inTrrooucCT:an 17d

FREE
SOFTUWHARE

AUTHORS: COORDINATORS:

<. GON2dLEE egdradHOndg . MAS HErNanoe:z
<. SBEONE PasCcUdL D. MEGIAS JdimEnNE=
G. ROBLES

EEEEE FrEE
SeEgE TECHMOLOGW
H B B ACADEMY

Introduction to
Free Software

Jordi Mas Hernandez (coordinador)
David Megias Jiménez (coordinador)
Jests M. Gonzalez-Barahona
Joaquin Seoane Pascual

Gregorio Robles

XP07/M2101/02708

EEEEN FIrEE
SpEst TECHMOLOGH
H H B ACADEMY

© FUOC ¢ XP07/M2101/02708

Introduction to Free Software

Jordi Mas Hernandez

| David Megias Jiménez

| Jesiis M. Gonzalez-Barahona

Founding member of Softcatala and
of the telematic network RedBBS.
He has worked as a consultant in
companies like Menta, Telépolis,
Vodafone, Lotus, eresMas, Amena
and Terra Espafia.

Computer Science Engineer by the
Universitat Autonoma de Barcelona
(UAB, Spain). Master in Advanced
Process Automatisation Techniques
by the UAB. PhD. in Computer Sci-
ence by the UAB. Associate Profes-
sor in the Computer Science, Multi-
media and Telecommunication De-
partment of the Universitat Oberta
de Catalunya (UOC, Spain) and Di-
rector of the Master Programme in
Free Software at the UOC.

Joaquin Seoane Pascual

| Gregorio Robles

Associate professor in the Depart-
ment of Telematic Systems Engi-
neering of the Technical Universi-

ty of Madrid (Spain), where he has
taught courses in programming,
protocols, computer architecture,
operating systems, Internet services,
databases, systems administration
and free software. His current inter-
ests include the application of ICT in
isolated regions of developing coun-
tries.

Assistant professor at the Rey Juan
Carlos University (Madrid, Spain),
where he earned his PhD degree in
February 2006. Besides his teaching
tasks, he researches free software
development from the point of view
of software engineering, with spe-
cial focus in quantitative issues.

This version of the text is a preliminary version.

The FTA version will be published soon.

Third edition: September 2009

Fundaci6 per a la Universitat Oberta de Catalunya.

Av. Tibidabo, 39-43, 08035 Barcelona
Material prepared by Eureca Media, SL

© Jestis M. Gonzalez Barahona, Joaquin Seoane Pascual, Gregorio Robles

Legal deposit: B-1.559-2008

Associate professor in the Depart-
ment of Telematic Systems and
Computing of the Rey Juan Carlos
University (Madrid, Spain), where
he coordinates the GSyC/LibreSoft
research group. His professional ar-
eas of interest include the study of
free software development and the
transfer of knowledge in this field to
the industrial sector.

© 2008, FUOC. Permission is granted to copy, distribute and modify this document either under the
terms of the GNU Free Documentation Licence, Version 1.2 or any subsequent version published by the
Free Software Foundation, with no invariant sections or front-cover or back-cover texts, or under the
terms of Creative Commons by-sa 3.0 license, at the option of the user. A copy of these licenses is
included in the corresponding appendixes of this document.

Preface

Software has become a strategic societal resource in the last few decades.
The emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software — sometimes also referred to as
“Open Source” or “Libre Software” — can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. These freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. The FTA attempts to respond to
this demand.

Introduction to the FTA

The Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?

The Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?
The FTA was initiated in 2008 supported by the Life Long Learning

Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (The Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
The Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

What about the licensing?

All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Evolution of this book

The FTA has reused existing course materials from the Universitat
Oberta de Catalunya and that had been developed together with
LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book
was translated into English with the help of the SELF (Science,
Education and Learning in Freedom) Project, supported by the
European Commission's Sixth Framework Programme. In 2009, this
material has been improved by the Free Technology Academy.
Additionally the FTA has developed a study guide and learning activities

which are available for learners enrolled in the FTA Campus.

Participation

Users of FTA learning materials are encouraged to provide feedback and
make suggestions for improvement. A specific space for this feedback is
set up on the FTA website. These inputs will be taken into account for
next versions. Moreover, the FTA welcomes anyone to use and distribute
this material as well as to make new versions and translations.

See for specific and updated information about the book, including
translations and other formats: Astp://fiacademy.org/materials/fsm/1. For
more information and enrolment in the FTA online course programme,

please visit the Academy's website: hzp://ftacademy.orgl.

I sincerely hope this course book helps you in your personal learning
process and helps you to help others in theirs. I look forward to see you
in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens

President of the Free Knowledge Institute
Director of the Free technology Academy

© FUOC ¢ XP07/M2101/02708

The authors would like to thank the Foundation for the
Universitat Oberta de Catalunya for financing the first edition
of this work, and a large share of the improvements leading to
the the second edition, as part of the Master Programme in
Free Software offered by the University in question, where it is
used as material for one of the subjects.

The translation of this work into English has been made
possible with the support from the SELF Project, the SELF
Platform, the European Comission's programme on
Information Society Technologies and the Universitat Oberta
de Catalunya. We would like to thank the translation of the
materials into English carried out by lexia:park.

The current version of these materials in English has been
extended with the funding of the Free Technology Academy
(FTA) project. The FTA project has been funded with support
from the European Commission (reference no. 142706-
LLP-1-2008-1-NL-ERASMUS-EVC of the Lifelong Learning
Programme). This publication reflects the views only of the
authors, and the Commission cannot be held responsible for
any use which may be made of the information contained
therein.

Introduction to Free Software

© FUOC « XP07/M2101/02708 5

Introduction to Free Software

Introduction

"Anyone who hears this, if he can sing, may add and change at pleasure. Let it go from
hand to hand: let those who request it have it. As a ball among young women, catch
it if you can.

Since this is of 'Good Love', lend it out gladly: do not make a mockery of its name by
keeping it in reserve; nor exchange it for money by selling or renting it; for 'Good Love'
when bought, loses its charm."

Juan Ruiz, Archpriest of Hita. The Book of Good Love (14™ century, original in Ancient
Spanish)

The first version of these notes was written by Jestis M. Gonzélez-Barahona,
Joaquin Seoane Pascual and Gregorio Robles between April and September
2003. Although we had been discussing for a while preparing a document of
this type for the Free Software course that Joaquin and Jests teach as part of
the PhD programs of their respective departments, it was the initiative of the
Open University of Catalonia (UOC) that commissioned us to prepare material
to introduce the free software masters course, which finally encouraged us to
get started. The involvement of Jordi Mas, the academic coordinator of the
masters course, in this task was crucial, in that he proposed us for the job and
put us in contact with the UOC, additionally supporting our relations with
the UOC throughout the project's duration.

Shortly after handing in the first edition, the authors started retouching the
material as part of an ongoing process, although with varying degrees of ac-
tivity, until this second edition was completed in May 2007. During this time,
the first edition was extensively used in the free software masters of the UOC
and in various other postgraduate courses in Spain and America. The expe-
rience with the UOC has been followed with particular interest by Gregorio
Robles, who has participated in it, and has therefore obtained feedback that
has proven extremely valuable for improving the content. The three of us
(Joaquin, Jesus, and since 2006, Gregorio) have also continued with the post-
graduate software course at the UPM (Polytechnic University of Madrid) and
at the URJC (Rey Juan Carlos University), taking advantage of it in order to
test the material.

Once again, the UOC has been the catalyser of this second edition, charging
us with a commission that we have taken too long to complete. The work of
Jordi Mas and David Megias (of the UOC) has been fundamental, and has pro-
vided vital critical support for pushing forward this new edition. The work of
José Ignacio Fernandez Villamor and Boni Garcia Gutiérrez, pupils of Joaquin
Seoane, who have collaborated in reviewing the materials for this second edi-
tion, has also been essential.

© FUOC » XP07/M2101/02708 6 Introduction to Free Software

Previous materials

Some of the texts in these notes are based on previous material, usually be-
longing to the authors themselves, and in some cases to third parties (used
with permission when not completely redrafted). Among them, we would like

to mention the following (at the risk of omitting anyone important):

e There are some fragments (especially on the chapters of history and the
economy) inspired by the document "Free Software / Open Source: Infor-
mation Society Opportunities for Europe?" [132], which Jesas Gonzalez-
Barahona co-edited for the European Commission. However, the frag-
ments in question have been extended, retouched and updated to such
an extent that in many cases they may be difficult to recognise.

e The section on monopolies and free software (section 5.4) has been based
on the paper "Software libre, monopolios y otras yerbas" ("Free software,
monopolies and other herbes") [84], by Jesas M. Gonzélez-Barahona.

¢ The sections on legislative initiatives and public administration initiatives
in relation to free software are partly based on "Iniciativas de las adminis-
traciones publicas en relacion al Software Libre" ("Initiatives of public ad-
ministrations related to free software") [103] (thanks to Pedro de las Heras

for allowing us to use this material, which he co-authored).

e DPart of the section on motives for using free software in the public admin-
istrations (Section 6.2) is based on the paper [85], by Jestis M. Gonzalez-
Barahona.

e The chapter on free software engineering is an adaptation of the paper on
the state of the art of software engineering applied to free software by Jests
M. Gonzélez-Barahona and Gregorio Robles for the magazines Novatica
(Spanish version) and Upgrade (English version).

e In the chapter on case studies, the part regarding the development of Lin-
ux is based on a presentation made by Juan-Mariano de Goyeneche during
the postgraduate course "Free Programs" of the Polytechnic University of
Madrid during academic year 2002-03.

e The historical part of the detailed study of GNOME has been taken from
the historical introduction included in the book on "Applications devel-
opment in GNOME2" prepared by GNOME Hispano and written by one
of the authors of this book.

e The FreeBSD case study is partly based on the presentation given by Jesus
Rodriguez at the III HispaLinux Conference held in Madrid in the year
2000.

© FUOC » XP07/M2101/02708 7 Introduction to Free Software

e The Debian and Red Hat case studies are based on the previous work of
Gonzalez-Barahona et al. who have reflected the results of the quantitative
analysis of these two distributions in various papers.

e Various materials, especially updates and new material in the chapter on
case studies, were prepared by José Ignacio Fernandez Villamor and Boni
Garcia Gutiérrez towards the beginning of 2007 on a specific branch for
modifications made in the context of that year's edition of the postgrad-
uate subject of Joaquin Seoane at the UPM. A large proportion of those
materials was included in time for the second edition.

© FUOC « XP07/M2101/02708 8

Introduction to Free Software

Contents

Module 1
Free Software

Jests M. Gonzélez-Barahona, Joaquin Seoane Pascual and Gregorio Robles

XN WN &

Introduction

A bit of history

Legal aspects

Developers and their motivations

Economy

Free software and public administrations

Free software engineering

Development environments and technologies
Case studies

10. Other free resources

Module 2
Appendixes

Jestis M. Gonzalez Barahona, Joaquin Seoane Pascual and Gregorio Robles

o kW=

Appendix A. Learning guide

Appendix B. Key dates in the history of free software

Appendix C. GNU Public License

Appendix D. Texts of some legislative proposals and related documents
Appendix E. Creative Commons' Attribution-ShareAlike

Appendix FE. GNU Free Documentation License

© FUOC « XP07/M2101/02708 9

Introduction to Free Software

Glossary

ACM Association for Computing Machinery

AFPL Aladdin Free Public License

ALSA Advanced Linux Sound Architecture

AOL America Online

API Application program interface

ARM Advanced RISC machines

ASCII American standard code for information interchange
AT&T American Telephone & Telegraph

AITC Agency of Information Technologies and Communication
ATK Accessibility Toolkit

BIND Berkeley Internet Name Domain

BIRT Business Intelligence and Reporting Tools
BITNET Because It's There Network

BSA Business Software Alliance

BSD Berkeley Software Distribution

BSDI Berkeley Software Design Incorporated

BSI Bundesamt fur Sicherheit in der Informationstechnik
CDDL Common Development and Distribution License
CD-ROM Compact disc read-only memory

CEPS Cisco Enterprise Print System

CERN Conseil Europeen pour la Recherche Nucléaire
CGI Common Gateway Interface

COCOMO Cost construction model

CORBA Common object request broker architecture
CPL Common Public License

CSRG Computer Systems Research Group

CSS Cascading style sheet

© FUOC « XP07/M2101/02708 10

Introduction to Free Software

CVS Control version system

DARPA Defense Advanced Research Projects Agency
DBUS Desktop Bus

DCOP Desktop communication protocol

DEC Digital Equipment Corporation

DECUS Digital Equipment Computer User Society
DFSG Debian Free Software Guidelines

DRM Digital rights management

DSDP Device Software Development Platform
DTD Document type definition

DTP Data tools platform

DVD Digital video disk

ECTS European credit transfer scheme

EMP Eclipse Modeling Project

EPL Eclipse Public License

HCEST Higher College of Experimental Sciences and Technology

ETP Eclipse Tools Project

FAQ Frequently asked questions

FDL Free Documentation License

FIC First International Computer

FSF Free Software Foundation

FTIP File transfer protocol

FUD Fear, uncertainty, doubt

GCC GNU C Compiler

GDB GNU Debugger

GFDL GNU Free Documentation License
GIMP GNU Image Manipulation Program

GNAT GNU Ada Translator

© FUOC « XP07/M2101/02708 11

Introduction to Free Software

GNATS GNU Bug Tracking System

GNU GNU's Not Unix

GPL General Public License

GTK GIMP Toolkit

GUADEC GNOME User and Developer European Conference
HIRD HURD of Interfaces Representing Depth
HTML Hypertext markup language

HTTP Hypertext transfer protocol

HURD HIRD of Unix-Replacing Daemons

R&D Research and development

IBM International Business Machines Corporation
IDE Integrated development environment

IEC International Electrotechnical Commission
IETF Internet Engineering Task Force

INRIA Institut National de Recherche en Informatique et en Automatique
IP Internet protocol

IRC Internet Relay Chat

ISO International Standards Organization

ITU International Telecommunications Union
JDK Java Developer Kit

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

JVM Java Virtual Machine

KBSt Koordinierungs-und Beratungsstelle der Bundesregierung fur Informa-

tionstechnik in der Bundesverwaltung
KDE K Desktop Environment

LGPL Lesser General Public License
LISP List processing language

LLC Limited Liability Company

© FUOC « XP07/M2101/02708 12

Introduction to Free Software

IPA Intellectual Property Act

LTS Long term support

MCC Manchester City Council

MIT Massachusetts Institute of Technology
MPEG Moving Picture Experts Group
MPL Mozilla Public License

MTIC Mission Interministerielle de Soutin Technique pour le Developpe-
ment des technologies de l'Information et de la Communication dans

I'Administration

NASA National Aeronautics and Space Administration
NCSA National Center for Supercomputing Applications
NPL Netscape Public License

NSENet National Science Foundation Network

NUMA Non-uniform memory access

NYU New York University

OASIS Organization for the Advancement of Structured Information Stan-
dards

ODF Open document format

ODP Open Directory Project

OHGPL OpenlIPCore Hardware General Public License
OLPC One Laptop Per Children

WTO World Trade Organisation

WIPO World Intellectual Property Organisation
ORB Object request broker

OSDN Open Software Development Network
0SGi Open Services Gateway Initiative

OSI Open Source Initiative

GDD Gross Domestic Product

PDA Portable digital assistant

© FUOC « XP07/M2101/02708 13

Introduction to Free Software

PDF Portable document format

PDP Programmed data processor

PHP PHP hypertext preprocessor

PLOS Public Library of Science

PNG Portable network graphics

FAQ Frequently asked questions

QPL Qt Public License

RCP Rich client plaftorm

RDF Resource description framework
RFC Request for comments

RFP Request for proposal

RHAD Red Hat Advanced Development
RPM Red Hat Package Manager

RTF Rich text format

SCO Santa Cruz Operation

SPE Secretariat of Public Education

SGI Silicon Graphics Incorporated
SGML Standard generalised markup language
SISSL Sun Industry Standards Source License
SLS Softlanding Linux System

SOA Service oriented architecture

SPARC Scalable processor architecture

SPICE Simulation program with integrated circuits emphasis

SSL Secure socket layer

TAMU Texas A&M University
TCP Transport control protocol
TEI Text Encoding Initiative

TPTP Test and Performance Tools Project

© FUOC « XP07/M2101/02708 14

Introduction to Free Software

TRIPS Trade-related intellectual property rights
UMTS Universal mobile telecommunications system
UOC Open University of Catalonia

USA United States of America

USD United States dollar

USENET User network

USENIX Unix Users Group

USL Unix System Laboratories

UUCP UNIX to UNIX copy protocol

VHDL Very high speed integrated circuit hardware description language

W3C World Wide Web Consortium

WIPO World Intellectual Property Organisation
WTO World Trade Organisation

WTP Web Tools Project

WWW World Wide Web

WYSIWYG What you see is what you get

XCF Experimental computing facility format

XML Extensible markup language

Free Software

Jesas M. Gonzalez-Barahona
Joaquin Seoane Pascual
Gregorio Robles

P07/M2101/02709

Universitat Oberta
de Catalunya

www.uoc.edu

© FUOC ¢ P07/M2101/02709

Free Software

Index

1. Introduction

1.1. The concept of software freedom.............cccevvueeveirvinnieiiniinnneeennn.

1.1.1. Definitionccccciviiiiniiiiiiiiiiiiiiice

1.1.2. Related termsccccccvviiiiiiiiiniiiiii

1.2, MOLIVAtIONS ...coiviiiiiiiiiiiiiiii

1.3. The consequences of the freedom of softwarecc.cccceevueeennee

1.3.1. For the end USeTccccviviiiiiiiiiiniiiiniin,

1.3.2. For the public administrationcccccvvviiiieinnnnnnen.

1.3.3. For the developerc.cccccvvirviiiiiiiiiiiiiiiiiicec,

1.3.4. For the integratorcccccovviiiiiiiiiieiiiniiiieceeeee,

1.3.5. For service and maintenance providerscccoceeuueeen.

1.4, SUINMATY ..eoviiiiiiiiiiieiiiteee et e e s e e

2. A Dbit of BEStOTY...coociiiiiii e

2.1. Free software before free softwarecccccvviiniiiiiiiiinniene,

2.1.1. And in the beginning it was freecccecceervvrernneenn.

2.1.2. The 70s and early 805cccccervvuiiiiiriiiiiieiiniiiiieiinne

2.1.3. The early development of UnNixXccceceveervrrerernerernnneen.

2.2. The beginning: BSD, GNUccccoviiiiiiiiiniiiiiiniiiieiieeecene
2.2.1. Richard Stallman, GNU, FSF: the free software

movement iS DOIMccccoviiiiniiiiiiiiiiii,

2.2.2. Berkeley's CSRGccoovevviiiiiiiiiiieiiiiiicceecee e,

2.2.3. The beginnings of the Internetcccoccceereeerieeennnee.

2.2.4. Other Projectsccccovvviieiiiiiiiiieiieiiiieeecee e

2.3. Everything in its Waycccoeceviiiiiiiiiiiiiiiieceeece

2.3.1. The quest for a kernelc.cccccoeveeeeieeniiennieeeeeeee,

2.3.2. The *BSD familycccoooiimiiiiiniieneceeeeeeeee e

2.3.3. GNU/LINUX COMES ONStAZE ..ceererererrmererrreeerreeerameeeeneees

2.4. A time of maturationccccceceiiiiiiiiniini,

2.4.1. End of the ninetiescc.cccoeiiiiiiiiiiiiiii,

2.4.2. Decade of 2000cccooiiiiiiiiiiniiiiin

2.5. The future: an obstacle coOurse?ccoovvviiiiiiiiiiniiiiinniennen,

2.6, SUINIMATY .eotviiiiiiiiiiiiniiiiiee it sir e srne e e s sna e e e s sennnne

3. Legal aspects

3.1.

3.2.

Brief introduction to intellectual propertycccccocccceeeienineeeenn.
3. 1.1, CopYTINt oo
3.1.2. Trade SECIetcocovviiiiiiiiiiiiiiiiniee e,
3.1.3. Patents and utility modelscccccovieeiiiiiiiiiiiiiiiiis
3.1.4. Registered trademarks and 10g0OScccccouveveeereeeeeiennnnnn.
Free software liCEIICEScoccvvervirieriiieriiieeee e

3.2.1. Types Of lICENCESceereriurirerieiiiieeeeeiitee e eieeee e

10
11
12
12
13
14
14
15
15
15

16
16
17
18
19
20

20
21
23
25
25
25
26
26
27
28
31
38
39

40
40
41
43
43
45
45
46

© FUOC ¢ P07/M2101/02709

Free Software

3.2.2. Permissive liCENCESccoevueiriiiiriiiiiiiiiiiicciieccieeee
3.2.3. Strong liICONCEScccireiiiiiiiiiiiieeeeiiitee e
3.2.4. Distribution under several licencescc.ccccceeveernnen.
3.2.5. Program documentationccccccecceeerriieieeiniiieeeennnnns
3.3, SUIMIMATY oottt ettt eenee e
4. Developers and their motivations..............ccccooooviiiiiiniiinnnnnnee.
4.1, INtrodUCHIONcoocciiiiiiiiiiiiiiiiictccte e
4.2. Who are develOPers?ccoooceeeeriiiiiieeeniiiiteeeeereeeeeseereeeesennee
4.3. What do developers dO?ccccceeeerieiieiiiiiiieeeeeeeeee e
4.4. Geographical distributionccccoeooiiiiiiiniiii e
4.5, DediCationccocceiiiiiiiiiiiiiiiiiiiictc e
4.6. MOtIVatiONSccccvviiiiiiiiiiiiiii e
4.7, Leadershipocccoeeeiiiiiieiiieeeee e e
4.8. Summary and CONCIUSIONScccuveeeerriiiiieiiiiiiteee e
5. ECOMOIMLY ...ttt e e e e e
5.1. Funding free sOftware projectsccccccccceeeeeveeeerneiineeeenenieeeeenn.
5.1.1. Public fundingcccceeveeiiiiiiiieiieeceeecee e
5.1.2. Private not-for-profit fundingcccccceeereviieeeirieneeen.
5.1.3. Financing by someone requiring improvements
5.1.4. Funding with related benefitscccccoveiiieiiniineennnn.
5.1.5. Financing as an internal investmentcccocceevnnnen.
5.1.6. Other financing mModescc.cccceeeeirriiieeerieiieeeeereneee.
5.2. Business models based on free softwareccccoeeviiiniiiiiniiiinnns
5.2.1. Better kKNnowledgecccccevvviiieiiiiiiiieiiiee e
5.2.2. Better knowledge with limitationsccccoeivieeernnnne
5.2.3. Source of a free software productccceccceeerreineeennn.
5.2.4. Product source with limitationscccccceeviiiininiinnnnn.
5.2.5. Special liCENCES ...ccovoueriiiiiriiiieiiiieeeeeeeee e
5.2.6. Brand salecccociiiniiiiiiiiii,
5.3. Other business model classificationscccceeiviviiiiniiiinnnien.
5.3.1. Hecker classificationccccocvvvviiiiniiiiniiiiiniinnnnn.
5.4. Impact on monopoly situationscccceeveeeeeieinieeeniniinieeeenennnee
5.4.1. Elements that favour dominant products
5.4.2. The world of proprietary softwareccccccccceeeereenueeennn.
5.4.3. The situation with free softwarecccceviiinniinne
5.4.4. Strategies for becoming a monopoly with free

SOEEWATE ..ooiiiiiiiiiiiiiiiii
6. Free software and public administrations
6.1. Impact on the public administrationscc.ccccovviiiniiiiniinnnn,
6.1.1. Advantages and positive implicationscccceceeennen.
6.1.2. Difficulties of adoption and other problems

6.2. Actions of the public administrations in the world of free

software

47
50
54
54
56

57
57
57
58
59
61
62
63
65

66
66
66
68
69
69
70
71
73
74
75
76
77
78
79
79
79
80
81
82
82

83

85

85

86

89

91

© FUOC ¢ P07/M2101/02709

Free Software

6.2.1. How to satisfy the needs of the public

administrations?ccccccevvviiiniiiiinii, 91

6.2.2. Promotion of the information societyccccceeueeennn. 93

6.2.3. Research promotioncc.ccccccemeiiieeiiiiiieieeeniiieeeeeene 94

6.3. Examples of legislative initiativescccccccceeiriiieeeinniiiiiennennee 95
6.3.1. Draft [aws in Francec.cccccccereeiieeeiniineceennniieeeenne 95

6.3.2. Draft [aw of Brazilccccoeeiiiiiiiiiiiiiiiiiceceeeee 96

6.3.3. Draft laws in Peruccccceevviiiiiiiiiniiiiniiiciicceeeee, 97

6.3.4. Draft [aws in SPaincccceeriiiieiiiiiiieeeee e, 98

7. Free software engineeringcc.ccccccccceniiiiiiiiiiiiieniniiecceneee 100
7.1, INtroducCtioncccovviiiiiiiiiiiiiiicce e 100
7.2. The cathedral and the bazaarccccecovcieiiiiiieiiiiiiieeeeeeeen, 100
7.3. Leadership and decision-making in the bazaarc............. 102
7.4. Free SOftWare PrOCESSEScceeeerervrueeeerriniireeeeeiiieeeeeeeaieeeeeseseneees 104
7.5. Criticism of "The cathedral and the bazaar"cccccevennneen. 105
7.6. Quantitative StUAIScceuueeeiiiiiiieeiiiiiiee e 106
7.7. Future WOIKccccccoviiiiiiiiiiiiiiiiiiciiic e 109
7.8, SUIMNIMATY ..ouiiiiiiiiiiiiiiiiiiiiiiirrrrtre et re e e e e e e 110
8. Development environments and technologies.......................... 111
8.1. Description of environments, tools and systemsccce...... 111
8.2. Associated languages and tOOIlSccccoeevvieeiiriiiiieriiieeeeeeeeee 112
8.3. Integrated development environmentsccccccceerreeieeeenncnnneen. 113
8.4. Basic collaboration mechanismsccccoeevveeeiiniiiieiiniiiieeeneee 113
8.5. Source managementccccccceiiiiiiiiiiiiiii e 115
8.5. 1. CVS i 116

8.5.2. Other source management SyStemscccceeeeuveeerrnnnee 119

8.6. Documentationccceiiiiiiiiiiiiiiiii 120
8.6.1. DOCBOOKoorvuviiiiiiiiiiiiiiiiiiinicc 122

8.0.2. WIKIS..cioviiiiiiiiiiiiiiiiciiicitc e 122

8.7. Bug management and other iSSUeSccccceeiiiiiieeieiiiiieeennnnne 123
8.8. Support for other architecturescccccceeveeieeieiiiiiiieniniieeeee. 125
8.9. Development SUPPOIT SIteScccevcuireiiiiiiiiiiiiiiieee e 125
8.9.1. SOUICEFOIZEoovvmiriiiiiiiiiiiiiiiiiiiiec e 126

8.9.2. SourceForge heirsccccoveiiiieiiiiiieeiiiiiiieeeeeeeeee 127

8.9.3. Other sites and Programscccceeeevveeeeeereineeeereesnnneeee. 128

9. Case studies............ccoccoiiiiiiiiiiii 129
9.1, LINUX cetiiiiiiiiiiiiiiiiiiiriiiticrcete et ce e e 130
9.1.1. A history of LinuXcccceeviiiniiiiiiiiiinniiiiiiiinees 131

9.1.2. Linux's way of WOIKingccceccviviiiiniiiinniiinnncninnn, 132

9.1.3. Linux's current Statuscccccceeeeereeeeeeeeeeerennnniiiieeeeeeeees 133

9.2, FIEEBSD .ottt s 135
9.2.1. History of FreeBSDcccocviiiniiiiniiiiiniiiiniiiiiccn, 135

9.2.2. Development in FreeBSDcccccoiiviiiiniiiiniiiiinnnnn, 136

9.2.3. Decision-making process in FreeBSDccccccennee. 136

© FUOC ¢ P07/M2101/02709

Free Software

10.

9.2.4. Companies working around FreeBSDcccceeneee. 137
9.2.5. Current status of FreeBSDccccccccovviiiniiiininiiiinennne. 138
9.2.6. X-ray picture of FreeBSDcccccoccceiiiiiiieiiniiiieeneen, 138
9.2.7. Academic studies on FreeBDSccccccvviiiiriiiininnnen. 140
9.3, KDE i e 140
9.3.1. History of KDEcccooiiiiiiiiiiiiieeeeeeeeee e 141
9.3.2. Development of KDEcccceiiiiiiiiiiiiiiiiieeeniieeeeee 142
9.3.3. The KDE Leagueccccceeeoiiiiiiiiiiiieiinieeeeeeeeeeee e 142
9.3.4. Current status of KDEcccccccovviiiiniiiniiiinicieecee, 144
9.3.5. X-ray picture of KDEccccceiriiiiiiiiiiiieiieeeeeeee, 145
9.4, GNOME ...ciiiiiiiiiiiiiiic e 147
9.4.1. History of GNOMEccccoiiiiiiiiiiiieiieeeee e, 147
9.4.2. The GNOME Foundationcccccecevereiriiieceeirinnceenn. 148
9.4.3. The industry working around GNOME 150
9.4.4. GNOME's current statusccceccevvviiviniiiiniicininennnnen. 151
9.4.5. X-ray picture of GNOMEcccccoriimiiiiiiiiiiienicieeeen, 152
9.4.6. Academic studies on GNOMEc.cccoecviiiniiiinnninnnn. 154
9.5, APACRE e 154
9.5.1. History of Apachecccooeeviiiiiiiiiiieiiieeeeeeeeeee 154
9.5.2. Development of Apachec.ccccceeviiiieiiiiiiieeeiiiieeenn. 155
9.5.3. X-ray picture of Apachecccoovvoiiiiiiiiiieeiiiiiiieeenne 156
9.6, MOZIlla ...ooiiiiiiiiiiiii 157
9.6.1. History of Mozillacceevvieiiieiiniiiiieiiieceeeeeeeeee 158
9.6.2. X-ray picture of Mozillaccccceevviiiieiiiniiiiiiiieeeene 161
9.7, OPENOSLICE.OTG ..evviriiiiiiieiiiiiteet ettt e 162
9.7.1. History of OpenOffiCe.Orgccccevvvvuiieerieiiiieeieeeeenn. 162
9.7.2. Organisation of OpenOffice.orgccccevvvuvireriecneeennn. 163
9.7.3. X-ray picture of OpenOffice.orgccccevvueererriineeennn. 163
9.8, Red Hat LINUX ...ccccovviiiiiiiiiiiiiiiiicicec e, 165
9.8.1. History of Red Hatc.cccevrviiiiiiiiiiiiiiiiiieeceeeee 165
9.8.2. Current status of Red Hat.c.ccooeviiiiiiinniiiiniiiinnn. 166
9.8.3. X-ray of Red Hatccccovvriiiiiiiiiiiiiiiiceieeeceeee 167
9.9. Debian GNU/LINUX ...ccoovviiiniiiiiiiiiiiiiiiiiceiecciees e 169
9.9.1. X-ray picture of Debiancccooeeviiiiiiiiiiiiiiiiiiieeennnn, 170
9.9.2. Comparison with other operating systems 172
9.10. ECHPSE .eeveeeiiiniiieiieiitee ettt 174
9.10.1. History of EClIPSE ..ccovvrvuuiiiiiiiiiiiiiiiiieeeenieeee e 174
9.10.2. Current state of EClipSeccoceeeiiiiiiiiiiiiiiieeiiiiieeen. 175
9.10.3. X-1ay Of EClIPSE ..oeveviriiiiiiiiiiiiieiieteeceeeeee e 176
Other free reSOUNCES.............ccoviiiiiiiiiiiiiieiitee et e e 178
10.1. The most important free reSOUICescccocceviviuiiiviiiininieinnienns 178
10.1.1. Scientific Papersccoviviiiiiiiiiiiniiiii e, 178
10.1.2. Laws and standards.cccoceeveeireiiieeeeeeeneienneniieeees 179
10.1.3. Encyclopaediasccooviiiiiiiiiniiiiiniiiiniiinec e, 181
10.1.4. COUISES .eerrrtirninuiiieieeeeeeeeeeeeettttereea i eeeeeeeseeeeeeereereneennes 182

10.1.5. Collections and databasesccceecevvvrirviiirreerinieeennnnes 183

© FUOC » P07/M2101/02709 Free Software

10.1.6. HardwWarecceeeeeeieeeeiiiiiieeee e eeireee e seeee e e 183
10.1.7. Literature and artcccceceeeeveeeeeriiieeeeeenieeeeeseeeeeeeenns 184
10.2. Licenses for other free reSOUICescccoveevueeeirriieeeerieiiieeeenenne 184
10.2.1. GNU free documentation licensecccceereveveerrenunnee 185
10.2.2. Creative Commons liCeNSsesccccecveeeerrernueeeeranrueeeennn. 186

BIiDHHOZIrapIY.....ccoooiiiiiiiiiiie et 191

© FUOC ¢ P07/M2101/02709 9

Free Software

1. Introduction

"If you have an apple and I have an apple and we exchange apples, then you and I will
still each have one apple. But if you have an idea and I have an idea and we exchange
these ideas, then each of us will have two ideas."

Attributed to Bernard Shaw

What is free software? What is it and what are the implications of a free pro-
gram licence? How is free software developed? How are free software projects
financed and what are the business models associated to them that we are ex-
periencing? What motivates developers, especially volunteers, to become in-
volved in free software projects? What are these developers like? How are their
projects coordinated, and what is the software that they produce like? In short,
what is the overall panorama of free software? These are the sort of questions
that we will try to answer in this document. Because although free software is
increasing its presence in the media and in debates between IT professionals,
and although even citizens in general are starting to talk about it, it is still for
the most part an unknown quantity. And even those who are familiar with it
are often aware of just some of its features, and mostly ignorant about others.

To begin with, in this chapter we will present the specific aspects of free soft-
ware, focusing mainly on explaining its background for those approaching
the subject for the first time, and underlining its importance. As part of this
background, we will reflect on the definition of the term (to know what we
are talking about) and on the main consequences of using (and the mere ex-
istence of) free software.

1.1. The concept of software freedom

Since the early seventies we have become used to the fact that anyone com-
mercialising a program can impose (and does impose) the conditions under
which the program can be used. Lending to a third party may be prohibited
for example. Despite the fact that software is the most flexible and adaptable
item of technology that we have, it is possible to impose the prohibition (and
it frequently is imposed) to adapt it to particular needs, or to correct its errors,
without the explicit agreement of the manufacturer, who normally reserves
the exclusive right to these possibilities. But this is just one of the possibilities
that current legislation offers: free software, on the other hand, offers freedoms
that proprietary software denies.

Proprietary Software

In this text we will use the
term proprietary software to re-
fer to any program that cannot
be considered free software in
accordance with the definition
we provide later.

© FUOC ¢ P07/M2101/02709 10

Free Software

1.1.1. Definition

So, the term free software, as conceived by Richard Stallman in his definition
(Free Software Foundation, "Free software definition" http://www.gnu.org/
philosophy/free-sw.html [120]), refers to the freedoms granted to its receiver,
which are namely four:

1) Freedom to run the program in any place, for any purpose and forever.

2) Freedom to study how it works and to adapt it to our needs. This requires
access to the source code.

3) Freedom to redistribute copies, so that we can help our friends and neigh-
bours.

4) Freedom to improve the program and to release improvements to the pub-
lic. This also requires the source code.

The mechanism that guarantees these freedoms, in accordance with current
legislation, is distribution under a specific licence as we will see later on (chap-
ter 3). Through the licence, the author gives permission for the receiver of the
program to exercise these freedoms, adding also any restrictions that the au-
thor may wish to apply (such as to credit the original authors in the case of a
redistribution). In order for the licence to be considered free, these restrictions

must not counteract the abovementioned freedoms.

The ambiguity of the term free

The English term free software includes the word free, standing for 'freedom’, but the term
can mean also 'free of charge' or 'gratis', which causes a great deal of confusion. Which is
why in some cases the English borrow Spanish/French words and refer to libre software,
as opposed to gratis software.

Therefore, the definitions of free software make no reference to the fact that
it may be obtained free of charge: free software and gratis software are two
very different things. However, having said this, we should also explain that
due to the third freedom, anyone can redistribute a program without asking
for a financial reward or permission, which makes it practically impossible to
obtain big profits just by distributing free software: anyone who has obtained

free software may redistribute it in turn at a lower price, or even for free.

Note

Despite the fact that anyone can commercialise a given program at any price, and that
this theoretically means that the redistribution price tends towards the marginal cost of
copying the program, there are business models based precisely on selling free software,
because there are many circumstances in which the consumer will be prepared to pay in
exchange for certain other benefits, such as for example a guarantee, albeit a subjective
one, for the software acquired or an added value in the choice, updating and organisation
of a set of programs.

© FUOC ¢ P07/M2101/02709 11

Free Software

From a practical point of view, several texts define more precisely what con-
ditions a licence must fulfil in order to be considered a free software licence.
Among these, we would highlight for their historical importance, the free soft-
ware definition of the Free Software Foundation (http://www.gnu.org/philos-
ophy/free-sw.html) [120], the Debian guidelines for deciding whether a pro-
gram is free (http://www.debian.org/social_contract.html#guidelines) [104]
and the definition of the term open source by the Open Source Initiative (http://
www.opensource.org/docs/definition_plain.html) [215], which is very similar
to the preceding ones.

Note

For example, the Debian guidelines go into the detail of allowing the author to demand
that distributed source codes not be modified directly, but rather that the original is
accompanied by separate patches and that binary programs be generated with different
names to the original. They also demand that the licences do not contaminate other
programs distributed by the same means.

1.1.2. Related terms

The term open source software, promoted by Eric Raymond and the Open
Source Initiative is equivalent to the term free software . Philosophically speak-
ing, the term is very different since it emphasises the availability of the
source code and not its freedom, but the definition is practically the same
as Debian's ("The open source definition", 1998 http://www.opensource.org/
docs/definition_plain.html) [183]. This name is politically more aseptic and
emphasises the technical side, which can provide technical benefits, such as
improved development and business models, better security, etc. Strongly crit-
icised by Richard Stallman ("Why free software is better than open source") [204]
and the Free Software Foundation (http://www.fsf.org) [27], it has resonated
far better with the commercial literature and with the company strategies that

one way or another support the model.

Other terms associated in some way to free software are as follows:

Freeware These are gratis programs. They are normally only dis-
tributed in binary format, and can be obtained free of
charge. Sometimes it is possible to obtain permission to
redistribute, and sometimes not, meaning that then it
can only be obtained from the "official" site maintained
for that purpose. It is frequently used to promote oth-

er programs (normally with more complete functionali-
ty) or services. Examples of this type of programs include
Skype, Google Earth or Microsoft Messenger.

Shareware This is not even gratis software, but rather a distribution
method since usually the programs can be copied freely,
generally without source code, but not used continuously
without paying for them. The requirement to pay may be
motivated by a limited functionality, being sent annoying
messages or the mere appeal to the user's ethic. Also, the
licence's legal terms may be used against the transgres-
sor.

© FUOC ¢ P07/M2101/02709 12

Free Software

Charityware, careware This is normally shareware that requires payment to be
directed towards a sponsored charitable organisation. In
many cases, instead of demanding payment, a voluntary
contribution may be requested. Some free software, such
as Vim, asks for voluntary contributions of this nature
(Brian Molenaar, "What is the context of charityware?")
[173].

Public domain Here, the author totally renounces all his rights in favour
of the public domain, and this needs to be explicitly stat-
ed in the program since otherwise, the program will be
deemed proprietary and nothing can be done with it. In
this case, if additionally the source code is provided, the
program is free.

Copyleft This is a particular case of free software where the licence
requires any distributed modifications to also be free.

Proprietary, locked-in, non-free | These are terms used to refer to software that is neither
free nor open source.

1.2. Motivations

As we have seen, there are two large families of motivations for free software
development, which likewise give rise to the two names by which it is known:

e The ethical motivation, championed by the Free Software Foundation
(http://www.fsf.org) [27], which has inherited the hacker culture and sup-
ports the use of the term free, arguing that software is knowledge that
should be shared unimpeded, that hiding it is antisocial and additionally
claims that the ability to modify programs is a form of freedom of expres-
sion. You can study this in more depth by reading (Free software, free society.
Selected essays of Richard M. Stallman) [211] or the analysis of Pekka Hima-
nen (The hacker ethic and the spirit of the information age. Random House,
2001) [144].

e The pragmatic motivation, championed by the Open Source Initiative
(http://www.opensource.org) [54] which supports the use of the term open
source, and argues the case of the technical and financial advantages that
we will discuss in the next section.

Aside from these two main motivations, people working on free software can
do so for many other reasons, including for fun (Linus Torvalds and David
Diamond, Texere, 2001) [217] or for money, potentially with sustainable busi-
ness models. Chapter 4 studies these motivations in detail on the basis of ob-

jective analyses.

1.3. The consequences of the freedom of software

Free software offers many advantages and, of the few disadvantages, many
have been exaggerated (or invented) by proprietary competitors. The most
well-founded disadvantage is the financial one, since as we have seen it is
not possible to make much money from its distribution, which can and tends

© FUOC ¢ P07/M2101/02709 13

Free Software

to be made by someone other than the author. This is why other business
models and financing mechanisms are needed, which we look into in chapter
5. Other disadvantages, such as the lack of support or poor quality, are related
to financing but also in many cases are false, since even software with no form
of financing tends to offer good support levels thanks to user and developer
forums, and often the quality is very high.

Bearing in mind the financial considerations, we should note that the free
software cost model is very different to the proprietary software cost model,
since a large amount of it develops outside of the formal monetary economy,
and frequently using exchange/barter mechanisms: "I give you a program that
you are interested in, and you adapt it to your architecture and make the im-
provements that you need." Chapter 7 discusses the right software engineering
mechanisms to make the most of these unpaid for human resources with their
own particular features, while chapter 8 studies the tools used to make this
collaboration effective. Also, a large share of the costs is reduced by the fact
that it is free, since new programs do not need to start from scratch, because
they can reuse already made software. The distribution also has a much lower
cost, since it is distributed via the Internet and with free advertising through
public forums designed for this purpose.

Another outcome of the freedoms is the quality resulting from the voluntary
collaboration of people who contribute or discover and notify bugs in envi-
ronments or situations that are unimaginable for the original developer. Plus,
if a program does not offer sufficient quality, the competition may take it and
improve on it on the basis of what there is. This is how collaboration and compe-
tition, two powerful mechanisms, combine in order to produce better quality.

Now let's examine the beneficial consequences for the receiver.

1.3.1. For the end user

The end user, whether an individual or a company, can find real competition
in a market with a monopoly trend. To be precise, it does not necessarily de-
pend on the software manufacturer's support, since there may be several com-
panies, even small ones with the source code and the knowledge that allows
them to do business while keeping certain programs free.

Trying to find out the quality of a product no longer relies so much on the
manufacturer's frustworthiness as on the guide given by the community's ac-
ceptance and the availability of the source code. Also, we can forget the black
boxes, that must be trusted "because we say so", and the strategies of manu-
facturers that can unilaterally decide whether to abandon or maintain a par-

ticular product.

© FUOC ¢ P07/M2101/02709 14

Free Software

Evaluating products before they are adopted has been made much easier now,
since all we have to do is to install the alternative products in our real envi-
ronment and test them, whereas for proprietary software we must rely on ex-

ternal reports or negotiate tests with suppliers, which are not always possible.

Because of the freedom to modify the program for own use, users are able to
customise it or adapt it to own requirements correcting any errors if there are
any. The process of debugging errors found by proprietary software users is
normally extremely laborious, if not impossible, since if we manage to get the
errors debugged, the correction will often be incorporated in the following
version, which may take years to be released, and which moreover we will have
to buy again. With free software, on the other hand, we can make corrections
or fixes ourselves, if we are qualified, or otherwise outsource the service. We
can also, directly or by contracting external services, integrate the program
with another one or audit its quality (for example in terms of security). To a
great extent, control is passed on from the supplier to the user.

1.3.2. For the public administration

The public administration is a large user of special characteristics, as it has a
special obligation towards its citizens, whether to provide accessible services,
neutral in relation to manufacturers, or to guarantee the integrity, utility, pri-
vacy and security of their data in the long term. All of the above makes it
obligatory for the public administration to be more respectful towards stan-
dards than private companies and to maintain data in open formats and to
process data with software that is independent of usually foreign companies'
strategies, certified as secure by an internal audit. Adaptation to standards is a
notable feature of free software that proprietary software does not respect to
the same extent, because it is generally eager to create captive markets.

Also, the Administration serves as a sort of showcase and guide for industry,
meaning that it has a great impact, which ought to be directed at weaving a
technological fabric that generates national wealth. This wealth may be creat-
ed by promoting the development of companies dedicated to developing new
free software for the Administration, or maintaining, adapting or auditing ex-

isting software. In chapter 6, we will look at this issue in more depth.

1.3.3. For the developer

For the software developer and producer, freedom significantly changes the
rules of the game. It makes it easier to continue to compete while being small
and to acquire cutting edge technology. It allows us to take advantage of oth-
ers' work, competing even with another product by modifying its own code,
although the copied competitor can then also take advantage of our code (if
it is copyleft). If the project is well-managed, it is possible to obtain the free

collaboration of a large number of people and, also, to obtain access to a vir-

© FUOC ¢ P07/M2101/02709 15

Free Software

tually free and global distribution system. Nonetheless, the issue of how to
obtain financial resources remains, if the software is not the product of a paid-
for commission. Chapter 5 deals with this aspect.

1.3.4. For the integrator

For integrators, free software is paradise. It means that there are no longer
black boxes that need to be fitted together, often using reverse engineering.
Rough edges can be smoothed out and parts of programs can be integrated in
order to obtain the required integrated product, because there is a huge shared
pool of free software from which the parts can be extracted.

1.3.5. For service and maintenance providers

Having the source code changes everything and puts us in the same position
as the producer. If the position is not the same, it is because we are lacking an
in-depth knowledge of the program that only the developer has, which means
that it is advisable for maintenance providers to participate in the projects
that they are required to maintain. The added value of services is much more
appreciated because the cost of the program is low. It is currently the clearest
business with free software and the one where the most competition is pos-
sible.

1.4. Summary

This first chapter has served as a preliminary encounter with the world of free
software. The concept defined by Richard Stallman is based on four freedoms
(freedom to execute, freedom to study, freedom to redistribute and freedom
to improve), two of which require access to the source code. This accessibility
and its advantages have motivated another less ethical and more pragmatic
point of view, defended by the Open Source Initiative, which has given rise to
another term: open source software . We have also mentioned other related sim-
ilar or opposite terms, which serve to clarify various concepts. Finally, we have
discussed the consequences of free software for the main parties involved.

© FUOC ¢ P07/M2101/02709 16

Free Software

2. A bit of history

"When [started working at the MIT Artificial Intelligence Lab in 1971, I became part
of a software-sharing community that had existed for many years. Sharing of software
was not limited to our particular community; it is as old as computers, just as sharing of
recipes is as old as cooking. But we did it more than most. [...] We did not call our software
free software, because that term did not yet exist; but that is what it was. Whenever people
from another university or a company wanted to port and use a program, we gladly
let them. If you saw someone using an unfamiliar and interesting program, you could
always ask to see the source code, so that you could read it, change it, or cannibalize
parts of it to make a new program."

Richard Stallman, "The GNU Project" (originally published in the book Open sources) [208]

Although all the histories associated to IT are necessarily brief, free software's
is one of the longest. In fact, we could say that in the beginning almost all
developed software fulfilled the definition of free software , even though the
concept didn't even exist yet. Later the situation changed completely, and
proprietary software dominated the scene, almost exclusively, for a fairly long
time. It was during that period that the foundations were laid for free software
as we know it today, and when bit by bit free programs started to appear. Over
time, these beginnings grew into a trend that has progressed and matured
to the present day, when free software is a possibility worth considering in
virtually all spheres.

This history is largely unknown, to such an extent that for many IT profes-
sionals proprietary software is software "in its natural state". However, the sit-
uation is rather the opposite and the seeds of change that could first be dis-

cerned in the first decade of the 21* century had already been sown in the
early 1980s.

Bibliography

There are not many detailed histories of free software, and the ones that there are, are
usually papers limited to their main subject. In any case, interested readers can extend
their knowledge of what we have described in this chapter by reading "Open Source Ini-
tiative. History of the OSI" [146] (http://www.opensource.org/docs/history.php), which
emphasises the impact of free software on the business community in the years 1998
and 1999; "A brief history of free/open source software movement" [190], by Chris Rasch,
which covers the history of free software up until the year 2000, or "The origins and fu-
ture of open source software" (1999) [177], by Nathan Newman, which focuses to a large
extent on the US Government's indirect promotion of free software or similar systems
during the decades of the 1970s and the 1980s.

2.1. Free software before free software

Free software as a concept did not appear until the beginning of the 1980s.
However, its history can be traced back to several years earlier.

© FUOC ¢ P07/M2101/02709 17

Free Software

2.1.1. And in the beginning it was free

During the seventies, the IT panorama was dominated by large computers,
mainly installed in companies and governmental institutions. IBM was the
leading manufacturer, way ahead of its competition. During this period, when
buying a computer (the hardware), the software came added. As long as the
maintenance contract was paid for, access was given to the manufacturer's
software catalogue. Plus, the idea of programs being something "separate" from

a commercial point of view was uncommon.

In this period, software was normally distributed together with its source code
(in many cases just as source code), and in general, with no practical restric-
tions. User groups such as SHARE (users of IBM systems) or DECUS (DEC users)
participated in these exchanges, and to a certain extent, organised them. The
"Algorithms" section of the magazine Communications of the ACM was another
good example of an exchange forum. We could say that during these early
years of IT, software was free, at least in the sense that those who had access
to it could normally have access to the source code, and were used to sharing
it, moditying it and also sharing these modifications.

On 30thjune 1969, IBM announced that as of 1970, it would sell part of its soft-
ware separately (Burton Grad, 2002) [131]. This meant that its clients could no
longer obtain the programs they needed included in the price of the hardware.
Software started to be perceived as something with an intrinsic value, and
consequently, it became more and more common to scrupulously restrict ac-
cess to the programs and the possibility of users sharing, modifying or study-
ing the software was limited as much as possible (technically and legally). In
other words, the situation changed to the one that continues to be case in the

world of software at the beginning of the 21°' century.

Bibliography

Readers interested in learning about this transition period, can read, for example "How
the ICP Directory began" [226] (1998), in which Larry Welke discusses how one of the
first software catalogues not associated to a manufacturer was born, and how during this
process it was discovered that companies would be prepared to pay for programs not
made by their computer manufacturers.

In the mid-1970s it was already totally common, in the field of IT, to find
proprietary software. This meant an enormous cultural change among profes-
sionals who worked with software and was the beginning of a flourishing of
a large number of companies dedicated to this new business. It would still be
almost a decade before what we now know as free software started to appear in
an organised manner and as a reaction to this situation.

© FUOC ¢ P07/M2101/02709 18

Free Software

2.1.2. The 70s and early 80s

Even when the overwhelming trend was to explore the proprietary software
model, there were initiatives that showed some of the characteristics of what
would later be considered free software. In fact, some of them produced free
software as we would define it today. Of these, we would mention SPICE, TeX

and Unix, which is a much more complex case.

SPICE (Simulation Program with Integrated Circuit Emphasis) is a program
developed by the University of California, in Berkeley, in order to simulate the
electrical characteristics of an integrated circuit. It was developed and placed
in the public domain by its author, Donald O. Pederson, en 1973. SPICE was
originally a teaching tool, and as such rapidly spread to universities world-
wide. There it was used by many students of what was then an emerging dis-
cipline: integrated circuits design. Because it was in the public domain, SPICE
could be redistributed, modified, studied. It could even be adapted to specific
requirements, and that version could be sold as a proprietary product (which
is what a large number of companies have done dozens of times throughout
their history). With these characteristics, SPICE had all the cards to become
the industry standard, with its different versions. And indeed, that is what
happened. This was probably the first program with free software characteris-
tics that for a certain period captured a market, the one of integrated circuits
simulators, and that undoubtedly was able to do so precisely thanks to these
characteristics (in addition to its undeniable technical qualities).

Bibliography

More information on the history of SPICE can be consulted in "The life of SPICE", pre-
sented during the Bipolar Circuits and Technology Meeting, Minneapolis, MN, USA, in
September 1996 [175].

You can find the SPICE web page at http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

Donald Knuth started to develop TeX during a sabbatical year, in 1978. TeX is
an electronic typography system commonly used for producing high-quality
documents. From the start, Knuth used a licence that today would be consid-
ered a free software licence. When the system was considered sufficiently sta-
ble, in 1985, he maintained that licence. At that time, TeX was on the largest
and most well-known systems that could be considered free software.

Bibliography

You can find some of the milestones in the history of TeX by consulting online http://
www.math.utah.edu/software/plot79/tex/history.html [39]. For further details, the cor-
responding article in Wikipedia is also extremely useful, http://www.wikipedia.org/wi-
ki/TeX [233].

© FUOC ¢ P07/M2101/02709 19

Free Software

2.1.3. The early development of Unix

Unix, one of the first portable operating systems, was originally created by
Thompson and Ritchie (among others) from AT&T's Bell Labs. It has contin-
ued to develop since its birth around 1972, giving rise to endless variants sold
(literally) by tens of companies.

In the years 1973 and 1974, Unix arrived at many universities and research
centres worldwide, with a licence that permitted its use for academic purpos-
es. Although there were certain restrictions that prevented its free distribu-
tion, among the organisations that did possess a licence the functioning was
very similar to what would later be seen in many free software communities.
Those who had access to the Unix source code were dealing with a system
that they could study, improve on and extend. A community of developers
emerged around it, which soon gravitated towards the CSRG of the University
of California, in Berkeley. This community developed its own culture, which
as we will see later, was very important in the history of free software. Unix
was, to a certain extent, an early trial for what we would see with GNU and
Linux several years later. It was confined to a much smaller community, and
the AT&T licence was necessary, but in all other aspects, its development was

very similar (in a far less communicated world).

Development methods inherent to free software

In Netizens. On the history and impact of Usenet and the Internet (IEEE Computer Society
Press, 1997 [139], page 139) we can read a few lines that could refer to many free soft-
ware projects: "Contributing to the value of Unix during its early development, was the
fact that the source code was open and available. It could be examined, improved and
customised".

Page 142 of the same work states the following: "Pioneers like Henry Spencer agree on
how important it was to those in the Unix community to have the source code. He
notes how having the sources made it possible to identify and fix the bugs that they
discovered. [...] Even in the late 1970s and early 1980s, practically every Unix site had
complete sources".

The text of Marc Rochkind "Interview with Dick Haight" is even more explicit (Unix
Review, May 1986) [198]: "that was one of the great things about Unix in the early days:
people actually shared each other's stuff. [...] Not only did we learn a lot in the old days
from sharing material, but we also never had to worry about how things really worked
because we always could go read the source."

Over time, Unix also became an early example of the problems that could arise
from proprietary systems that at first sight "had some free software feature".
Towards the end of the 1970s and especially during the decade of the 1980s,
AT&T changed its policy and access to new versions of Unix became difficult
and expensive. The philosophy of the early years that had made Unix so pop-
ular among developers, changed radically to such an extent that in 1991 AT&T
even tried to sue the University of Berkeley for publishing the Unix BSD code
that Berkeley's CSRG had created. But this is another story that we will pick
up on later.

© FUOC ¢ P07/M2101/02709 20

Free Software

2.2. The beginning: BSD, GNU

All of the cases discussed in the previous section were either individual initia-
tives or did not strictly comply with the requirements of free software. It was
not until the beginning of the 1980s that the first organised and conscious
projects to create systems comprising free software appeared. During that pe-
riod, the ethical, legal and even financial grounds of these projects started to
be established (probably more importantly), with them being developed and
completed right up to the present day. And since the new phenomenon need-
ed a name, this was when the term free software was first minted.

2.2.1. Richard Stallman, GNU, FSF: the free software movement

is born

At the beginning of 1984, Richard Stallman, who at the time was employed
by the MIT Al Lab, quited his job to started working on the GNU project.
Stallman considered himself to be a hacker of the kind that enjoys sharing his
technological interests and his code. He didn't like the way that his refusal to
sign exclusivity or non-sharing agreements made him an outcast in his own
world, and how the use of proprietary software in his environment left him
impotent in the face of situations that could easily be resolved before.

His idea when he left the MIT was to build a complete software system, for
general use, but totally free ("The GNU Project", DiBona et al.) [208]. The sys-
tem (and the project that would be responsible for making it come true) was
called GNU ("GNU's not Unix", recursive acronym). Although from the begin-
ning the GNU project included software in its system that was already avail-
able (like TeX or, later, the X Window system), there was still a lot to be built.
Richard Stallman started by writing a C compiler (GCC) and an editor (Emacs),
both of which are still in use today (and very popular).

From the start of the GNU project, Richard Stallman was concerned about the
freedoms that the users of the software would have. He wanted not only those
who received programs directly from the GNU project to continue to enjoy
the same rights (modification, redistribution, etc.) but also those who received
it after any number of redistributions and (potentially) modifications. For this
reason he drafted the GPL licence, probably the first software licence designed
specifically in order to guarantee that a program would be free in this way.
Richard Stallman called the generic mechanism that these GPL type licences
use in order to achieve these guarantees, copyleft, which continues to be the
name of a large family of free software licences (Free Software Foundation,
GNU General Public Licence, version 2, June 1991) [118].

© FUOC ¢ P07/M2101/02709 21

Free Software

Richard Stallman also founded the Free Software Foundation (FSF) in order
to obtain funds, which he uses to develop and protect free software, and es-
tablished his ethical principles with the "The GNU Manifesto" (Free Software
Foundation, 1985) [117] and "Why software should not have owners" (Richard
Stallman, 1998) [207].

From a technical point of view, the GNU project was conceived as a highly
structured endeavor with very clear goals. The usual methodology was based
on relatively small groups of people (usually volunteers) developing one of
the tools that would then fit perfectly into the complete jigsaw (the GNU
system). The modularity of Unix, on which this project was inspired, fully
coincided with that idea. The method of working generally implied the use
of Internet, but because at that time it was not extensively implanted, the
Free Software Foundation would also sell tapes on which it would record the
applications, which means that it was probably one of the first organisations
to obtain financial compensation (albeit in a rather limited way) from creating

free software.

In the early 90s, about six years after the project was founded, GNU was very
close to having a complete system similar to Unix. However, at that point it
had not yet produced one of the key parts: the system's core (also known as
the kernel, the part of the operating system that relates with the hardware, ab-
stracts it, and allows applications to share resources, and essentially, to work).
However, GNU software was very popular among the users of several different
variants of Unix, at the time the most commonly used operating system in
businesses. Additionally, the GNU project had managed to become relatively
well known among IT professionals, and especially among those working at
universities. In that period, its products already had a well-deserved reputa-
tion for stability and good quality.

2.2.2. Berkeley's CSRG

Since 1973, the CSRG (Computer Science Research Group) of the University
of California at Berkeley had been one of the centres where most of the Unix-
related developments had been made, especially between 1979 and 1980. Not
only were applications ported and other new ones built to function on Unix,
but also important improvements were made to the kernel and a lot of func-
tionality had been added. For example, during the 80s, several DARPA con-
tracts (under the US Ministry of Defence) financed the implementation of
TCP/IP which until today has been considered the reference for the protocols
that make the Internet work (in the process, linking the development of the
Internet and the expansion of Unix workstations). Many companies used the
CSRG's developments as the bases for their Unix versions giving rise to well-
known systems at the time, such as SunOS (Sun Microsystems) or Ultrix (Dig-
ital Equipment). This is how Berkeley became one of the two fundamental
sources of Unix, together with the "official", AT&T.

© FUOC ¢ P07/M2101/02709 22

Free Software

In order to use all of the code that the CSRG produced (and the code of the
collaborators of the Unix community which to some extent they coordinated),
it was necessary to have AT&T's Unix licence, which was becoming increas-
ingly difficult (and expensive) to obtain, especially if access to the system's
source code was required. Partly in an attempt to overcome this problem, in
June 1989 the CSRG released the part of Unix associated to TCP/IP (the im-
plementation of the protocols in the kernel and the utilities), which did not
include AT&T code. It was called the Networking Release 1 (Net-1). The licence
with which it was released was the famous BSD licence, which except for
certain problems with its clauses on advertising obligations, has always been
considered an example of a minimalist free software licence (which in addi-
tion to allowing free redistribution, also allows incorporation into proprietary
products). In addition, the CSRG tested a novel financing model (which the
FSF was already trying out successfully): it sold tapes with its distribution for
USD 1,000 each. Despite the fact that anybody in turn could redistribute the
content of the tapes without any problem (because the licence allowed it),
the CSRG sold tapes to thousands of organisations thus obtaining funds with
which to continue developing.

Having witnessed the success of the Net-1 distribution, Keith Bostic proposed
to rewrite all of the code that still remained from the original AT&T Unix.
Despite the scepticism of some members of the CSRG, he made a public an-
nouncement asking for help to accomplish this task, and little by little the
utilities (rewritten on the basis of specifications) started coming in to Berkeley.
Meanwhile, the same process was done with the kernel, in such a way that
most of the code that had not been produced by Berkeley or volunteer collab-
orators was rewritten independently. In June 1991, after obtaining permission
from the University of Berkeley's governing body Networking Release 2 (Net-2)
was distributed, with almost all of the kernel's code and all of the utilities of
a complete Unix system. The set was once again distributed under the BSD
licence and thousands of tapes were sold at a cost of USD 1,000 per unit.

Just six months after the release of Net-2, Bill Jolitz wrote the code that
was missing for the kernel to function on the 1386 architecture, releasing
386BSD, which was distributed over the Internet. On the basis of that code
later emerged, in succession, all the systems of the *BSD family: first NetBSD
appeared, as a compilation of the patches that had been contributed over the
Net in order to improve 386BSD; later FreeBSD appeared, as an attempt to
focus on the support of the i386 architecture; several years later the OpenB-
SD project was formed, with an emphasis on security. And there was also a
proprietary version based on Net-2 (although it was certainly original, since it
offered its clients all the source code as part of the basic distribution), which
was done independently by the now extinct company BSDI (Berkeley Software
Design Inc.).

© FUOC ¢ P07/M2101/02709 23

Free Software

Partly as a reaction to the distribution produced by BSDI, Unix System Labora-
tories (USL), the AT&T subsidiary that held the Unix licence rights, tried to sue
first BSDI and then the University of California. The accusation was that the
company had distributed its intellectual property without permission. Follow-
ing various legal manoeuvres (which included a countersuit by the University
of California against USL), Novell bought the Unix rights from USL, and in
January 1994 reached an out-of-court settlement with the University of Cali-
fornia. As a result of this settlement, the CSRG distributed version 4.4BSD-Lite,
which was soon used by all the projects of the *BSD family. Shortly afterwards
(after releasing version 4.4BSD-Lite Release 2), the CSRG disappeared. At that
point, some feared that it would be the end of *BSD systems, but time has
shown that they are still alive and kicking under a new form of management
that is more typical of free software projects. Even in the first decade of the
year 2000 the projects managed by the *BSD family are among the oldest and
most consolidated in the world of free software.

Bibliography

The history of Unix BSD is illustrative of a peculiar way of developing software during
the seventies and eighties. Whoever is interested in it can enjoy reading "Twenty years of
Berkeley Unix" (Marshall Kirk McKusick, 1999) [170], which follows the evolution from
the tape that Bob Fabry took to Berkeley with the idea of making one of the first versions
of Thompson and Ritchie's code function on a PDP-11 (bought jointly by the faculties of
informatics, statistics and mathematics), through to the lawsuits filed by AT&T and the
latest releases of code that gave rise to the *BSD family of free operating systems.

2.2.3. The beginnings of the Internet

Almost since its creation in the decade of the 1970s, Internet has been closely
related to free software. On the one hand, since the beginning, the communi-
ty of developers that built the Internet had several clear principles that would
later become classics in the world of free software; for example, the impor-
tance of users being able to help fix bugs or share code. The importance of
BSD Unix in its development (by providing during the eighties the most pop-
ular implementation of the TCP/IP protocols) made it easy to transfer many
habits and ways of doing things from one community - the developers centred
around the CSRG - to another community - the developers who were build-
ing what at the time was NSFNet and would later become Internet - and vice
versa. Many of the basic applications for the Internet's development, such as
Sendmail (mail server) or BIND (implementation of the name service) were
free and, to a great extent, the outcome of collaboration between these two

communities.

Finally, towards the end of the 80s and in the decade of the 90s, the free soft-
ware community was one of the first to explore in depth the new possibilities
offered by the Internet for geographically disperse groups to collaborate. To a
large extent, this exploration made the mere existence of the BSD community
possible, the FSF or the development of GNU/Linux.

© FUOC ¢ P07/M2101/02709 24

Free Software

One of the most interesting aspects of the Internet's development, from the
free software point of view, was the completely open management of its docu-
ments and its rules. Although it may seem normal today (because it is custom-
ary, for example, in the IETF or the World Wide Web Consortium), at the time,
the free availability of all its specifications, and design documents including
the norms that define the protocols, was something revolutionary and funda-
mental for its development. In Netizens. On the history and impact of Usenet and
the Internet [139] (page 106) we can read:

"This open process encouraged and led to the exchange of information. Technical devel-
opment is only successful when information is allowed to flow freely and easily between
the parties involved. Encouraging participation is the main principle that made the de-
velopment of the Net possible."

We can see why this paragraph would almost certainly be supported by any

developer referring to the free software project in which he is involved.

In another quote, on "The evolution of packet switching" [195] (page 267) we

can read:

"Since ARPANET was a public project connecting many major universities and research
institutions, the implementation and performance details were widely published."

Obviously, this is what tends to happen with free software projects, where all
the information related to a project (and not only to its implementation) is
normally public.

In this atmosphere, and before the Internet, well into the nineties, became
an entire business, the community of users and its relationship with develop-
ers was crucial. During that period many organisations learned to trust not
a single supplier of data communication services, but rather a complex com-
bination of service companies, equipment manufacturers, professional devel-
opers, and volunteers, etc. The best implementations of many programs were
not those than came with the operating system purchased together with the
hardware, but rather free implementations that would quickly replace them.
The most innovative developments were not the outcome of large company
research plans but rather the product of students or professionals who tested
ideas and collected feedback sent to them by various users of their free pro-

grams.

As we have already mentioned, Internet also offered free software the basic
tools for long-distance collaboration. Electronic mail, news groups, anony-
mous FTP services (which were the first massive stores of free software) and,
later, the web-based integrated development systems have been fundamental
(and indispensable) for the development of the free software community as
we know it today, and in particular, for the functioning of the immense ma-

jority of free software projects. From the outset, projects such as GNU or BSD

Bibliography

Readers interested in the
evolution of the Internet,
written by several of its
key protagonists, can con-
sult "A brief history of the
Internet" (published by the
ACM, 1997) [166].

© FUOC ¢ P07/M2101/02709 25

Free Software

made massive and intensive use of all these mechanisms, developing, at the
same time as they used them, new tools and systems that in turn improved
the Internet.

2.2.4. Other projects

During the 1980s many other important free software projects saw the light
of day. We highlight for their importance and future relevance, X Window
(windowing system for Unix-type systems), developed at the MIT, one of the
first examples of large-scale funding for a free project financed by a business
consortium. It is also worth mentioning Ghostscript, a PostScript document
management system developed by a company called Aladdin Software, which
was one of the first cases of searching for a business model based on producing

free software.

Towards the end of the 1980s, there was already an entire constellation of
small (and not so small) free software projects underway. All of them, together
with the large projects we have mentioned up until now, established the bases
of the first complete free systems, which appeared in the beginning of the
1990s.

2.3. Everything in its way

Around 1990, most of the components of a complete system were ready as free
software. On the one hand, the GNU project and the BSD distributions had
completed most of the applications that make up an operating system. On
the other hand, projects such as X Window or GNU itself had built from win-
dowing environments to compilers, which were often among the best in their
class (for example, many administrators of SunOS or Ultrix systems would re-
place their system's proprietary applications for the free versions of GNU or
BSD for their users). In order to have a complete system built exclusively with
free software, just one component was missing: the kernel. Two separate and

independent efforts came to fill the gap: 386BSD and Linux.

2.3.1. The quest for a kernel

Towards the end of the 1980s and beginning of the 1990s, the GNU project
had a basic range of utilities and tools that made it possible to have a complete
operating system. Even at the time, many free applications, including the par-
ticularly interesting case of X Window, were the best in their field (Unix util-
ities, compilers...). However, to complete the jigsaw a vital piece was missing:
the operating system's kernel. The GNU project was looking for that missing
piece with a project known as Hurd, which intended to build a kernel using

modern technologies.

© FUOC ¢ P07/M2101/02709 26

Free Software

2.3.2. The *BSD family

Practically at the same time, the BSD community was also on the path towards
a free kernel. The Net-2 distribution was only missing six files in order to com-
plete it (the rest had already been built by the CSRG or its collaborators). In
the beginning of 1992, Bill Jolitz finished those files and distributed 386BSD,
a system that functioned on the 1386 architecture and that in time would give
rise to the projects NetBSD, FreeBSD and OpenBSD. Progress in the following
months was fast, and by the end of the year it was sufficiently stable to be
used in non-critical production environments, which included, for example,
a windows environment thanks to the XFree project (which had provided X
Window for the i386 architecture) or a great quality compiler, GCC. Although
there were components that used other licences (such as those from the GNU
projects, which used the GPL), most of the system was distributed under the
BSD licence.

Bibliography

Some episodes of this period illustrate the capability of the free software development
models. There is the well-known case of Linus Torvalds, who developed Linux while a
second-year student at the University of Helsinki. But this is not the only case of a student
who made his way thanks to his free developments. For example, the German Thomas
Roel ported X11R4 (a version of the X Window system) to a PC based on a 386. This
development took him to work at Dell, and later to become the founder of the X386 and
XFree projects, which were fundamental for quickly giving GNU/Linux and the *BSDs a
windows environment. You can read more about the history of XFree and Roel's role in
it in "The history of xFree86" (Linux Magazine, December 1991) [1335].

Then came the lawsuit from USL, which made many potential users fear pro-
ceedings against them in turn if the University of California were to lose the
court case or simply, for the project to come to a standstill. Perhaps this was
the reason why later, the installed base of GNU/Linux was much greater than
all the *BSDs combined. But we cannot know this for sure.

2.3.3. GNU/Linux comes onstage

In July 1991 Linus Torvalds (a Finnish 21-year old student) placed his first
message mentioning his project (at the time) to build a free system similar
to Minix. In September he released the very first version (0.01), and every
few weeks new versions would appear. In March 1994 version 1.0 appeared,
the first one to be called stable, though the kernel that Linus built had been
usable for several months. During this period, literally hundreds of developers
turned to Linux, integrating all the GNU software around it, as well as XFree
and many more free programs. Unlike the *BSDs, the Linux kernel and a large
number of the components integrated around it were distributed with the GPL

licence.

Bibliography

The story about Linux is probably one of the most interesting (and well-known) in the
world of free software. You can find many links to information on it from the pages mark-
ing the 10™ anniversary of its announcement, although probably one of the most inter-
esting ones is the "History of Linux", by Ragib Hasan [138]. As a curiosity, you can consult

© FUOC ¢ P07/M2101/02709 27

Free Software

the thread on which Linus Torvalds announced that he was starting to create what later
became Linux (in the newsgroup comp.os.minix) at http://groups.google.com/groups?
th=d161e94858c4c0b9. There he explains how he has been working on his kernel since
April and how he has already ported some GNU project tools onto it (specifically men-
tioning Bash and GCC).

Of the many developments to have emerged around Linux, one of the most

interesting is the distribution concept'. The first distributions appeared soon,
in 1992 (MCC Interim Linux, of the University of Manchester; TAMU, of Texas
A&M, and the most well-known, SLS, which later gave rise to Slackware, which
is still being distributed in the first decade of 2000), entailing the arrival of
competition into the world of systems packaged around Linux. Each distribu-
tion tries to offer a ready-to-use GNU/Linux, and starting from the basis of
the same software has to compete by making improvements considered im-
portant by their user base. In addition to providing pre-compiled ready-to-use
packages, the distributions also tend to offer their own tools for managing the
selection, installation, replacement and uninstallation of these packages, in
addition to the initial installation on the computer, and the management and
administration of the operating system.

Over time, distributions have succeeded each other as different ones became
the most popular. Of them all, we would highlight the following:

1) Debian, developed by a community of volunteer users.

2) Red Hat Linux, which was first developed internally by the company Red
Hat, but which later adopted a more community-based model, giving rise
to Fedora Core.

3) Suse, which gave rise to OpenSUSE, following a similar evolution to Red
Hat.

4) Mandriva (successor of Mandrake Linux and Conectiva).

5) Ubuntu, derived from Debian and produced on the basis of Debian by the

company Canonical.

2.4. A time of maturation

Midway through the first decade of 2000, GNU/Linux, OpenOffice.org or Fire-
fox were present in the media quite often. The overwhelming majority of com-
panies use free software for at least some of their IT processes. It is difficult to
be an IT student and not to use large amounts of free software. Free software is
no longer a footnote in the history of IT and has become something very im-
portant for the sector. IT companies, companies in the secondary sector (those
that use software intensively, even though their primary activity is different)

Mrhis concept is explained in de-
tail in the corresponding entry in
Wikipedia, www.wikipedia.org/wi-
ki/Linux_distribution

© FUOC ¢ P07/M2101/02709 28

Free Software

and public administrations are starting to consider it as something strategic.
And slowly but surely it is arriving among domestic users. In broad terms, we

are entering a period of maturation.

And at the bottom of it all, an important question starts to arise, which sum-
marises in a way what is happening: "are we facing a new model of software
industry?". Perhaps, it may yet happen that free software becomes no more
than a passing trend to be remembered nostalgically one day. But it may also
be (and this seems increasingly likely) a new model that is here to stay, and
perhaps to change radically one of the youngest but also most influential in-
dustries of our time.

2.4.1. End of the nineties

In the mid-1990s, free software already offered complete environments (dis-
tributions of GNU/Linux, *BSD systems...) that supported the daily work of
many people, especially software developers. There were still many pending
assignments (the main one to have better graphical user interfaces at a time
when Windows 95 was considered the standard), but there were already sev-
eral thousand people worldwide who used exclusively free software for their
day to day work. New projects were announced in rapid succession and free
software embarked on its long path towards companies, the media and public

awareness in general.

This period is also associated with Internet taking off as a network for every-
one, in many cases led by the hand of free programs (especially in its infras-
tructure). The net's arrival into the homes of millions of end users consolidat-
ed this situation, at least in terms of servers: the most popular web (HTTP)
servers have always been free (first the NCSA server, followed by Apache).

Perhaps the beginning of the road for free software until its full release among
the public is best described in the renowned essay by Eric Raymond, "The
cathedral and the bazaar" (Eric S. Raymond, 2001) [192]. Although much of
what is described in it was already well known by the community of free soft-
ware developers, putting it into paper and distributing it extensively made it
an influential tool for promoting the concept of free software as an alternative
development mechanism to the one used by the traditional software industry.
Another important paper of this period was "Setting up shop. The Business
of open source software" [141], by Frank Hecker, which for the first time de-
scribed the potential business models for free software, and which was written

in order to influence the decision to release the Netscape Navigator code.

Whereas Raymond's paper was a great tool for promoting some of the funda-
mental characteristics of free software, the release of Netscape Navigator's code
was the first case in which a relatively large company, in a very innovative
sector (the then nascent web industry) made the decision to release one of its

products as free software. At that time, Netscape Navigator was losing the web

© FUOC ¢ P07/M2101/02709 29

Free Software

navigators' battle against Microsoft's product (Internet Explorer), partly due
to Microsoft's tactics of combining it with its operating system. Many people
believe that Netscape did the only thing that it could have done: to try to
change the rules to be able to compete with a giant. And from this change in
the rules (trying to compete with a free software model) the Mozilla project
was born. This project, which had its own problems, has led several years later
to a navigator that, although it has not recovered the enormous market share
that Netscape had in its day, seems technically at least as good as its propri-
etary competitors.

In any case, irrespective of its later success, Netscape's announcement that it
would release its navigator's source code had a great impact on the software
industry. Many companies started to consider free software worthy of consid-

eration.

The financial markets also started paying attention to free software. In the
euphoria of the dotcom boom, many free software companies became targets
for investors. Perhaps the most renowned case is that of Red Hat, one of the
first companies to realise that selling CDs with ready-to-use GNU/Linux sys-
tems could be a potential business model. Red Hat started distributing its Red
Hat Linux, with huge emphasis (at least for what was common at the time)
on the system's ease of use and ease of maintenance for people without a spe-
cific IT background. Over time it diversified, keeping within the orbit of free
software, and in September 1998 it announced that Intel and Netscape had
invested in it. "If it is good for Intel and Netscape, it must be good for us", is
what many investors must have thought then. When Red Hat went public in
summer 1999, the IPO was subscribed completely and soon the value of each
share rose spectacularly. It was the first time that a company was obtaining
financing from the stock exchange with a model based on free software. But
it was not the only one: later, others such as VA Linux or Andover.net (which
was later acquired by VA Linux) did the same.

Note

Red Hat provides a list of its company milestones at http://fedora.redhat.com/about/
history/.

During this period, many companies were also born with business models
based on free software. Despite not going public or achieving such tremendous
market caps, they were nevertheless very important for the development of
free software. For example, many companies appeared that started distributing
their own versions of GNU/Linux, such as SuSE (Germany), Conectiva (Brazil)
or Mandrake (France), which would later join the former in order to create
Mandriva. Others offered services to companies that wanted maintenance or
to adapt free products: LinuxCare (US), Alcove (France), ID Pro (Germany),
and many more.

© FUOC ¢ P07/M2101/02709 30

Free Software

Meanwhile, the sector's giants started to position themselves in relation to
free software. Some companies, such as IBM, incorporated it directly into their
strategy. Others, such as Sun Microsystems, had a curious relationship with it,
at times backing it, at others indifferent, and at others confrontational. Most
(such as Apple, Oracle, HP, SGI, etc.) explored the free software model with
various strategies, ranging from the selective freeing of software to straight-
forward porting of their products to GNU/Linux. Between these two extremes
there were many other lines of action, such as the more or less intensive use of
free software in their products (such as the case with Mac OS X) or the explo-
ration of business models based on the maintenance of free software products.

From the technical point of view, the most remarkable event of this period was
probably the appearance of two ambitious projects designed to carry free soft-
ware to the desktop environment for inexperienced IT users: KDE and GNOME.
Put simplistically, the final objective was not to have to use the command line
in order to interact with GNU/Linux or *BSD or with the programs on those

environments.

KDE was announced in October 1996. Using the Qt graphic libraries (at that
time a proprietary product belonging to the company Trolltech, but free of

charge for use on GNU/Linux?), construction began of a set of desktop appli-
cations that would work in an integrated manner and have a uniform appear-
ance. In July 1998 version 1.0 of the K Desktop Environment was released, and
was soon followed by increasingly more complete and more mature new ver-
sions. GNU/Linux distributions soon incorporated KDE as a desktop for their
users (or at least as one of the desktop environments that users could choose).

Mostly as a reaction to KDE's dependence on the Qt proprietary library, in
August 1997 the GNOME project was announced (Miguel de Icaza, "The story
of the GNOME Project") [101], with similar goals and characteristics to those
of KDE, but stating the explicit objective of all its components being free soft-
ware. In March 1999, GNOME 1.0 was released, which would also improve
and stabilise over time. As of that moment, most distributions of free operat-
ing systems (and many Unix-derived proprietary ones) offered the GNOME or
KDE desktop as an option, and the applications of both environments.

Meanwhile, the main free software projects underway remained in good
health with new projects emerging almost every day. In various niche markets,
free software was found to be the best solution (acknowledged almost world-
wide). For example, since its appearance in April 1995, Apache has maintained
the largest market share for web servers; XFree86, the free project that devel-
ops X Window, is by far the most popular version of X Window (and therefore,
the most extended windows system for Unix-type systems); GCC is recognised
as the most portable C compiler and one of the best quality; GNAT, the com-
pilation system for Ada 95, has conquered the best part of the market for Ada

compilers in just a few years; and so on.

(Z)Later, Qt started to be distribut-
ed under the free licence QPL (Qt
Public Licence), non-compatible
with GPL, which caused some
problems, since most of KDE was
distributed under the GPL. In time,
Trolltech finally decided to dis-
tribute Qt under the GPL licence,
bringing these problems to an
end.

© FUOC ¢ P07/M2101/02709 31

Free Software

In 1998, the Open Source Initiative (OSI) was founded, which decided to
adopt the term open source software as a brand for introducing free software
into the business world, while avoiding the ambiguity of the term free (which
can mean both free to use and free of charge). This decision sparked one
of the fiercest debates in the world of free software (which continues to
this day), since the Free Software Foundation and others considered that
it was much more appropriate to speak about free software (Richard Stall-
man, "Why free software is better than open source", 1998) [206]. In any case,
the OSI made a great promotional campaign for its new brand, which has
been adopted by many as the preferred way to talk about free software, es-
pecially in the English-speaking world. To define open source software, the
OSI used a definition derived from the one used by the Debian project to de-
fine free software ("Debian free software guidelines", http://www.debian.org/
social_contract.html#guidelines) [104], which at the same time fairly closely
reflects the idea of the FSF in this regard ("Free software definition", http://
www.gnu.org/philosophy/free-sw.html) [120], meaning that from the practi-
cal point of view almost any program considered free software can also be
considered open source and vice versa. However, the free software and open
source software communities (or at least the people who identify with them)
can be very different.

2.4.2. Decade of 2000

In the early years of the decade of 2000, free software was already a serious
competitor in the servers segment and was starting to be ready for the desktop.
Systems such as GNOME, KDE, OpenOffice.org and Mozilla Firefox can be
used by domestic users and are sufficient for the needs of many companies,
at least where office applications are concerned. Free systems (and especially
systems based on Linux) are easy to install, and the complexity of maintaining
and updating them is comparable to that of other proprietary systems.

Right now, every company in the software industry has a strategy with regards
to free software. Most of the leading multinationals (IBM, HP, Sun, Novell,
Apple, Oracle...) incorporate free software to a greater or lesser extent. At one
extreme we can find companies such as Oracle, which react by simply porting
their products to GNU/Linux. At another extreme, we can find IBM, which
has the most decisive strategy and has made the biggest publicity campaigns
about GNU/Linux. Among the leaders in the IT market, only Microsoft has
positioned itself in clear opposition to free software and particularly software
distributed under the GPL licence.

As regards the world of free software itself, despite the debates that occasion-
ally stir the community, its growth is massive. Every day there are more devel-
opers, more active free software projects, more users, etc. With each passing
day free software is moving away from the sidelines and becoming a force to

be reckoned with.

© FUOC ¢ P07/M2101/02709 32

Free Software

In light of this, new disciplines are emerging that specifically study free soft-
ware, such as free software engineering. Based on research, bit by bit we are
starting to understand how free software operates in its various aspects: de-
velopment models, business models, coordination mechanisms, free project

management, developers' motivations, etc.

These years we are also starting to see the first effects of the offshoring that free
software development allows: countries considered "peripheral" are actively
participating in the world of free software. For example, the number of Mexi-
can or Spanish developers (both countries with a limited tradition of software
industry) in projects such as GNOME is significant (Lancashire, "Code, cul-
ture and cash: the fading altruism of open source development", 2001) [164].
And the role of Brazil is even more interesting, with its numerous develop-
ers and experts in free software technologies, and decisive backing from the
public administrations. gnuLinEx is a case that merits special attention, as an
example of how a region with very little tradition of software development
can try to change the situation through an aggressive strategy of free software

implantation.

From the decision-making perspective when it comes to implementing soft-
ware solutions, we would highlight the fact that there are certain markets
(such as Internet services or office applications) in which free software is a
natural choice that cannot be overlooked when studying what type of system
to use.

On the negative front, these years have seen how the legal environment in
which free software operates is changing rapidly worldwide. On the one hand,
software patents are increasingly adopted in more and more countries. On the
other hand, new copyright laws make it difficult or impossible to develop free
applications in some spheres, the most well-known one being DVD viewers
(due to the CSS encoding algorithm that this technology uses).

gnuLinEx

In the beginning of 2002 the Extremadura Regional Government publicly an-
nounced the gnuLinEx project. The idea was simple: to promote the creation
of adistribution based on GNU/Linux with the fundamental objective of using
it on the thousands of computers to be installed in public schools through-
out the region. Extremadura, situated in the western part of Spain, bordering
Portugal, has approximately 1 million inhabitants and has never stood out
for its technological initiatives. In fact, the region had practically no software
industry.

In this context, gnuLinEx has made a very interesting contribution to the free
software panorama on a global scale. Beyond being just a new distribution of
GNU/Linux based on Debian (which is still a worthy anecdote), and beyond
its enormous impact on the mass media (it was the first time that Extremadu-

© FUOC ¢ P07/M2101/02709 33

Free Software

ra made the front cover of The Washington Post and one of the first that a
free software product did), what is extraordinary is the (at least apparently)
solid backing of a public administration for free software. The Regional Gov-
ernment of Extremadura decided to try a different model where educational
software was concerned, and then to extend this model to all the software
used within the scope of its influence. This has made it the first public ad-
ministration of a developed country to have decisively adopted this approach.
A lot of interest was generated around the Regional Government's initiative,
within Extremadura and outside of it: there are academies that teach IT using
gnuLinEx; books have been written to support this teaching; computers are
being sold with gnuLinEx pre-installed. In general, they are trying to create
an educational and business fabric around this experience in order to give it

support. And the experience has been exported. At the beginning of the 21"
century, several autonomous communities in Spain have backed free software
in education (in one way or another), and in general, its importance for public

administrations is widely acknowledged.
Knoppix

Since the end of the nineties, there are GNU/Linux distributions that can be
easily installed, but Knoppix, whose first version appeared in 2002, has prob-
ably allowed this idea to reach its full expression. It is a CD that boots on
almost any PC, converting it (without even having to format the disk, since it
can be used "live") into a fully functional GNU/Linux machine, with a selec-
tion of the most frequent tools. Knoppix combines good automatic hardware
detection with a good choice of programs and "live" functioning. For example,
it allows a rapid and direct experience of what it means to work with GNU/
Linux. And it is giving rise to an entire family of distributions of the same
type, specialised for the specific requirements of a user profile.

OpenOffice.org

In 1999, Sun Microsystems bought a German company called Stardivision,
whose star product was StarOffice, a suite of office applications similar in func-
tionality to the Microsoft Office set of tools. One year later, Sun distribut-
ed most of the StarOffice code under a free licence (the GPL) creating the
OpenOffice.org project. This project released version 1.0 of OpenOffice.org
in May 2002. OpenOffice.org has become a quality suite of office applica-
tions with a similar functionality to that of any other office product, and,
more importantly, it interoperates very well with the Microsoft Office data
formats. These features have made it the reference free software application
in the world of office suites.

The importance of OpenOffice.org, from the point of view of extending free
software to a large number of users, is enormous. Finally it is possible to
change, almost without problems, from the proprietary environments com-
mon with office suites (undoubtedly the star application in the business

© FUOC ¢ P07/M2101/02709 34

Free Software

world) to totally free environments (such as GNU/Linux plus GNOME and/or
KDE plus OpenOffice.org). Also, the transition can be made very smoothly:
since OpenOffice.org also works on Microsoft Windows, it is not necessary
to change operating systems in order to experiment in depth with using free

software.
Mozilla, Firefox and the rest

Practically since its appearance in 1994 until 1996, Netscape Navigator was
the unchallenged market leader in web navigators, with market shares of up
to 80%. The situation started to change when Microsoft included Internet Ex-
plorer with Windows 935, causing Netscape Navigator to gradually lose mar-
ket share. At the beginning of 1998 Netscape announced that it was going to
distribute a large part of its navigator code as free software, which it did in
March that same year, launching the Mozilla project. For quite a while the
project was clouded by uncertainty, and even pessimism (for example, when
its leader, Jamie Zawinski, abandoned it), because as time went by no product
was resulting from its launch.

In January 2000, the project released Mozilla M13, which was considered the
first relatively stable version. But in just May 2002 version 1.0 was finally pub-
lished, the first officially stable version, over four years after the first Netscape
Navigator code had been released.

Finally Mozilla had become a reality, although perhaps too late, if we bear in
mind the market shares that Internet Explorer had in 2002 or 2003 (when it
was the undisputed leader leaving Mozilla and others in a totally marginal
position). But despite taking so long, the Mozilla project has borne fruit; not
only expected fruit (the Mozilla navigator), but also other "collateral" ones,
such as Firefox for example, another navigator based on the same HTML en-
gine, which has become the main product, and which since it appeared in
2005 is managing bit by bit to erode other navigators' market share.

The Mozilla project has helped to fill a large gap in the world of free soft-
ware. Before Konqueror appeared (the KDE project's navigator), there were not
many free navigators with a graphic interface. Since the publication of Mozil-
la, an enormous number of projects based on it have emerged which have
produced a large number of navigators. At the same time, the combination
of Morilla Firefox and OpenOffice.org allows free software to be used for the
most common tasks, even in a Microsoft Windows environment (they both
work not only on GNU/Linux, *BSD and other Unix-type systems, but also on
Windows). For the first time in the history of free software, it has made the
transition from proprietary software to free software in office environments a
simple task: we can start by using these two applications on Windows, without
changing operating systems (for those who use it normally), and over time
eliminate the only non-free part and move onto GNU/Linux or FreeBSD.

Bibliography

In "Netscape Navigator", by
Brian Wilson, [234], we can
consult a detailed list of the
main versions of Netscape
Navigator and Mozilla, and
their main characteristics.

© FUOC ¢ P07/M2101/02709 35

Free Software

The case of SCO

At the beginning of 2003, the SCO corporation (formerly Caldera Systems and
Caldera International) presented a legal case against IBM for alleged breach
of its intellectual property rights. Although the case was complex, it centred
on the accusation that IBM had contributed to the Linux kernel with code
belonging to SCO. In May 2007, the matter had still not been resolved and had
even become more complicated by further legal suits (IBM and Red Hat against
SCO, SCO against AutoZone and DaimlerChrysler, two large IT users) and by
SCO's campaigns threatening to pursue big companies that used Linux, etc.

Although the winner of this enormous legal battle has still not emerged, the
case has highlighted certain legal aspects concerning free software. In particu-
lar, many companies have considered the problems that they may have to face
if they use Linux and other free programs, and the guarantee that in doing so
they are not in breach of third party intellectual or industrial property rights.

In some way, this case and other ones (such as those related to the validity of
the GPL licences which were resolved in Germany in 2005) may also be inter-
preted as a sign of the maturity of free software. It has stopped being a stranger
to the business world to become part of many of its activities (including those
related to legal strategies).

Ubuntu, Canonical, Fedora and Red Hat

Although Canonical (the company that produces and distributes Ubuntu)
could be considered a recent arrival to the business of GNU/Linux distribu-
tions, its activities deserve our attention. In a relatively short time, Ubuntu
has established itself as one of the best known and most widely used distribu-
tions, with a reputation for good quality, and great ease of installation and
use. Ubuntu also stands out for its greater attention to including fundamen-
tally free software than most distributions produced by companies.

However, the fundamental characteristic of Ubuntu (and of Canonical's strat-
egy) has been to base on Debian, a distribution created and maintained by
volunteers. In fact, Ubuntu is not the first case of a distribution based on De-
bian (another well-known case is gnuLinEx), but perhaps it is the one to have
received the most funding. For example, Canonical has hired a large number
of Debian experts (many of whom participate in the project) and has pursued
a strategy that seeks collaboration with the volunteer project. To some extent,
Canonical has tried to fill what it considers is missing from Debian in order
to gain acceptance from the average user.

Red Hat, in turn, has followed a different path in order to wind up in a fairly
similar situation. Starting from a distribution produced entirely with its own
resources, it decided to collaborate with Fedora, a group of volunteers that
was already working with distributions based on Red Hat, in order to produce

© FUOC ¢ P07/M2101/02709 36

Free Software

Fedora Core, its "popular" distribution. Red Hat maintains its version for com-
panies, but this collaboration with volunteers is, in the end, very similar to
the one that has produced Ubuntu.

Perhaps all of these movements are no more than the product of the fierce
competition taking place in the market for GNU/Linux distributions and of
one more notable trend: companies' collaboration with volunteers (with the
community) to produce free software.

Customised distributions

Since Linux came onto the scene, a large number of groups and companies
have created their own distributions based on it. But during these years, the
phenomenon has caught on with many organisations and companies that
want customised versions for their own requirements. Customisation has
been able to expand because the process has become cheaper and there is
widespread availability of the technical knowledge to do so, even making this
a niche market for certain companies.

Perhaps one of the best known cases of customised distributions is the one for
Spain's autonomous communities. The Extremadura Regional Government
with its gnuLinEx sparked a trend that many other autonomous communities
have since followed. The process is so common that several of them regularly
convene tenders for the creation and maintenance of new versions of their
distributions.

The creation of customised distributions realises a trend that the world of free
software had been discussing for a long time: adapting programs to users' spe-
cific needs without it having to be the original producers that necessarily make
the adaptation.

Bibliography

Some of the most well-known distributions of GNU/Linux in the Spanish autonomous
communities include:

e gnuLinEx: http://linex.org (Extremadura)

¢ Guadalinex: http://guadalinex.org (Andalucia)

e Lliurex: http://lliurex.net (Comunidad Valenciana)

e Augustux: http://www.zaralinux.org/proy/augustux/ (Aragoéon)

e MAX: http://www.educa.madrid.org/web/madrid_linux/ (Madrid)

e MoLinux: http://molinux.info (Castilla-La Mancha)

Company-company and volunteer-company collaborations

Since practically the beginning of free software, there have been companies
that collaborated with volunteers in developing applications. However, in
these years when it appears that we are reaching maturity there is a growing

© FUOC ¢ P07/M2101/02709 37

Free Software

number of companies that use free software as part of their strategy to collab-
orate with other companies, when they find it interesting. Two of the most
significant cases, organised specifically with this objective, are ObjectWeb (an
alliance formed in France which over time clearly has clearly become interna-
tional) and Morfeo (in Spain). In both cases, a group of companies has agreed
to develop a set of free systems that are of interest to them, and decided to
distribute it as free software.

In other cases, companies have actively sought to collaborate in free projects
promoted by volunteers, or tried to make volunteers collaborate with
their own free projects. The GNOME Foundation or the already-mentioned
Ubuntu in respect of Debian are examples of this first scenario. Sun and
OpenOffice.org and OpenSolaris, or Red Hat with Fedora Core, are examples
of the second.

Expanding to other spheres

Free software has proven that in the field of producing programs there is an-
other way of doing things. In practice, we have seen how granting the freedom
to distribute, modify and use can achieve sustainability, either through volun-
teer work, or through business generation that allows companies to survive.

As time passes, this same idea is being transferred to other spheres of intel-
lectual work. The Creative Commons licences have made it possible to free
spheres such as literature, music, or video. Wikipedia is proving that a field as
particular as the production of encyclopaedias can move through a very inter-
esting path. And there are more and more literary authors, music bands and
even film producers interested in models of free production and distribution.

In all these domains there is still a long way to go, and in almost all of them
practice has not yet fully proven that sustainable creation is possible with free
models. But it cannot be denied that experimentation with it is reaching a
boiling point.

Free software as a subject of study

Although some works, such as the renowned "The cathedral and the bazaar"
cleared the way for the study of free software as such, it was not until 2001 and
subsequent years that the academic community started to consider free soft-
ware as something worthy of study. Over time, the massive availability of data
(almost everything in the world of free software is public and available from
public information archives) and the innovations that free software has pro-
vided have drawn the attention of many groups. Midway through the decade
of 2000 there are already several international conferences centred specifically
on free software, top-ranking magazines frequently produce papers on it, and
research-funding agencies are opening lines aimed specifically towards it.

© FUOC ¢ P07/M2101/02709 38

Free Software

2.5. The future: an obstacle course?

Of course, it is difficult to predict the future. And that is certainly not our ob-
jective. Therefore, rather than trying to explain what the future of free soft-
ware will be like, we will try to show the problems that it will foreseeably have
to face (and has indeed been facing for a long time). How the world of free
software is able to overcome these obstacles will undoubtedly determine its

situation in several years' time.

e FUD (fear, uncertainty, doubt). This is a fairly common technique in the
world of information technologies, used by free software's competitors in
order to discredit free software, with more or less justification and varying
degrees of success. In general terms, free software has been fairly immune
to these techniques, perhaps due to its complexity and different ways of

seeping into companies.

e Dissolution. Many companies are testing the limits of free software as
a model, and in particular are trying to offer their clients models that
present some similar characteristics to free software. The main problem
that can present itself with this type of model is that it generates confu-
sion among clients and developers, who need to read the small print in
detail in order to realise that what they are being offered does not have the
advantages that free software offers them. The most well-known model of
this type is the Shared Source program, by Microsoft.

e Lack of knowledge. In many cases, users turn to free software simply be-
cause they think that it is free of charge; or because they think that it is
"fashionable". If they do not look deeper into it, and study with a certain
amount of detail the advantages that free software can offer as a model,
they run the risk of not taking full advantage of them. In many cases,
the initial assumptions in the world of free software are so different from
the traditional ones in the world of proprietary software that a minimum
analysis is required in order to understand that what in one case is fre-
quent in the other may be impossible, and vice versa. Therefore, lack of
knowledge can only generate dissatisfaction and loss of opportunities for
any person or organisation approaching free software.

¢ Legal obstacles. This is certainly the main problem that free software is go-
ing to have to deal with in coming years. Although the legal environment
in which free software developed in the 80s and first half of the 90s was
not ideal, at least it left enough space for it to grow freely. Since then, ex-
tension of the scope of patenting to software (which has occurred in many
developed countries) and new copyright legislation (limiting the software
developer's liberty to create) are producing increasingly higher barriers to

free software's entry into important segments of applications.

© FUOC ¢ P07/M2101/02709 39

Free Software

2.6. Summary

This chapter presents the history of free software. The sixties was a period
dominated by large computers and IBM in which software was distributed
together with the hardware, and usually with the source code. In the seven-
ties, software started to be sold separately, and soon proprietary distributions,
which did not include source code and did not give permission to modify or
redistribute, became almost the only option.

In the decade of the 1970s, work began on developing the Unix operating
system at AT&T's Bell Labs, giving rise later to Unix BSD. Its evolution, in
parallel with the birth of the Internet, served as a testing field for new ways
of developing in collaboration, which later became common in the world of

free software.

In 1984, Richard Stallman started to work on the GNU project, founding the
Free Software Foundation (FSF), writing the GPL licence, and in general estab-
lishing the foundations of free software as we now know it.

In the 90s Internet matured offering free software communities new channels
for communication and distribution. In 1991, Linus Torvalds started to devel-
op a free kernel (Linux) which helped to complete the GNU system, which
already had almost all the parts for becoming a complete system similar to
Unix: C compiler (GCC), editor (Emacs), windowing system (X Window), etc.
This is how the GNU/Linux operating systems were born, branching out into
many distributions, such as Red Hat Linux and Debian GNU/Linux. Towards
the end of the 90s, these systems were completed with two desktop environ-
ments: KDE and GNOME.

In the decade of 2000, free software managed to lead in some sectors (such
as for web servers, dominated by Apache), and new tools appeared covering
a large number of IT requirements.

See also

Interested readers will find in
Appendix B a list of some of
the most relevant dates in the
history of free software.

© FUOC ¢ P07/M2101/02709 40

Free Software

3. Legal aspects

"The licences for most software are designed to take away your freedom to share and
change it."

GNU General Public Licence, version 2

This chapter looks at the main legal aspects related to free software. To put
them into context, we start with a small introduction to the most basic con-
cepts of intellectual and industrial property rights, before offering the detailed
definition of free software, open source software and other related concepts. We
also look in some detail at the most common free software licences and their
impact on business models (subject covered in greater detail in chapter 5) and

development models.
3.1. Brief introduction to intellectual property

The term intellectual property has various meanings according to its context
and who uses it. Nowadays it is frequently used in many spheres to refer to
various privileges awarded over intangible goods with economic value. It in-
cludes concepts such as copyright and similar, which protect from unautho-
rised copy literary or artistic works, computer programs, data compilations,
industrial designs, etc.; trademarks, which protect symbols; geographical in-
dications, which protect appellations of origin; trade secrets, which protect
the hiding of information, and patents, which concede temporary monopo-
lies to inventions in exchange for their revelation. However, in many legal
traditions, including the Hispanic tradition, a distinction is made between in-
tellectual property, which refers exclusively to copyright, and industrial property,

which covers the other concepts.

In any case, the legislation applicable to all of these aspects is one of the best
coordinated practically worldwide. On the one hand, the WIPO (Worldwide
International Property Organisation) covers both types of property in all of
their aspects. On the other hand, the TRIPS agreement (Trade-Related aspects
of Intellectual Property rights) establishes certain minimum levels of protec-
tion and obliges all member countries of the WTO (World Trade Organisation)
to develop them within certain timeframes, according to the level of develop-

ment of the country.’

Article 27 of the Declaration of Human Rights acknowledges that everyone
has the right to the protection of the moral and material interests resulting
from any scientific, literary or artistic production of which he is the author.
However, in many cases (and frequently in the case of software), this right
is transferred in practice to the companies that employ the creators or that
distribute or sell their creations. Nonetheless, intellectual property is justified

®)The TRIPS agreement was signed
under pressure from the industri-
alised countries (especially the US
and Japan).

© FUOC ¢ P07/M2101/02709 41

Free Software

not just morally, but also for practical reasons, in order to comply with an-
other right: the public's right to benefit from creation, promoting it through
incentives and protecting investments in creation, research and development.
In order to harmonise these two rights, intellectual property is temporary and
expires once it has fulfilled its function of promotion.

But expiry is not the only distinguishing feature between intellectual prop-
erty and ordinary property. Nowadays, its products can be copied easily and
cheaply, without any loss of quality. Copying does not prejudice the party that
is already benefiting from what is copied, unlike theft, which does deprive
the original possessor. Copying can prejudice the owner, by depriving him of
potential income from a sale. Controlling the copying of intangibles is much
more complicated than controlling the theft of tangible property and can lead
us to a situation of a police State, having to control all copies of information,
and legal insecurity, since the potential for accidental infringement of rights
increases. Furthermore creativity is incremental: creating always copies some-
thing, and the dividing line between a poor imitation and inspiration is a
subtle one.

In order to study this in more depth, the following sections go over some of
the categories of intellectual property. In any case, we can already advance that
free software proposes a new point of equilibrium in this sphere, advocating
the benefits of copying and incremental innovation versus exclusive control

of a work by its author.

3.1.1. Copyright

Copyright protects the expression of a content, not the content itself. Copy-
right was developed in order to compensate the authors of books or art. Pro-
tected works may express ideas, knowledge or methods that are freely usable,
but it is prohibited to reproduce them without full or partial permission, with
or without modifications. This protection is very simple, since it automatical-
ly comes into force with an almost universal scope just when the work is pub-
lished/released. Currently, it has been extended to computer programs and (in
some geographical areas) to data compilations.

The Law on Intellectual Property (LPI) in Spain, and similar laws in other coun-
tries, developed on the basis of the Berne Convention of 1886 for the protec-
tion of literary and artistic works, regulates copyright. These rights are divided
into moral and intellectual rights. The former guarantee the author's control
over the distribution of his work, under his name or pseudonym, the recogni-
tion of authorship, respect for the integrity of the work and the right to mod-
ify and withdraw it. The second give the author the right to exploit the work

economically and may be ceded in whole or in part, exclusively or not, to a

© FUOC ¢ P07/M2101/02709 42

Free Software

third party. Moral rights are lifelong or indefinite, whereas intellectual rights
have a fairly long duration (seventy years following the author's death, in the
case of a physical person and Spanish law).

Cession of these rights is established by means of a contract known as a
licence. In the case of proprietary programs, these are generally distributed
through "non exclusive" licences for use, understood as automatically accept-
ed by opening or installing the product. Therefore it is not necessary to sign
the contract, since in the case of the receiver not accepting it, the rights by
default under the law govern automatically, that is none. Licences cannot re-
strict some of the rights granted by current legislation, such as the right to
make private copies of art or music, which allows a copy of a recording to be
given to a friend as a gift, but this right does not apply to programs. According
to the LPI of 1996 (Spanish Law on Intellectual Property. Royal Legislative De-
cree 1/1996, of 12th April) [77], modified in 2006 (Law on Intellectual Prop-

erty. Law 23/2006, of 7t July) [79], in respect of programs it is always possible
to make a backup copy, they may be studied for making programs interoper-
able and they may be corrected and adapted to our needs (which is difficult,
because normally we do not have access to the source code). These rights may
not be restricted through licences, although the laws are under review, in an
apparently unstoppable trend to limit the rights of users. Organised compila-
tions of works or third party data are also subject to copyright, although under

different terms with a shorter timeframe.

New information technologies, and specially the web, have deeply trans-
formed copyright protection, since expressions of content are much easier to
copy than content itself. And in the case of programs and some works of art
(music, images, films, and even literature) they "work" automatically on the
computer without the need for any appreciable human effort. However, de-
signs or inventions need to be built and possibly put into production. This
possibility of generating wealth at no cost has led a large proportion of the
public, in particular in poor countries, to duplicate programs without paying
the licence, without public awareness of this being a "malicious action" (unlike
in the case of stealing physical property, for example). Meanwhile, program
manufacturers, either alone or in coalition (through the BSA, Business Soft-
ware Alliance, for example), exert enormous pressure for licences to be paid
and for governments to pursue what has become known as piracy.

Note

The word piracy has become generally accepted as a synonym for the 'violation of any
form of intellectual property, especially in the case of illegally copying of programs, mu-
sic and films'. The term seems exaggerated and in the dictionary of the Royal Spanish
Academy of Language it appears with that meaning in the figurative sense, since the
original word refers to 'robbery with violence committed at sea'. This is why Richard
Stallman recommends avoiding it ("Some confusing or loaded words and phrases that
are worth avoiding", 2003) [212].

© FUOC ¢ P07/M2101/02709 43

Free Software

Precisely in order to protect the copyright of contents with proprietary li-
cences, the so-called DRM systems were born (digital rights management), de-
signed to control access and the use of data in digital format or to restrict its
use to certain devices. The use of DRM systems has been strongly criticised
in many sectors, because they protect copyright imposing restrictions beyond
what is sufficient, which is why some, such as the Free Software Foundation,
recommend interpreting the acronym as digital restrictions management, in an
attempt to avoid using the word rights), because it considers that there is an
excessive deprivation of the rights of users in favour of satisfying copyright
demands.

3.1.2. Trade secret

Another resource that companies use in order to make profit from their in-
vestments is trade secret, protected by the laws of industrial property, provid-
ed that companies take sufficient measures to hide the information that they
do not wish to disclose. In the case of chemical or pharmaceutical products
that require governmental approval, the State undertakes not to disclose sub-
mitted data that is not mandatory to make public.

One of the best known applications of trade secret is the propietary software
industry, which generally sells compiled programs without access to the source
code, in order to prevent derived programs from being developed.

At first sight it would appear that the protection of trade secret is perverse,
since it can deprive society of useful knowledge indefinitely. To some extent
some legislations also interpret it this way, and allow reverse engineering in
order to develop replacement products, although industry pressure has man-
aged to prohibit this activity in many countries, and in other countries only
made it possible on the grounds of compatibility.

Whether or not trade secret is a perversion, in many cases it is better than a
patent since it offers a competitive advantage to the person placing a product
on the market while the competition tries to imitate it through reverse engi-
neering. The more sophisticated the product the more it will cost the compe-
tition to reproduce it, whereas if it is trivial, it will be copied quickly. Imita-
tion with improvements has been fundamental in the development of today's
superpowers (the US and Japan) and is very important for the financial inde-
pendence of developing countries.

3.1.3. Patents and utility models
The alternative to trade secret is a patent. In exchange for a seventeen to twen-

ty five year monopoly and a specific financial cost, an invention is publicly

disclosed so that it can be easily reproduced. It aims to promote private re-

© FUOC ¢ P07/M2101/02709 44

Free Software

search, at no cost to the taxpayer and without losing the outcome. The patent
holder can decide whether to allow others to use it and the price to be paid
for the licence.

Official doctrine is that the patent system promotes innovation, but more
and more voices are making themselves heard with the view that it impedes
it, either because the system is poorly implemented or because they consider
that it is perverse in itself (Francois-René Rideau, "Patents are an economic
absurdity", 2000) [194].

What is considered an invention has changed over time, and there is enor-
mous pressure to extend the scope of the system, to include algorithms, pro-
grams, business models, natural substances, genes and forms of life, includ-
ing plants and animals. TRIPS requires the patents system not to discriminate
against any field of knowledge. The pressures of the World Intellectual Prop-
erty Organisation (WIPO or OMPI) aim to eliminate the need for an invention
to have an industrial application and also to reduce the standards of invention
required of a patent. The US is at the forefront of countries with minimum
requirements on patentability, and is also the most belligerent for other coun-
tries to adopt its standards, forgetting that the US refused to accept foreign
patents when it was an underdeveloped country.

After obtaining a patent, the rights of the owner are independent of the quality
of the invention and the effort invested in obtaining it. Given the cost of
maintaining a patent, and litigation costs, only large companies are able to
maintain and do maintain a large portfolio of patents, which puts them in
a position to strangle any competition. Given the ease of getting patents on
trivial or widely applicable solutions, they can thus monopolise an extensive
field of economic activity.

With patents, many activities, especially programming, become extremely
risky, because it is very easy that in developing a complicated program there
is an accidental violation of some patent. When two or more companies are
conducting research in order to resolve a problem, it is highly probable that
they will reach a similar solution at almost the same time, but only one of
them (usually the one with most resources) will manage to patent its inven-
tion, preventing the others from having any chance of recouping their invest-
ment. Any complex technological development becomes a nightmare if in or-
der to solve each part you first need to find out whether the solution found
is patented (or patent pending), so as to obtain the licence or find an alterna-
tive solution. This problem is particularly severe with free software, where the
violation of algorithm patents is evident from simply inspecting the code.

Although in Europe it is still illegal to patent an algorithm, it will become
possible in the near future, perhaps by the time the reader reads these lines.

© FUOC ¢ P07/M2101/02709 45

Free Software

3.1.4. Registered trademarks and logos

Trademarks and logos are names and symbols that represent an established
quality (or a massive investment in publicity). They are not very important
in the world of free software, possibly because registering them has a cost.
Therefore, just a few important names such as Open Source (by the Open
Source Foundation), Debian (by Software in the Public Interest), GNOME
(by the GNOME Foundation), GNU (by the Free Software Foundation) or
OpenOffice.org (by SUN Microsystems) are registered, and only in a few coun-
tries. However, not registering the names has caused problems. For example,
in the US (1996) and in Korea (1997) people have registered the name Linux
and demanded payment for its use. Resolving these disputes entails legal costs
and the need to prove the use of the name prior to the date of registration.

3.2. Free software licences

Legally speaking, the situation of free programs in relation to proprietary ones
is not very different: they are both distributed under a licence. The difference
lies in what the licence allows. In the case of free program licences, which do
not restrict particularly their use, redistribution and modification, what can be
imposed are conditions that need to be met precisely in the case of wanting to
redistribute the program. For example, it is possible to demand observation of
authorship indications or to include the source code if wanting to redistribute
the program ready to run.

Although essentially free software and propietary software differ in terms of the
licence under which the authors publish their programs, it is important to
emphasise that this distinction is reflected in completely different conditions
of use and redistribution. As we have seen in the last few years, this has not
only given rise to totally different development methods, but also to practi-
cally opposite ways (in many aspects) of understanding IT.

The laws on intellectual property ensure that in the absence of explicit per-
mission virtually nothing can be done with a work (in our case, a program)
received or purchased. Only the author (or the holder of the rights to the
work) can grant us that permission. In any case, ownership of the work does
not change by granting a licence, since this does not entail transfer of own-
ership, but rather just the right of use, and in some cases (mandatory with
free software), of distribution and modification. Free software licences are dif-
ferent from proprietary software licences precisely in that instead of carefully
restricting what is allowed, it makes certain explicit allowances. When people
receive a free program they may redistribute it or not, but if they do redis-
tribute it, they can only do so because the licence allows it. But to do so the
licence must be observed. Indeed, the licence contains the rules of use that
users, distributors, integrators and all other parties involved in the world of

IT must observe.

© FUOC ¢ P07/M2101/02709 46

Free Software

In order to fully understand all the legal ins and outs that arise in this chapter
(and which are without question very important to understanding the nature
of free software) we should also be aware that each new version of a program
is considered a new work. The author, once again, is fully entitled to do what
he wants with it, even to distribute it under totally different terms and condi-
tions (in other words, with a totally different licence to the earlier one). That
way if the reader is the sole author of a program, he may publish one version
under a free software licence and, if he wishes to, a later one under a propri-
etary licence. In the case of there being more authors and the new version
containing code that they have produced, if it will be published under differ-
ent conditions, all of them will have to approve the change in licence.

A still relatively open issue is the licence that applies to external contributions.
Generally it is assumed that someone who contributes to a project accepts de
facto that their contribution adjusts to the conditions specified by its licence,
although the legal grounds for this are poor. The initiative of the Free Software
Foundation to ask by means of a (physical) letter for cession of all copyright
from anyone who contributes more than ten lines of code to a GNU sub-
project is a clear indication that in the world of free software there are stricter
policies with regards to these contributions.

Based on the foregoing, in the rest of the chapter we will focus on analysing
different licences. To place this analysis into context, we must remember that
from now on, when we say that a licence is a free software licence, what we

mean is that it fulfils the definitions of free software presented in section 1.1.1.

3.2.1. Types of licences

There is an enormous variety of free licences, although for practical reasons
most projects use a small group of four or five. On the one hand, many projects
don't want to or don't have the resources to design their own licence; on the
other hand, most users prefer to refer to a well-known licence than having to
read and analyse complete licences.

Bibliography

There is a compilation and discussion of the licences considered non-free or free but in-
compatible with the GPL from the point of view of the FSF in the Free Software Founda-
tion, "Free licences" [121]. The philosophically different point of view of the Open Source
Initiative is shown in its list (Open Source Initiative, "Open Source licences") [181]. We
can see discrepancies in some licences, such as the Apple Public Source Licence Ver. 1.2,
which the FSF considers non-free because of the obligation to publish all changes (even
if they are private), to notify Apple of redistributions, or the possibility of unilateral re-
vocation. Nevertheless, the pressure of this classification made Apple publish its version
2.0 in August 2003, which the FSF then did consider free.

© FUOC ¢ P07/M2101/02709 47

Free Software

It is possible to divide free software licences into two large families. The first
comprises licences that do not impose special conditions on the second redistri-
bution (in other words, that only specify that the software can be redistributed
or modified, but that do not impose special conditions for doing so, which
allows, for example, someone receiving the program to then redistribute it
as proprietary software): these are what we will refer to as permissive licences.
The second family, which we will call strong licences (or copyleft licences), in-
clude those that, in the style of GNU's GPL, impose conditions in the event of
wanting to redistribute the software, aimed at ensuring compliance with the
licence's conditions following the first redistribution. Whereas the first group
emphasises the freedom of the person receiving the program to do almost
anything they want with it (in terms of the conditions for future redistribu-
tions), the second emphasises the freedom of anyone who may potentially
receive some day a work derived from the program, obliging subsequent mod-
ifications and redistributions to respect the terms of the original licence.

The difference between these two types of licences has been (and remains) a
debatable issue amongst the free software community. In any case, we should
remember that they are all free licences.

3.2.2. Permissive licences

Permissive licences, also known sometimes as liberal or minimal licences, do
not impose virtually any conditions on the person receiving the software, and
yet, grant permission to use, redistribute and modify. From a certain point of
view, this approach can be seen as a guarantee of maximum freedom for the
person receiving the program. But from another, it may also be understood
as maximum neglect in respect of ensuring that once someone receives the
program, that person guarantees the same freedoms when redistributing that
program. In practice, these licences typically allow software that its author
distributes under a permissive licence to be redistributed with a proprietary

licence.

Among these licences, the BSD licence is the best known, to such an extent
that often permissive licences are referred to as BSD-type licences. The BSD
(Berkeley Software Distribution) licence stems from the publication of differ-
ent versions of Unix produced by the University of California in Berkeley, in
the US. The only obligation it imposes is to credit the authors, while it allows
redistribution in both binary and source code formats, without enforcing ei-
ther of the two in any case. It also gives permission to make any changes and

to be integrated into other programs without almost any restrictions.

Note

The term copyleft when ap-
plied to a licence, used main-
ly by the Free Software Foun-
dation to refer to its own li-
cences, has similar implications
to those referred to as strong li-
cences as used in this text.

© FUOC ¢ P07/M2101/02709 48

Free Software

Note

One of the consequences in practice of BSD-type licences has been to diffuse standards,
since developers find no obstacle to making programs compatible with a reference im-
plementation under this type of licence. In fact, this is one of the reasons for the ex-
traordinary and rapid diffusion of Internet protocols and the sockets-based programming
interface, because most commercial developers derived their implementation from the
Berkeley University one.

Permissive licences are fairly popular, and there is an entire family with sim-
ilar characteristics to the BSD: X Window, Tcl/Tk, Apache, etc. Historically,
these licences appeared because the corresponding software was developed
by universities with research projects financed by the US Government. The
universities did without selling these programs, on the assumption that they
had already been paid for by the Government, and therefore by the taxpayer,
which meant that any company or individual could use the software without
almost any restriction.

As already mentioned, on the basis of a program distributed under a permis-
sive licence another one can be created (in reality, a new version), which may
be proprietary. Critics of BSD licences see a danger in this feature, because it
does not guarantee the freedom of future program versions. Its supporters, on
the contrary, considered the ultimate expression of freedom and argue that,
ultimately, you can do (almost) everything you want with the software.

Most permissive licences are a word for word copy of Berkeley's original, mod-
ifying just what refers to authorship. In some cases, such as the Apache project
licence, it includes an additional clause, such as prohibiting giving the same
name as the original to redistributed versions. All of these licences usually in-
clude, like BSD, the prohibition to use the name of the rightholder for pro-
moting derived products.

At the same time, all the licences, whether BSD-type or not, include a limi-
tation of guaranteewhich is really a disclaimer, necessary in order to avoid le-
gal claims for implicit guarantees. Although this disclaimer in free software
has been broadly criticised, it is common practice with proprietary software,
which generally only guarantees that the medium is correct and that the pro-
gram in question runs.

© FUOC ¢ P07/M2101/02709 49

Free Software

Summary outline of the BSD licence
Copyright © the owner. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1) Redistributions of source code must reproduce the copyright notice, and list these
conditions and the disclaimer.

2) Redistributions in binary form must reproduce the copyright notice and list these
conditions and the disclaimer in the documentation.

3) Neither the name of the owner nor the names of its contributors may be used to
endorse products derived from this software without permission.

This program is provided "as is", and any express or implicit warranties, of mer-

chantability or fitness for a particular purpose are disclaimed. In no event shall the
owner be liable for any damage caused by its use (including loss of data, loss of prof-
its or business interruption).

Next we describe in brief a few permissive licences:

e X Window licence, version 11 (X11)

(http://www.x.org/Downloads_terms.html) [73].

This is the licence used to distribute the X Window system, the most ex-
tensively used windows system in the world of Unix, and also GNU/Lin-
ux environments. It is very similar to the BSD licence, which allows redis-
tribution, use and modification without practically any restrictions. It is
sometimes called the MIT licence (with a dangerous lack of precision, since
MIT has used other types of licences). Works derived from X Windows,

such as XFree86 are also distributed under this licence.

e Zope Public Licence 2.0 (http://www.zope.org/Resources/ZPL) [76].
This licence (commonly referred to as ZPL) is used for the distribution of
Zope (an application server) and other related products. It is similar to BSD,
with the curious feature that it expressly prohibits the use of trademarks

registered by the Zope Corporation.

e Apache licence.
This the licence under which most of the programs produced by the

Apache project are distributed. It is similar to the BSD licence.

There are some free programs that are not distributed with a specific licence,
rather the author explicitly declares them to be public domain. The main out-
come of this declaration is that the author waives all rights to the program,
which can therefore be modified, redistributed, used, etc., in any way. In prac-

tical terms, it is very similar to a program being under a BSD-type licence.

© FUOC » P07/M2101/02709 50 Free Software

3.2.3. Strong licences
The GNU General Public Licence (GNU GPL)

The General Public Licence of the GNU project (Free Software Foundation,
1991) [118] (better known by its English acronym GPL), which appears in
appendix C, is by far the most popular and well-known of all in the world of
free software. It was created by the Free Software Foundation (promoter of the
GNU project), and was originally designed to be the licence for all software
generated by the FSE However, its use has extended further becoming the
most used licence (for example, more than 70% of the projects announced on
Freshmeat are licensed under the GPL), even by flagship projects in the world
of free software, such as the Linux kernel.

The GPL licence is interesting from a legal point of view because it makes
creative use of copyright legislation, to achieve practically the opposite effect
of what that legislation intends: instead of limiting users rights, it guarantees
them. For this reason, this manoeuvre is frequently called copyleft (a play on
words by replacing the word "right" with "left"). Someone with a sense of hu-
mour even devised the slogan "copyleft, all rights reversed".

In basic terms, the GPL licence allows redistribution in binary form and in
source code, although in the case of a binary redistribution access to the source
code is also obligatory. It also allows modifications to be made without any
restrictions. However, it is only possible to redistribute code licensed under the
GPL integrated with other code (for example, using /inks) if it has a compatible
licence. This has been called the viral effect (although many consider this
name to be disrespectful) of the GPL, since once code has been published with
these conditions they can never be changed.

Note

A licence is incompatible with the GPL when it restricts any of the rights guaranteed by
the GPL, either explicitly by contradicting any of its clauses, or implicitly, by imposing
a new limitation. For example, the current BSD licence is compatible, but the Apache
licence is incompatible because it demands that publicity materials expressly mention
that combined work contains code of each and every one of the right holders. This does
not imply that programs with both licences cannot be used simultaneously, or even be
integrated. It just means that those integrated programs cannot be distributed, since it is
impossible to comply simultaneously with the redistribution conditions of both.

The GPL licence is designed to guarantee the freedom of source code at all
times, since a program published and licensed under its conditions may never
be proprietary. Moreover, neither that program nor modifications of it may be
published with a different licence other than the GPL. As already mentioned,
supporters of the BSD-type licences see a limitation of freedom in that clause,
whereas followers of the GPL believe that it is a way of ensuring that the soft-
ware will always be free. One way of looking at it would be to consider that the
GPL licence maximises the freedom of users, whereas the BSD licence max-
imises the freedom of developers. However, we should note that in the second

case we are referring to developers in general and not to authors, since many

© FUOC ¢ P07/M2101/02709 51

Free Software

authors consider the GPL licence to be more in their interest, since it obliges
competitors to publish their modifications (improvements, corrections, etc.)
if they redistribute their software, whereas with a BSD-type licence this is not
necessarily the case.

As regards this licence's contrary nature to copyright, it is because its phi-
losophy (and that of the Free Software Foundation) is that software should
not have owners (Richard Stallman, "Why software should not have owners",
1998) [207]. Although it is true that software licensed under the GPL has an
author, who is the person that allows copyright legislation to apply to it, the
conditions with which it is published confer such a nature on the software
that we can consider ownership to correspond to the person in possession of
the software and not to the person who has created it.

Of course, this licence also includes disclaimers in order to protect the authors.
Likewise, in order to protect the good reputation of the original authors, any
modification of a source file must include a note specifying the date and au-
thor of the modification.

The GPL also takes software patents into account, and demands that if the
source carries patented algorithms (as we have said, something common and
legal in the US, but currently irregular in Europe), either a licence for use of
the patent free of charge must be granted, or it cannot be distributed under
the GPL.

The latest version of the GPL licence, the second one, was published in 1991
(although at the time of writing the third one is in an advanced stage of prepa-
ration). Specifically bearing in mind future versions, the licence recommends
licensing under the conditions of the second one or any other subsequent one
published by the Free Software Foundation, which is what many authors do.
Others, however, including in particular Linus Torvalds (Linux creator), only
publish their software under the conditions of the second version of the GPL,
in a bid to distance himself from potential future evolutions of the Free Soft-

ware Foundation.

The third version of the GPL (http://gplv3.fsf.org) [115] intends to update it
to the current software scenario, in respect mainly of aspects such as patents,
DRM (digital rights management) and other limitations on software freedom.
For example, the draft currently available at the time of writing (May 2007)
does not allow a hardware manufacturer to block the use of certain software
modules if they do not carry a digital signature accrediting a determined au-
thor. An example of this practice occurs with digital video recorders TiVo,
which provide the source code to all their software (licenced with GPLv2) at

the same time as they do not allow modifications of the code to be used on

the hardware®,

®This case has even suggested the
use of the word tivoisation for oth-
er similar cases that have occurred.

© FUOC ¢ P07/M2101/02709 52

Free Software

Neither does the licence allow the software to be forcibly run on a pre-set
environment, such as occurs when the use of unsigned kernels is prohibited
on distributions that consider it appropriate for security reasons.

Note

There are several points in the GPLv3 licence that have generated a degree of opposition.
One of the opposing groups is the group of Linux kernel developers (including Linus Tor-
valds himself). They consider that the requirement to use signed software components
allows certain security features to be granted that would otherwise be impossible, at the
same time as their explicit prohibition would extend the licence to the hardware field.
Plus, the limitation established by the signatures mechanism would only occur with the
hardware and software platforms that are designed that way, meaning that the software
could be modified for its use on different hardware. In respect of this point, the FSF is in
favour of using signature mechanisms that advise against using unsigned components
for security reasons, but believes that not prohibiting those signatures mechanisms that
prevent the use of unsigned components, could give rise to scenarios where there would
be no hardware or software platforms on which to run those software modifications,
meaning that the liberty of free software would then become totally limited where mod-
ifying code is concerned.

The GNU Lesser General Public Licence (GNU LGPL)

The GNU Lesser General Public Licence, (Free Software Foundation, GNU
LGPL, version 2.1, February 1999) [119], commonly referred to by its initials
in English - LGPL - is another licence of the Free Software Foundation. De-
signed initially for its use with libraries (the L, originally stood for library), it
was recently modified to be considered the little sister (lesser) of the GPL.

The LGPL allows free programs to be used with proprietary software. The pro-
gram itself is redistributed as if it were under the GPL licence, but its integra-
tion with any other software package is allowed without virtually any restric-
tions.

As we can see, originally this licence was aimed at libraries, in order to promote
their use and development without encountering the integration problems
implied by the GPL. However, when it was realised that the pursued objec-
tive of making free libraries popular was not compensated by the generation
of free programs, the Free Software Foundation decided to change the library
to lesser and advised against its use, except in very occasional and particular
circumstances. Nowadays, there are many programs that are not libraries li-
censed under the terms of the LGPL. For example, the Mozilla navigator or
OpenOffice.org office suite are also licensed, among others, under the LGPL.

Note
As is the case with the GPL, the last published version of the LGPL is the second, al-
though there is already a template of the third version (http://gplv3.fsf.org/pipermail/in-

fo-gplv3/2006-July/000008.html) [116]. This new version is shorter than the previous
one since it refers all its text to the GPLv3 and merely highlights its differences.

Other strong licences

Other strong licences that deserve mentioning:

© FUOC » P07/M2101/02709 53 Free Software

e Sleepycat license (www.sleepycat.com/download/oslicense.html) [59].
This is the license under which the company Sleepycat (http://
www.sleepycat.com/) [60] distributes its programs (of which we could
mention the well-known Berkeley DB). It enforces certain conditions
whenever the program or works derived from it are redistributed. In par-
ticular, it obliges the source code to be offered (including the modifica-
tions in the case of a derived work) and for the redistribution to impose the
same conditions on the receiver. Although much shorter than the GNU

GPL, it is very similar in its main effects.

e eCos License 2.0 (http://www.gnu.org/licenses/ecos-license.html) [25].
This is the license under which eCos (http://sources.redhat.com/ecos/)
[24], a real-time operating system, is distributed. It is a modification of the
GNU GPL which does not consider that code linked to the programs it
protects, is subject to the clauses of the GNU GPL if redistributed. From
this point of view, its effects are similar to those of the GNU LGPL.

e Affero General Public License (http://www.affero.org/oagpl.html) [78].

It is an interesting modification of the GNU GPL which considers the case
of programs offering services via the web, or in general, via computer net-
works. This type of program represents a problem from the point of view of
strong licences. Since use of the program does not imply having received
it through a redistribution, even though it is licensed, under the GNU GPL
for example, someone can modity it and offer a service on the Web us-
ing it, without redistributing it in any way, and therefore, without being
obliged, for example, to distribute its source code. The Affero GPL has a
clause obliging that if the program has a means for providing its source
code via the web to whoever uses it; this feature may not be disabled. This
means that if the original author includes this capability in the source
code, any user can obtain it, and plus that redistribution is subject to the
conditions of the licence. The Free Software Foundation is considering in-
cluding similar provisions in version 3 of its GNU GPL.

e IBM Public License 1.0 (http://oss.software.ibm.com/developer-
works/opensource/license10.html) [40].
It is a licence that allows a binary redistribution of derived works only if
(among other conditions) a mechanism is contemplated for the person
receiving the program to receive the source code. The redistribution of
source code must be made under the same licence. This licence is also
interesting because it obliges the party redistributing the program with
modifications, to license automatically and free of charge any patents af-
fecting such modifications and that are the property of the redistributor
to the party receiving the program.

* Mozilla Public License 1.1 (http://www.mozilla.org/MPL/MPL-1.1.html)
[49].

© FUOC ¢ P07/M2101/02709 54

Free Software

This is an example of a free licence drawn up by a company. It is an evolu-
tion of the first free licence that Netscape Navigator had, which was very
important in its day because it was the first time that a well-known com-
pany decided to distribute a program under its own free licence.

3.2.4. Distribution under several licences

Up until now we have assumed that every program is distributed under a sin-
gle licence which specifies the conditions for use and redistribution. Howev-
er, an author can distribute works under different licences. In order to under-
stand this, we should remember that every publication is a new work, and
that different versions can be distributed with the only difference being in
their licence. As we will see, most of the time this translates into the fact that
depending on what the user wants to do with the software he will have to

observe the terms of one licence or another.

One of the best known examples of a double licence is the one for the Qt li-
brary, on which the KDE desktop environment is founded. Trolltech, a com-
pany based in Norway, distributed Qt with a proprietary licence, although
it waived payment for programs that didn't use it for profit. For this reason
and because of its technical characteristics, it was the KDE project's choice in
the mid-nineties. This gave rise to an intense controversy with the Free Soft-
ware Foundation because then KDE stopped being completely free software,
as it depended on a proprietary library. Following an extensive debate (dur-
ing which GNOME appeared as KDE's free competitor in the desktop environ-
ment), Trolltech decided to use the double-licence system for its star product:
the programs under the GPL could use a Qt GPL version, whereas if the in-
tention was to integrate it with programs that had incompatible licences with
the GPL (such as proprietary licences), a special licence had to be bought from
them. This solution satisfied all parties, and nowadays KDE is considered free

software.

Other well-known examples of dual licences are StarOffice and
OpenOffice.org, or Netscape Communicator and Mozilla. In both cases, the
first product is proprietary whereas the second is a free version (generally un-
der the conditions of several free licences). Although originally free projects
were limited versions of their proprietary siblings, over time they have fol-
lowed their own path, meaning that nowadays they have a fairly high level
of independence.

3.2.5. Program documentation
The documentation that comes with a program forms an integral part of it, as

do the comments on source code, as recognised, for example by the Spanish

Law on Intellectual Property. Given this level of integration, it would seem

© FUOC ¢ P07/M2101/02709 55

Free Software

logical that the same freedoms should apply to the documentation and that
it should evolve in the same way as the program: any modification made in a

program requires a simultaneous and consistent change in its documentation.

Most of this documentation tends to be coded as unformatted text files, since
the aim is to make it universally accessible with a minimum tools environ-
ment, and (in the case of free programs) normally includes a small introduc-
tion to the program (README), installation guidelines (INSTALL), some history
on the evolution and future of the program (CHANGELOG and TODO), authors
and copyright (AUTHORS and COPYRIGHT or COPYING), as well as the instruc-
tions for use. All of these, excluding authors and copyright, must be freely
modifiable as the program evolves. To authors we just need to add names and
credits without eliminating anything, and the copyright must only be modi-
fied if the conditions allow it.

The instructions for use are normally coded in more complex formats, since
they tend to be longer and richer documents. Free software demands that this
documentation may be changed easily, which in turn enforces the use of so-
called transparent formats, with known specifications and able to be processed
by free tools, such as, in addition to pure and clean text, the format of the
Unix manual pages, TexInfo, LaTeX or DocBook, without prejudice to also
being able to distribute the result of transforming these source documents into
more suitable formats for visualisation or printing, such as HTML, PDF or RTF
(normally more opaque formats).

However, program documentation is often prepared by third parties who have
not been involved in the development. Sometimes the documentation is of
a didactic nature, to facilitate the installation and use of a specific program
(HOWTO); sometimes it is more extensive documentation that covers several
programs and their integration, that compares solutions, etc., either in the
form of a tutorial or reference manual; sometimes it is a mere compilation of
frequently asked questions and their answers (FAQ). A noteworthy example is
the Linux documentation project (http://www.tldp.org) [44]. In this category
we could also include other technical documents, not necessarily about pro-
grams, whether the instructions for cabling a local network, making a solar

oven, repairing an engine or selecting a tools supplier.

These documents are halfway between mere program documentation and
highly technical and practical articles or books. Without prejudice to the free-
dom to read, copy, modify and redistribute, the author may wish to give opin-
ions that he does not want to be distorted, or at least not want any distortion
to be attributed to him; or he may wish to keep paragraphs, such as acknowl-
edgements; or make it forcible to modify others, such as the title. Although
these concerns can also arise with software itself, they have not been expressed
as vehemently in the world of free software as in the world of free documen-

tation.

© FUOC ¢ P07/M2101/02709 56

Free Software

3.3. Summary

In this chapter we have looked at the legal aspects that govern or influence
the world of free software. They form part of intellectual or industrial prop-
erty legislation conceived, in principle, to stimulate creativity by rewarding
creators for a specific period. Of the different types, so-called copyright is the
one that most affects free software, and properly applied it can be used to
guarantee the existence of free software in the form of free licences.

We have seen the importance of licences in the world of free software. And
we have also presented the enormous variety of existing licences, the grounds
on which they are based, their repercussions, advantages and disadvantages.
Certainly, we can say that the GPL tries to maximise the freedom of software
users, whether they receive the free software directly from its author or not,
whereas BSD-type licences try to maximise the freedom of the modifier or
redistributor.

Given what we have seen in this chapter, we can deduce that it is very im-
portant to decide early on what licence a project will have and to be fully
aware of its advantages and disadvantages, since a later modification tends
to be extremely difficult, especially if the number of external contributions
is very large.

To conclude, we would like to highlight the fact that free software and propri-
etary software differ solely and exclusively in terms of the licence under which
the programs are published. In the following chapters, however, we will see
that this purely legal difference may or may not affect the way software is de-
veloped, giving rise to a new development model, which can differ from the
"traditional" development methods used in the software industry to a greater
or lesser extent, depending on each case.

© FUOC ¢ P07/M2101/02709 57

Free Software

4. Developers and their motivations

"Being a hacker is lots of fun, but it's a kind of fun that takes a lot of effort. The effort
takes motivation. Successful athletes get their motivation from a kind of physical delight
in making their bodies perform, in pushing themselves past their own physical limits.
Similarly, to be a hacker you have to get a basic thrill from solving problems, sharpening
your skills and exercising your intelligence."

Eric Steven Raymond, "How to become a hacker"

4.1. Introduction

The partly anonymous and distributed way in which free software is devel-
oped has meant that for many years the human resources that it relies on
have been largely unknown. The result of this lack of knowledge has been to
mythologise, at least to some extent, the world of free software and the life
of those behind it, based on more or less broad stereotypes about the hacker
culture and computers. In the last few years, the scientific community has
made an enormous effort to get to know the people who participate in free
software projects better, their motivations, academic backgrounds, and other
potentially relevant aspects. From a purely pragmatic point of view, knowing
who is involved in this type of projects and why, can be extremely useful when
it comes to generating free software. Some scientists, mainly economists, psy-
chologists, and sociologists, have wanted to go further and have seen in this
community the seed of future virtual communities with their own rules and
hierarchies, in many cases totally different to those we know in "traditional"
society. One of the most important mysteries to resolve was to learn what
motivated software developers to participate in a community of this nature,
given the fact that financial benefits, at least direct ones, are practically non-

existent, whereas indirect ones are difficult to quantify.
4.2. Who are developers?

This section aims to provide a global overview of the people who spend their
time and energy participating in free software projects. The data that we show
stems mostly from scientific research in the last few years, the most significant
but by no means exclusive including Free/libre and open source software. Survey
and study, part IV: "Survey of developers", 2002 [126], and "Who is doing it?

Knowing more about libre software developers", 2001 [197].

Software developers are normally young people. The average age is around
twenty seven. The variation in age is significant, since the dominant group
is in the twenty one to twenty four age bracket, and the most frequently ap-
pearing value is twenty three. It is interesting to note how the age of joining
the free software movement peaks between eighteen and twenty five and is
particularly pronounced between twenty one and twenty three, which would

© FUOC ¢ P07/M2101/02709 58

Free Software

coincide with university age. This evidence stands in contrast to the claim that
free software is mostly a teenage thing, although there is an obvious involve-
ment of teenagers (about 20% of developers are under twenty). For certain,
what we can see is that most developers (60%) are in their twenties, with the
under-twenties and over-thirties equally sharing the remaining 40%.

From the age of joining we can deduce that there is an enormous universi-
ty influence on free software. This is not surprising, given that as we have
seen in the chapter on history, before free software was even known by that
name it was closely connected to higher education. Even today, student user
groups and universities continue to drive the use and expansion of free soft-
ware. Therefore, it is not surprising that more than 70% of developers have a
university education. This data is even more significant if we bear in mind that
the remaining 30% are not at university yet because they are still in school.
Even so, they are also involved and are no less appreciated than developers
who have never had access to higher education, but are IT enthusiasts.

The free software developer is normally male. The figures juggled by different
surveys on the presence of women in the community vary between 1% and
3%, competing with their own margin of error. At the same time, a majority
(60%) claims to have a partner, while the number of developers with children
is just 16%. Given the age brackets of free software developers, this data coin-
cides fairly accurately with a random sample, meaning that it may be consid-
ered "normal". The myth of the lonely developer whose enthusiasm for IT is
the only thing in his life is shown to be, as we can see, an exception rather
than the rule.

4.3. What do developers do?

Professionally speaking, free software developers describe themselves as soft-
ware engineers (33%), students (21%), programmers (11%), consultants
(10%), university professors (7%), etc. On the opposite end of the scale, we
find that they tend not to form part of sales or marketing departments (about
1%). It is interesting to note how many of them define themselves as software
engineers rather than programmers, almost three times as many, bearing in
mind, as we will see in the chapter on software engineering, that the appli-
cation of classical software engineering techniques (and even some modern

ones) is not really entrenched in the world of free software.

The university connection, which has already been proven, rears its head
again in this section. About one in three developers is a student or university
professor, which goes to show the tremendous collaboration between people
mainly from the software industry (the remaining two thirds) and the aca-

demic sphere.

© FUOC ¢ P07/M2101/02709 59

Free Software

At the same time, it has been possible to identify a large scope of mixed disci-
plines: one in five developers comes from a field that is not IT. This, combined
with the fact that there is also a similar number of non-university developers,
reflects a wealth of interests, origins, and certainly, composition of develop-
ment teams. It is very difficult to find a modern industry, if there is one, where
the degree of heterogeneity is as large as the one we can see in free software.

In addition to the approximately 20% of students, 64% of developers are most-
ly paid employees, whereas the proportion of self-employed developers is 14%.
Finally, just 3% claims to be unemployed, a significant fact since the survey
was conducted after the dotcom crisis began.

Note

The fact that free software business model, unlike with proprietary software, cannot be
achieved through the sale of licences has always propitiated heated debates as to how
programmers should earn their living. In the surveys that we refer to in this chapter, 50%
of developers claimed to have obtained direct or indirect financial compensation for their
involvement in free software. However, many others aren't so sure. Richard Stallman,
founder of the GNU project, when asked what a free software developer should do in
order to make money, tends to reply that he can work as a waiter.

4.4. Geographical distribution

Obtaining developers' geographical data is an issue that needs to be ap-
proached in a more scientific manner. The problem with the research shown
in this chapter is that because it is based on Internet surveys, open to anyone
wishing to participate, participation has depended to a great extent on the
sites it was posted, and the way in which it was announced. To be accurate, we
should note that the surveys did not aim to be representative in this regard,
but rather to obtain the answers and/or opinions of the largest possible num-
ber of free software developers.

However, we could venture to make a few statements on this issue, know-
ing that this data is not as reliable as previous data, and that therefore, the
margin of error is much greater. What seems to be a fact is that most free
software developers come from industrialised countries, and that the pres-
ence of developers from so-called Third World countries is rare. Consequently,
it shouldn't be surprising that the map of developers of the Debian project
(http://www.debian.org/devel/developers.loc) [187], for example, matches the
photographs of the Earth at night: where there is light - read "where there is
an industrialised civilisation" - that is where free software developers tend to
concentrate. This, which may seem logical at first sight, stands in contrast to
the potential opportunities that free software can offer Third World countries.

We can find a clear example in the following table, which contains the most
common countries of origin of the Debian project developers in the last four
years. There is a noticeable trend towards decentralisation of the project, ev-
ident from the fact that the growth in the number of developers from the
US, the country which most contributes, is lower than the average. And the

© FUOC ¢ P07/M2101/02709 60

Free Software

fact is that, in general, countries have managed to double their numbers of
volunteers in the last four years, and France, which has managed to multiply
its presence by five, is the clearest example in this regard. Considering that
Debian took its first steps on the American continent (in the US and in Cana-
da in particular), we can see that in the last few years the project has become
Europeanised. We assume that the following step will be the much sought-after
globalisation, with the incorporation of South American, African and Asian
countries (with the exception of Korea and Japan, which are already well rep-
resented), although the data in our possession (two collaborators from Egypt,
China or India, and one in Mexico, Turkey or Colombia in June 2003) are not

very promising in this sense.

In the world of free software (and not just in the case of Debian), there is an
extensive debate over the supremacy of Europe or the United States. Almost
all studies have shown that the presence of European developers is slightly
higher than the North American one, an effect that is mitigated by the fact
that Europe's population is greater than that of the US. Therefore, we are deal-
ing with a war of numbers, since the number of developers per capita is higher
among the North Americans. If we take into account the number of people
with Internet access instead of the total population, then Europe comes out
on top again.

In terms of countries, the areas with the highest levels of implantation (in
numbers of developers divided by the population) are Northern Europe (Fin-
land, Sweden, Norway, Denmark and Iceland) and Central Europe (Benelux,
Germany and the Czech Republic), followed by Australia, Canada, New
Zealand and the US. Despite its importance in absolute terms (due to the large
populations of France, Italy and Spain), the Mediterranean zone however, is
below average.

Table 1. Countries with the largest number of Debian developers

Country |01/07/1999(01/07/200001/07/2001/01/07/2002 20/06/2003
us 162 169 256 278 297
Germany 54 58 101 121 136
UK 34 34 55 63 75
Australia 23 26 41 49 52
France 11 11 24 44 51
Canada 20 22 41 47 49
Spain 10 11 25 31 34
Japan 15 15 27 33 33
Italy 9 9 22 26 31
Netherlands |14 14 27 29 29

© FUOC ¢ P07/M2101/02709 61

Free Software

Country |01/07/1999/01/07/200001/07/200101/07/2002 20/06/2003

Sweden 13 13 20 24 27

4.5. Dedication

The number of hours that free software developers spend on developing free
software is one of the big unknowns. We should also point out that this is one
of the main differences with company-generated software, where the members
of the team and the time spent by each team member on a development are
well known. The time that developers dedicate to free software can be taken
as an indirect measure of their level of professionalisation. Before showing
the data currently available, it is important to note that it has been obtained
from estimates given by developers in various surveys, so that in addition to
the inherent inaccuracies of this type of data gathering, we need to consider
a margin of error associated to how each developer interprets development
time. Hence, it is certain that many developers will not include the time spent
reading e-mails (or perhaps they will) and only specify the time they spend
programming and debugging. Therefore, all the figures we show next need to
be considered with due reserve.

The research conducted to date shows that each software developer spends
eleven hours a week on average ("Motivation of software developers in open
source projects: an internet-based survey of contributors to the Linux kernel",
2003) [143]. However, this figure can be deceptive, since there is an enormous
variation in the time spent by software developers. In the study Free/libre and
open source software. Survey and study, part IV: "Survey of developers", 2002
[126], 22.5% of those surveyed said that their contribution was less than two
hours per week, and this figure increased to 26.5% for those spending two to
five hours per week; between six and ten hours was the time spent by 21.0%,
while 14.1% spent between eleven and twenty hours per week; 9.2% claimed
that the time they spent developing free software was between twenty and
forty hours per week and 7.1%, over forty hours per week.

Table 2. Dedication in hours per week

Hours per week Percentage
Less than 2 hours 22.5%
Between 2 and 5 hours 26.1%
Between 5 and 10 hours 21.0%
Between 10 and 20 hours 14.1%
Between 20 and 40 hours 9.2%
More than 40 hours 7.1%

© FUOC ¢ P07/M2101/02709 62

Free Software

Note

In addition to showing the level of professionalisation of free software development
teams, the time spent in hours is a relevant parameter when it comes to making cost
estimates and comparisons with proprietary development models in the industry. With
free software, for now, we just have the end products (new software deliveries, synchro-
nisation of new code in versions systems...) which do not allow us to know how much
time the developer has spent on achieving them.

An analysis of these figures tell us that about 80% of developers perform these
tasks in their free time, whereas only one in five could consider that they
spend as much time on this activity as a professional. Later, in the chapter on
software engineering, we will see how this data matches developers' contribu-
tions, since they both appear to follow the Pareto law (vid. section 7.6).

4.6. Motivations

There has been much speculation as to the motivations that developers have
to develop free software, especially when it is done in free time (which, as we
have seen, corresponds to about 80% of developers). As in previous sections,
we only have the survey data, which is why it is important to realise that the
answers have been given by the developers themselves, meaning that they
may be more or less coherent with reality. The percentages shown next exceed
the 100% mark because there was an option for participants to select several

answers.

In any case, it appears from their answers that most want to learn and to de-
velop new skills (approximately 80%) and that many do so in order to share
knowledge and skills (50%) or to participate in a new form of cooperation
(about a third). The first data is not surprising, given that a professional with
more knowledge will be in greater demand than one with less. However, it
is not quite so easy to explain the second data, and it would even seem to
contradict Nikolai Bezroukov's opinion in "A second look at the cathedral and
the bazaar" (December, 1998) [91] that the leaders of free software projects are
careful not to share all the information in their possession in order to perpet-
uate their power. Meanwhile, the third most frequent choice is undoubtedly, a
true reflection of developers' enthusiasm about the way free software is created
in general; it is difficult to find an industry in which a group of lightly organ-
ised volunteers can -technologically speaking- stand up to the sector's giants.

Although the "classical" theory for explaining why free software developers
spend time contributing to this type of projects is reputation and indirect fi-
nancial benefits in the medium and long term, it would appear that developers
themselves disagree with these claims. Just 5% of those surveyed replied that
they develop free software in order to make money, whereas the number who
did so in order to establish a reputation rose to 9%, far from the answers given
in the preceding paragraph. In any case, it seems that researching developers'
motivations to become part of the free software community is a fundamental
task, which sociologists and psychologists will have to face in the near future.

© FUOC ¢ P07/M2101/02709 63

Free Software

4.7. Leadership

Reputation and leadership are two of the characteristics used to explain the
success of free software, and especially, the bazaar model, as we will see from
the chapter on software engineering. As we have seen in another chapter, on
software licences, there are certain differences between free software licences
and its equivalents in the documentation field. These differences stem from
the way of retaining authorship and authors' more accentuated opinion in
text than in programs.

In Free/libre and open source software. Survey and study, part IV: "Survey of de-
velopers" (2002) [126] a question was included that asked developers to point
out what people from a list were known to them, not necessarily personally.
The results, set out in table 3, show that these people can be divided into three
clearly distinct groups:

Table 3. Level of awareness of important developers

Developer Known for
Linus Torvalds 96.5%
Richard Stallman 93.3%
Miguel de Icaza 82.1%
Eric Raymond 81.1%
Bruce Perens 57.7%
Jamie Zawinski 35.8%
Mathias Ettrich 34.2%
Jorg Schilling 21.5%
Marco Pesenti Gritti 5.7%
Bryan Andrews 5.6%
Guenter Bartsch 3.5%
Arpad Gereoffy 3.3%
Martin Hoffstede 2.9%
Angelo Roulini 2.6%
Sal Valliger 1.2%

e A first group of people with clear philosophical and historical connota-
tions within the world of free software (although, as we know, they may
also have notable technical skills):

© FUOC » P07/M2101/02709 64 Free Software

1) Linus Torvalds. Creator of the Linux kernel, the most used free operating
system, and co-author of Just for fun: the story of an accidental revolutionary
[217].

2) Richard Stallman. Ideologist and founder of the Free Software Foundation
and developer on various GNU projects. Author of several important es-
says on free software ("Why free software is better than open source", 1998
[206], "Copyleft: pragmatic idealism", 1998 [205], "The GNU Project" [208]
and "The GNU Manifesto", 1985 [117]).

3) Miguel de Icaza. Co-founder of the GNOME project and Ximian Inc., and
developer in GNOME and MONO.

4) Eric Raymond. Promoter of the Open Source Initiative, author of "The
cathedral and the bazaar" [192] and main developer of fetchmail.

5) Bruce Perens. Former leader of the Debian project, promoter (converted)
of the Open Source Initiative and developer of the e-fence tool.

6) Jamie Zawinsky. Ex developer of Mozilla and famous for a letter of 1999
in which he left the Mozilla project arguing that the model they were
following would never bear fruit ("Resignation and postmortem", 1999)
[237].

7) Mathias Ettrich. Founder of KDE and developer of LyX and others.

e A second group consisting of developers. This survey took the names of
the leading developers of the six most popular projects according to the
FreshMeat free software download site. We can see that (with the excep-
tion of Linus Torvalds, for obvious reasons, and Jorg Schilling) the level of
awareness of these developers is small:

1) Jorg Schilling, creator of cdrecord, among other applications.

2) Marco Pesenti Gritti, main developer of Galeon.

3) Bryan Andrews, developer of Apache Toolbox.

4) Guenther Bartsch, creator of Xine.

5) Arpad Gereofty, developer of MPEGPlayer.

e A third group consisting of the names of the three last "people" in the

table. These names were invented by the survey team in order to check

the margin of error.

© FUOC ¢ P07/M2101/02709 65

Free Software

We can draw two conclusions from the results: the first is that we can consider
the margin of error to be small (less than 3%), and the second is that most
developers of the most popular free software applications are as well-known
as people who do not exist. This data should make those who allege that one
of the main reasons for developing free software is fame-seeking think twice.

4.8. Summary and conclusions

This chapter has attempted to shed some light on the largely unknown issue
of the people who dedicate time to free software. In general terms, we can say
that a free software developer is a young male with a university qualification
(or on the way to getting one). The relationship between the world of free
software and universities (students and professors) is very close, although the
developer who has nothing to do with the academic sphere still predominates.

In terms of hours of dedication, we have shown that there is an enormous
disparity, similar to what is postulated in the Pareto law. Developers' moti-
vations, in their own opinion, are far from being monetary and egocentric,
as economists and psychologists tend to suggest, and are mostly to do with
sharing and learning. Finally, we have shown a table of the most significant
personalities in the world of free software (including others who were not so
well-known, as we have seen) and shown that reputation in the enormous free
software community tends to depend on more than just coding a successful
free software application.

© FUOC ¢ P07/M2101/02709 66

Free Software

5. Economy

"Res publica non dominetur."
"Public things have no owner." (free translation)

Appeared in an IBM advert about Linux (2003)

This chapter looks at some economic aspects related to free software. We will
start by showing how free software projects are financed (when they are in-
deed financed, since in many cases they rely solely on efforts and resources
contributed voluntarily). Next, we will look at the main business models put
into practice by companies directly associated to free software. The chapter
ends with a small study of the relationship between free software and monop-
olies in the software industry.

5.1. Funding free software projects

Free software is developed in many different ways and using mechanisms to
obtain funds that vary enormously from case to case. Every free project has
its own way of financing itself, from the one consisting totally of volunteer
developers and using only altruistically ceded funds, to the one carried out by
a company that invoices 100% of its costs to an organisation interested in the
corresponding development.

In this section, we will focus on the projects where there is external funding
and not all the work is voluntary. In these cases, there is normally some form of
cash inflow, from an external source to the project, responsible for providing
funds for its development. This way, the free software that is built may be
considered, to some extent, to be the product of this external funding. This
is why it is common for that external source to decide (at least in part) how
the funds are spent and on what.

In some way, this external funding for free projects can be considered a kind of
sponsorship, although this sponsorship has no reason for being disinterested
(and usually it is not). In the following sections we discuss the most common
types of external funding. However, while learning about them, we should re-
member that these are just some of the ways that free software projects obtain
resources. But there are others, and of these the most important one (as we
have seen in chapter 4) is the work of many volunteer developers.

5.1.1. Public funding
A very special type of financing for free projects is public funding. The funding

body may be directly a government (local, regional, national or even suprana-
tional) or a public institution (for example, a foundation). In these cases, the

© FUOC ¢ P07/M2101/02709 67

Free Software

funding tends to be similar as for research and development projects, and in
fact it is common for the funding to come from public bodies that promote R
+D. Normally, the funding body will not seek to recover the investment (or at
least not directly), although it tends to have clear objectives (such as promot-
ing the creation of an industrial or research-based fabric, promoting a certain
technology or a certain type of application, etc.).

In most of these cases, there is no explicit financing of products or services
related to free software, but rather this tends to be the sub-product of a con-
tract with other more general objectives. For example, as part of its research
programs, the European Commission funds projects aimed at improving Eu-
ropean competitiveness in certain fields. Some of these projects have as part
of their objectives to use, improve and create free software within the scope
of the research (as a research tool or a product derived from it).

The motivations for this type of financing are very varied, but we can distin-
guish the following:

1) Scientific. This is the most frequent one in the case of publicly funded
research projects. Although its objective is not to produce software but
rather to investigate a specific field (whether IT-related or not), it is likely
to require programs to be developed as tools for achieving the project's
objectives. Usually the project is not interested in commercialising these
tools, or may even be actively interested in other groups using and im-
proving them. In such cases, it is fairly common to distribute them as free
software. In this way, the group conducting the research has partly ded-
icated funds to producing this software, so we can say that it has been
developed with public funding.

2) Promoting standards. Having a reference implementation is one of the
best ways of promoting a standard. In many cases this involves having
programs that form part of said implementation (or if the standard refers
to the software field, to be the implementation themselves). For the