Ly

G LU=
HDMINISTRARATION

AUTHOR: COORDINATOR:
A. SUPPRi BOLDTO . JOread EsTEUE

HEEEER FI'EE

SEEmm TECHMNOLOGY E
H B B ACACEMY

GNU/Linux
advanced
administration

Josep Jorba Esteve (coordinador)
Remo Suppi Boldrito

0000000000000000

mEE FrEE
Bt TECHMNOLOGW
H & ACACEMY

© FUOC » PID_00148358

GNU/Linux advanced administration

Josep Jorba Esteve |

| Remo Suppi Boldrito

Senior engineer and PhD in IT of the
Universidad Auténoma de Barcelona
(UAB). Professor of IT, Multimedia
and Telecommunications Studies

of the Open University of Catalonia
(UOQ).

First edition: September 2007

Telecommunications Engineer. PhD
in IT of the UAB. Professor of the
Department of Computer Architec-
ture and Operating Systems of the
UAB.

© Josep Jorba Esteve, Remo Suppi Boldrito

All rights are reserved
© of this edition, FUOC, 2009

Av. Tibidabo, 39-43, 08035 Barcelona

Design: Manel Andreu
Publishing: Eureca Media, SL

Copyright © 2019, FUOC. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license is included in the section entitled "GNU Free Documentation

License"

Preface

Software has become a strategic societal resource in the last few decades.
The emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software — sometimes also referred to as
“Open Source” or “Libre Software” — can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. These freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. The FTA attempts to respond to
this demand.

Introduction to the FTA

The Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?

The Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?

The FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (The Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
The Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

‘What about the licensing?

All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Evolution of this book

The FTA has reused existing course materials from the Universitat
Oberta de Catalunya and that had been developed together with
LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book
was translated into English with the help of the SELF (Science,
Education and Learning in Freedom) Project, supported by the
European Commission's Sixth Framework Programme. In 2009, this
material has been improved by the Free Technology Academy.
Additionally the FTA has developed a study guide and learning activities
which are available for learners enrolled in the FTA Campus.

Participation

Users of FTA learning materials are encouraged to provide feedback and
make suggestions for improvement. A specific space for this feedback is
set up on the FTA website. These inputs will be taken into account for
next versions. Moreover, the FTA welcomes anyone to use and distribute
this material as well as to make new versions and translations.

See for specific and updated information about the book, including
translations and other formats: hbep://fiacademy.org/materials/fim/2. For
more information and enrolment in the FTA online course programme,

please visit the Academy's website: hezp://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning
process and helps you to help others in theirs. I look forward to see you
in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens

President of the Free Knowledge Institute

Director of the Free technology Academy

The authors would like to thank the Foundation for the
Universitat Oberta de Catalunya for financing the first edition
of this work, and a large share of the improvements leading to
the the second edition, as part of the Master Programme in
Free Software offered by the University in question, where it is
used as material for one of the subjects.

The translation of this work into English has been made
possible with the support from the SELF Project, the SELF
Platform, the European Comission's programme on
Information Society Technologies and the Universitat Oberta
de Catalunya. We would like to thank the translation of the
materials into English carried out by lexia:park.

The current version of these materials in English has been
extended with the funding of the Free Technology Academy
(FTA) project. The FTA project has been funded with support
from the European Commission (reference no. 142706-
LLP-1-2008-1-NL-ERASMUS-EVC of the Lifelong Learning
Programme). This publication reflects the views only of the
authors, and the Commission cannot be held responsible for
any use which may be made of the information contained
therein.

© FUOC » PID_00148358 5

Contents

Module 1
Introduction to the GNU/Linux operating system
Josep Jorba Esteve

No vk wh =

Free Software and Open Source

UNIX. A bit of history

GNU/Linux systems

The profile of the systems administrator
Tasks of the administrator

GNU/Linux distributions

What we will look at...

Module 2
Migration and coexistence with non-Linux systems
Josep Jorba Esteve

1. Computer systems: environments

2. GNU/Linux services

3. Types of use

4. Migration or coexistence

5. Migration workshop: case study analysis
Module 3

Basic tools for the administrator
Josep Jorba Esteve

1. Graphics tools and command line
2. Standards

3. System documentation

4. Shell scripting

5. Package management tools

6. Generic administration tools

7. Other tools

Module 4

The Kernel

Josep Jorba Esteve

N ook wh -

The kernel of the GNU/Linux system
Configuring or updating the kernel
Configuration and compilation process
Patching the kernel

Kernel modules

Future of the kernel and alternatives

Tutorial: : configuring de kernel to the requirements of the user

GNU/Linux advanced administration

© FUOC » PID_00148358 6

Module 5

Local administration

Josep Jorba Esteve

Distributions: special features
Running levels and services
Monitoring system state

File Systems

Users and groups

Printing services

Disks and file systems management
Updating Software

Batch jobs

10. Tutorial: combined practices of the different sections

XN R WD

Module 6

Network administration

Remo Suppi Boldrito

Introduction to TCP/IP (TCP/IP suite)
TCP/IP Concepts

How to assign an Internet address
How to configure the network

DHCP Configuration

IP aliasing

IP Masquerade

NAT with kernel 2.2 or higher

How to configure a DialUP and PPP connection

X NGO A WD =

10. Configuring the network through hotplug
11. Virtual private network (VPN)
12. Advanced configurations and tools

Module 7

Server administration

Remo Suppi Boldrito

Domain name system (DNS)

NIS (YP)

Remote connection services: telnet and ssh
File transfer services: FTP

Information exchange services at user level
Proxy Service: Squid

OpenLdap (Ldap)

File services (NFS)

PN W N

Module 8

Data administration

Remo Suppi Boldrito

1. PostgreSQL

2. Mysql

3. Source Code management systems

GNU/Linux advanced administration

© FUOC » PID_00148358 7

4.

Subversion

Module 9
Security administration
Josep Jorba Esteve

PN EwWN =

Types and methods of attack

System security

Local security

SELinux

Network security

Intrusion detection

Filter protection through wrappers and firewalls
Security tools

Logs analysis

10. Tutorial: How to use security analysis tools

Module 10
Configuration, tuning and optimisation
Remo Suppi Boldrito

1.

Basic aspects

Module 11
Clustering

Remo Suppi Boldrito

1.
2.
3.

Introduction to High Performance Computing (HPC)
OpenMosix

Metacomputers, grid computing

GNU/Linux advanced administration

Introduction to
the GNU/Linux
operating system

Josep Jorba Esteve

© FUOC PID_00148470 Introduction to the GNU/Linux operating system

© FUOC PID_00148470 Introduction to the GNU/Linux operating system

Index
INtroducCtion.. ... 5
1. Free Software and Open SOUXCe..............cooeuuiiiiiiiiiiiiiiiiiiiiiineenaneens 7
2. UNIX. A bit of history...............cccooiiiiii e, 13
3. GNU/LIiNnuX SYSTEIMIS........oiiiiiiiiiiiiiiiiiiiiieiiie ettt eerieeeenaeeecnnaenes 21
4. The profile of the systems administrator................................... 25
5. Tasks of the administrator............c.....cooiiiiiiiiiiiiiiiiiiicees 30
6. GNU/Linux distributions.............cccoooiiiiiiiiiiiiiiiiiiiiieeeceeeeeiee 35
6.1. Debianc..cccceeueeet 39
6.2. Fedora Core 42
7. What we Will 100K at............coooiiiiiiiiiiiii e 47
ACHIVIHIES. ...t 51

BibLOGrapIlyottt eeaa e 52

© FUOC » PID_00148470 5 Introduction to the GNU/Linux operating system

Introduction

GNU/Linux systems [Joh98] are no longer a novelty; they have a broad range
of users and they are used in most work environments.

Their origin dates back to August 1991, when a Finnish student called Linus
Torvalds announced on a news list that he had created his own operating
system and that he was offering it to the community of developers for testing
and suggesting improvements to make it more usable. This was the origin of
the core (or kernel) of the operating system that would later come to be known

as Linux.

Separately, the FSF (Free Software Foundation), through its GNU project, had
been producing software that could be used for free since 1984. Richard Stall-
man (FSF member) considered free software that whose source code we could
obtain, study, modify and redistribute without being obliged to pay for it. Un-
der this model, the business does not reside in hiding the code, but rather in
the complementary additional software, tailoring the software to clients and
added services, such as maintenance and user training (the support we give)
whether in the form of materials, books and manuals, or training courses.

The combination of the GNU software and the Linux kernel, is what has
brought us to today's GNU/Linux systems. At present, the open source move-
ments, through various organisations, such as the FSF, and the companies
that generate the different Linux distributions (Red Hat, Mandrake, SuSe...),
including large companies that offer support, such as HP, IBM or Sun, have
given a large push to GNU/Linux systems to position them at a level of being
capable of competing and surpassing many of the existing closed proprietary

solutions.

GNU/Linux systems are no longer a novelty. GNU software started in the mid-
eighties, the Linux kernel, in the early nineties. And Linux is based on tested
UNIX technology with more than 30 years of history.

In this introductory unit we will revise some of the general ideas of the Open
Source and Free Software movements, as well as a bit of the history of Linux
and its shared origins with UNIX, from which it has profited from more than
30 years of research into operating systems.

© FUOC » PID_00148470 7 Introduction to the GNU/Linux operating system

1. Free Software and Open Source

Under the movements of Free Software and Open Source [OSIc] [OSIb] (also
known as open code or open software), we find various different forms of
software that share many common ideas.

A software product that is considered to be open source implies as its
main idea that it is possible to access its source code, and to modify
it and redistribute it as deemed appropriate subject to a specific open
source license that defines the legal context.

As opposed to a proprietary type code, whereby the manufacturer (software
company) will lock the code, hiding it and restricting the rights to it to itself,
without allowing the possibility of any modification or change that has not
been made previously by the manufacturer, open source offers:

a) access to the source code, whether to study it (ideal for education purposes)
or to modify it, to correct errors, to adapt it or to add more features;

b) software that is free of charge: normally, the software, whether in binary
form or source code form, can be obtained free of charge or for a modest sum
to cover packaging and distribution costs and added value;

c) standards that prevent monopolies of proprietary software, avoiding depen-
dency on a single choice of software manufacturer; this is more important for
a large organisation, whether a company or a state, which cannot (or should
not) put itself in the hands of a single specific solution and depend exclusively
upon it;

d) a model of progress that is not based on hiding information but on sharing
knowledge (like the scientific community) so as to progress more rapidly, and
with better quality since decisions are based on the community's consensus
and not on the whims of the companies that develop proprietary software.

Creating programs and distributing them together with the source code is
nothing new. Since the beginnings of IT and the Internet, things had been
done this way. However, the concept of open source itself, its definition and
the drafting of the conditions it has to meet date back to the middle of 1997.

© FUOC « PID_00148470 8

Eric Raymond and Bruce Perens promoted the idea. Raymond [Ray98] was
the author of an essay called The Cathedral and the Bazaar, which discusses
software development techniques used by the Linux community, headed by
Linus Torvalds, and the GNU community of the Free Software Foundation
(FSF), headed by Richard Stallman. Bruce Perens was the leader of the Debian
project, which was working on creating a GNU/Linux distribution that inte-
grated exclusively free software.

Note

Two of the most important communities are the FSE, with its GNU software project, and
the Open Source community, with Linux as its major project. GNU/Linux is the outcome
of their combined work.

An important distinction between these communities lies in the definitions
of open source and free software. [Deba] [PSO2]

The Free Software Foundation [FSF] is a non-profit corporation founded by
Richard Stallman, who believes that we should guarantee that programs are
within everyone's reach free of charge, freely accessible and for use as each
individual sees fit. The term free caused some reticence among companies.
In English, the word can mean "without cost or payment" or "not under the
control or in the power of another". The FSF sought both, but it was difficult
to sell these two ideas to businesses; the main question was: "How can we
make money with this?" The answer came from the Linux community (headed
by Linus Torvalds), when they managed to obtain something that the GNU
and FSF community had not yet achieved: a free operating system with an
available source code. It was at that moment that the community decided to
unite the various activities within the free software movement under a new

name: open source software.

Open Source was registered as a certification brand, to which software prod-
ucts complying with its specifications could adhere. This did not please ev-
erybody and there tends to be a certain divide or controversy over the two
groups of Open Source and FSF (with GNU), although really they have more
things in common than not.

To some extent, for the exponents of free software (such as the FSF), open
source is a false step, because it means selling out its ideals to the market,
leaving the door open for software that was free to become proprietary. Those
who back open source see it as an opportunity to promote software that would
otherwise only be used by a minority, whereas through its worldwide diffusion
and sharing, including with companies wishing to participate in open source,
we find sufficient strength to challenge proprietary software.

Introduction to the GNU/Linux operating system

Note

See The Catedral and the
Bazaar text at:

http://www.catb.org/~esr/

writings/cathedral-bazaar/
cathedral-bazaar/

© FUOC « PID_00148470 9

However, the idea pursued by both movements is to increase the use of
free software, thus offering an alternative to the sole solutions that large
companies wish to impose. The differences are more than practical.

Having established the basic ideas of the open source community, we reached
the point where we needed to clarify the criteria a software product should
meet in order to qualify as open source. We had to base it on the definition of
open source [OSIb] that was originally written by Bruce Perens in June 1997
in response to comments by developers of the Debian Linux distribution,
which was subsequently re-edited (with minor changes) by the Open Source
Initiative organisation (OSI). This body is responsible for controlling the open

source definition and licenses.

Note

Open source is regulated by a public definition used as the basis for drafting its software
licenses.

A small summary (interpretation) of the definition: Open source software [OS-
Ib], or software with an open source code, must fulfil the following require-

ments:

1) The software may be copied, given away or sold to third parties, without
requiring any payment for it.

2) The program must include source code and must allow distribution in
source code as well as in compiled form. Or, in all events, there must be a
well-publicised means of obtaining the source code (such as downloading via
the Internet, for example). Deliberately obfuscated or intermediary forms of
source code are not allowed. The license must guarantee that changes can be
made.

3) The software license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original
software. It allows the original code to be re-used.

4) The integrity of the author's source code may be required, in other words,
modifications may be presented in the form of patches to the original code, or
may be required to carry a different name or version number from the original.
This protects which modifications can be attributed to the author. This point
depends on what the software license says.

5) The license must not discriminate against any person or group of persons.
Access to the software must not be restricted. In some cases there may be legal
restrictions, as in the case of the United States for technology exports to third
countries. If there are restrictions of this type, they must be mentioned.

Introduction to the GNU/Linux operating system

Note

See the original definition of
Open Source at:

http://www.opensource.org/
docs/definition.php

In re-edition at:
http://www.opensource.org

© FUOC « PID_00148470 10

6) No discrimination against fields of endeavour. The software can be used in
any field of endeavour, even if it was not designed for that field. Commercial
use is allowed; nobody can stop the software from being used for commercial

purposes.

7) The license applies to everyone who receives the program.

8) If the software forms part of a larger product, it must keep the same license.
This makes sure that parts are not separated in order to form proprietary soft-
ware (in an uncontrolled manner). In the case of proprietary software, it must
inform that it contains parts (stating which parts) of open source software.

9) The license must not restrict any incorporated or jointly distributed soft-
ware, in other words, its incorporation should not act as a barrier for another
jointly distributed software product. This is a controversial issue since it ap-
pears to contradict the preceding point, basically it says that anyone can take
open source software and add it to their own software without this affecting
its license conditions (for example proprietary), although, according to the
preceding point, it would have to inform that there are parts of open source.

10) The license must be technology neutral, i.e. not restricted to certain de-
vices or operating systems. It is not allowed to mention exclusive distribution
means or to exclude possibilities. For example, under the open source licence,
it is not possible to restrict the distribution to CD, FTP or web form.

This definition of open source is not a software license in itself, but
rather a specification of the requirements that an open source software
license must fulfil.

In order to be considered an open source program, the program's license must
comply with the above specifications. The OSI is responsible for checking that
licences meet the specifications. On the Open Source Licenses web page you
can find the list of licenses [OSIa], of which one of the most famous and ex-
tensively used is the GPL (GNU Public License).

Under the GPL, the software may be copied and modified, but modifications
must be made public under the same license, and it prevents the code becom-
ing mixed with proprietary code so as to avoid proprietary code taking over
parts of open source. There is the LGPL license, which is practically identical
except that software with this license can be integrated into proprietary soft-
ware. A classic example is the Linux C library (with LGPL license); if it were
GPL, only free software could be developed, with the LGPL it can be used for
developing proprietary software.

Introduction to the GNU/Linux operating system

Note

Open Source Licences:

http://www.opensource.org/li-
censes/index.html

© FUOC « PID_00148470 11

Many free software projects, or with part open source and part proprietary
code, have their own license: Apache (based on BSD), Mozilla (MPL and NPL
of Netscape) etc. Basically, when it comes to identifying the software as open
source we can make our own license that complies with the above definition
(of open source) or we can choose to license it under an already established
license, or in the case of GPL, we are obliged for our license also to be GPL.

Having studied the concepts of open source and its licenses, we need to look
at to what extent it is profitable for a company to work on or produce open
source. If it were not attractive for companies, we would lose both a potential
client and one of the leading software producers at the same time.

Open source is also attractive for companies, with a business model that em-
phasises a product's added value.

Open source offers various attractive benefits where companies are concerned:

a) For software developer companies, it poses a problem: how to make money
without selling a product. A lot of money is spent on developing a program
and then profit has to be made on top. Well, there is no simple answer, it is not
possible with any type of software, the return lies in the type of software that
can generate profit beyond the mere sale. Normally, a study will be made as
to whether the application will become profitable if developed as open source
(most will), based on the premises that we will have a reduced development
cost (the community will help us), a reduced cost of maintenance or bug cor-
rection (the community can help with this quite quickly) and taking into ac-
count the number of users that the open source will provide, as well as the
needs that they will have for our support or documentation services. If the
balance is positive, then it will be viable to do without revenue from sales.

b) Increasing the number of users.

c) Obtaining greater development flexibility, the more people who intervene,
the more people will be able to detect errors.

d) Revenue will mostly come from support, user training and maintenance.

e) Companies that use software need to take many parameters into consid-
eration before choosing a software for managing tasks, such as performance,
reliability, security, scalability and financial cost. And although it would seem
that open source is already an evident choice on the cost basis, we must say
that there is open source software capable of competing with (or even sur-
passing) proprietary software on any other parameter. Also, we need to take
care with choosing the options or proprietary systems of a single manufactur-
er; we cannot rely solely on them (we may recall cases such as Sony's beta
format video versus VHS, or the MicroChannel architecture of IBM for PCs).

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 12

We need to avoid using monopolies with their associated risks: lack of price
competition, expensive services, expensive maintenance, little (or no) choice
of options etc.

f) For private users it offers a large variety of software adapted for common
uses, since a lot of the software has been conceived and implemented by peo-
ple who wanted to do the same tasks but could not find the right software.
Usually, in the case of a domestic user, a very important parameter is the soft-
ware cost, but the paradox is that precisely domestic users are more prone to
using proprietary software. Normally, domestic users will use illegal copies of
software products; recent statistics show levels of 60-70% of illegal domestic
copies. Users feel that merely by owning a home PC they are entitled to using
the software in some countries for it. In these cases, we are dealing with ille-
gal situations, which although they may not have been prosecuted, may be
one day, or are attempted to be controlled through license systems (or prod-
uct activations). Also, this has an indirect negative effects on free software,
because if users are extensively using proprietary software, it forces everyone
who wants to communicate them, whether banks, companies or public ad-
ministrations, to use the same proprietary software too, and they do have to
pay the product licenses. One of the most important battles for free software
is to capture domestic users.

g) Finally, states, as a particular case, can obtain important benefits from open
source software, since it offers them quality software at ridiculous prices com-
pared to the enormous cost of licenses for proprietary software. Moreover,
open source software can easily integrate cultural aspects (of each country)
such as language, for example. This last case is fairly problematic, since man-
ufacturers of proprietary software refuse to adapt their applications in some
regions — small states with their own language — or ask to be paid for doing so.

Introduction to the GNU/Linux operating system

Note

lllegal domestic copies are also
sometimes known as pirated
copies.

© FUOC » PID_00148470 13 Introduction to the GNU/Linux operating system

2. UNIX. A bit of history

As a predecessor to our GNU/Linux systems [Sta02], let's recall a bit about the
history of UNIX [Sal94] [Lev]. Originally, Linux was conceived as a Minix clone
(an academic implementation of UNIX for PC) and used some ideas developed
in proprietary UNIX; but, in turn, it was developed in open source, and with
a focus on domestic PCs. In this section on UNIX and in the following one
on GNU/Linux, we will see how this evolution has brought us to current day
GNU/Linux systems that are capable of competing with any proprietary UNIX
and that are available for a large number of hardware architectures, from the
simple PC to supercomputers.

Linux can be used on a broad range of machines. In the TOPS00 list, Note

we can find several supercomputers with GNU/Linux (see list on webpage
We can see the TOP500 list of
the fastest supercomputers at:

Center, a cluster, designed by IBM, with 10240 CPUs PowerPC with GNU/Lin- http://www.top500.org
ux operating system (adapted to the requirements of these machines). From

top500.0rg): for example, the MareNostrum, in the Barcelona Supercomputing

the list we can see that overall supercomputers with GNU/Linux make up 75%
of the list.

UNIX started back in 1969 (we now have almost 40 years of history) in the
Bell Telephone Labs (BTL) of AT&T. These had just withdrawn from a project
called MULTICS, which was designed to create an operating system so that a
large computer could support thousands of users simultaneously. BTL, General
Electric, and MIT were involved in the project. But it failed, in part, because
it was too ambitious for the time.

While this project was underway, two BTL engineers who were involved in
MULTICS: Ken Thompson and Dennis Ritchie, found a DEC PDP7 computer
that nobody was using, which only had an assembler and a loading program.
Thompson and Ritchie developed as tests (and often in their free time) parts
of UNIX, an assembler (of machine code) and the rudimentary kernel of the
operating system.

That same year, in 1969, Thompson had the idea of writing a file system for
the created kernel, in such a way that files could be stored in an ordered form
in a system of hierarchical directories. Following various theoretical debates
(which took place over about two months) the system was implemented in
just a couple of days. As progress was made on the system's design, and a
few more BTL engineers joined in, the original machine became too small,
and they thought about asking for a new one (in those days they cost about
100,000 US dollars, which was a considerable investment). They had to make

© FUOC » PID_00148470 14 Introduction to the GNU/Linux operating system

up an excuse (since the UNIX system was a free time development) so they
said they wanted to create a new text processor (an application that generated
money at that time), so they were given approval to purchase a PDP11.

UNIX dates back to 1969, with over 30 years of technologies developed
and used on all types of systems.

When the machine arrived, they were only given the CPU and the memory,
but not the disk or the operating system. Thompson, unable to wait, designed
a RAM disk in memory and used half of the memory as a disk and the other
half for the operating system that he was designing. Once the disk arrived,
they continued working on both UNIX and the promised text processor (the
excuse). The text processor was a success (it was Troff, an editor language sub-
sequently used for creating the UNIX man pages), and BTL started using the
rudimentary UNIX with the new text processor, with BTL thus becoming the
first user of UNIX.

At that time, the UNIX philosophy started to emerge [Ray02a]:

e Write programs that do one thing and do it well.
e Write programs to work together.
e Write programs to handle text streams.

Another important characteristic was that UNIX was one of the first systems
conceived to be independent of the hardware architecture, and this has al-
lowed it to be carried over to a large number of different hardware architec-
tures.

In November 1971, as there were external users, the need to document what
was being done resulted in the UNIX Programmer's Manual signed by Thomp-
son and Richie. In the second edition (June 1972), known as V2 (the edition
of the manuals was made to correspond with the UNIX version number), it
was said that the number of UNIX installations had already reached 10. And
the number continued to grow to about 50 in V5.

Then, at the end of 1973, it was decided to present the results at a conference Note

on operating systems. And consequently, various IT centres and universities

asked for copies of UNIX. AT&T did not offer support or maintenance to UNIX, See: http://www.usenix.org

which meant that users had to unite and share their knowledge by forming
communities of UNIX users. AT&T decided to cede UNIX to universities, but
did not offer them support or correct errors for them. Users started sharing
their ideas, information on programs, bugs etc. They created an association
called USENIX, meaning users of UNIX. Their first meeting in May 1974 was
attended by a dozen people.

© FUOC « PID_00148470 15

One of the universities to have obtained a UNIX license was the University of
California at Berkeley, where Ken Thompson had studied. In 1975, Thompson
returned to Berkeley as a teacher bringing with him the latest version of UNIX.
Two recently-graduated students, Chuck Haley and Bill Joy (nowadays one
of the vice-presidents of SUN Microsystems), joined him and started to work
together on a UNIX implementation.

One of the first things that they were disappointed with were the editors; Joy
perfected an editor called EX, until transforming it into VI, a full screen visual
editor. And the two developed a Pascal language compiler, which they added
to UNIX. There was a certain amount of demand for this UNIX implementa-
tion, and Joy started to produce it as the BSD, Berkeley Software Distribution
(or UNIX BSD).

BSD (in 1978) had a particular license regarding its price: it said that it corre-
sponded to the cost of the media and the distribution it had at that time. Thus,
new users ended up making some changes or incorporating features, selling
their remade copies and after a certain amount of time, these changes were
incorporated into the following version of BSD.

Joy also made a few more contributions to his work on the vi editor, such
as handling text terminals in such a way that the editor was independent of
the terminal where it was being used; he created the TERMCAP system as a
generic terminals interface with controllers for each specific terminal, so that
programs could be executed irrespective of the terminals using the interface.

The following step was to adapt it to different architectures. Until 1977, it
could only be run on PDP machines; that year adaptations were made for
machines of the time such as Interdata and IBM. UNIX Version 7 (V7 in June
1979) was the first portable one. This version offered many advances, as it
included: awk, lint, make, uucp; the manual already had 400 pages (plus two
appendices of 400 pages each). It also included the C compiler designed at BTL
by Kernighan and Ritchie, which had been created to rewrite most of UNIX,
initially in the assembler and then into C with the parts of the assembler
that only depended on the architecture. Also included were an improved shell
(Bourne shell) and commands such as: find, cpio and expr.

The UNIX industry also started to grow, and versions of UNIX (implementa-
tions) started to appear from companies such as: Xenix, a collaboration be-
tween Microsoft — which in its early days it also worked with UNIX versions
— and SCO for Intel 8086 machines (the first IBM PC); new versions of BSD
from Berkeley...

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 16

However, a new problem appeared when AT&T realised that UNIX was a valu-
able commercial product, the V7 license prohibited its study in academic in-
stitutions in order to protect its commercial secret. Until that time many uni-
versities used the UNIX source code in order to teach operating systems, and
they stopped using it to teach only theory.

However, everyone found their own way of solving the problem. In Amster-
dam, Andrew Tanenbaum (prestigious author of theory books on operating
systems) decided to write a new UNIX-compatible operating system without
using a single line of AT&T code; he called this new operating system Minix.
This is what would subsequently be used in 1991 by a Finnish student to cre-
ate his own version of UNIX, which he called Linux.

Bill Joy, who was still at Berkeley developing BSD (already in version 4.1), de-
cided to leave to a new company called SUN Microsystems, where he finished
working on BSD 4.2, which would later be modified to create SUN's UNIX,
SunOS (around 1983). Every company started developing its own versions:
IBM developed AIX, DEC - Ultrix, HP - HPUX, Microsoft/SCO - Xenix etc. As
of 1980, UNIX began as a commercial venture, AT&T released a final version
called UNIX System V (SV), on which as well as on the BSD 4.x, current UNIX
are based, whether on the BSD or the System V branch. SV was revised several
times and, for example, SV Release 4 was one of the most important ones. The
result of these latest versions was that more or less all existing UNIX systems
were adapted to each other; in practice they are versions of AT&T's System
V R4 or Berkeley's BSD, adapted by each manufacturer. Some manufacturers
specify whether their UNIX is a BSD or SV type, but in reality they all have a
bit of each, since later several UNIX standards were drawn up in order to try
and harmonise them; among these, we find IEEE POSIX, UNIX97, FHS etc.

Over time, the UNIX system split into several branches, of which the two main
ones were AT&T's UNIX or System V, and the University of California's BSD.
Most current UNIX systems are based on one or the other, or are a mixture
of the two.

However, at that time, AT&T (SVR4) was undergoing legal proceedings as a
telephone monopoly (it was the leading, if not the only, telephone company
in the US), which forced it to split into several smaller companies, causing
the rights to UNIX to start dancing between owners: in 1990 it was shared
50/50 by the Open Software Foundation (OSF) and UNIX International (UI),
later, UNIX Systems Laboratories (USL), which denounced the University of
Berkeley for its BSD copies, but lost, since the original license did not impose
any ownership rights over the UNIX code. Later, the rights to UNIX were sold
to Novell, which ceded a share to SCO, and as of today it is not very clear who
owns them: they are claimed through different fronts by Novell, the OSF and
SCO. A recent example of this problem is the case of SCO, which initiated a
lawsuit against IBM because according to SCO, it had ceded parts of the UNIX
source code to versions of the Linux kernel, which allegedly include some

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 17 Introduction to the GNU/Linux operating system

original UNIX code. The result as of today is that the matter remains in the
courts, with SCO turned into a pariah of the IT industry threatening Linux,
IBM, and other proprietary UNIX users, with the assertion that they own the
original rights to UNIX and that everyone else should pay for them. We will
have to see how this case evolves, and the issue of UNIX rights along with it.

First release (1969)

Fifth release (1973)

Sixth release (1976)

PXE CBTS/’ |

1BSD (1978)

/ Seventh release (1978) 2BSD

TS 3.0 (1979) 3BSD (1980)

XENIX (1980)
System Il
(1982) /+.1 BSD (1980)

(1983) SunOS (1982
System V

Linux

(1991)
Novell
Unixware

FreeBSD (1993)

Darwin (1999)

MacOS X (1999)

Figure 1. Historical summary of the different versions of UNIX

The current scenario with UNIX has changed a lot since Linux appeared in
1991, since as of 1995-99 it became a serious alternative to proprietary UNIX
systems, due to the large number of hardware platforms that it supports and
the extensive support for its progress of the international community and
companies. Different proprietary versions of UNIX continue to survive in the
market, because of their adaptation to industrial environments or for being
the best operating system in the market, or because there are needs that can
only be covered with UNIX and the corresponding hardware. Also, some pro-
prietary UNIX are even better than GNU/Linux in terms of reliability and per-
formance although the gap is shortening all the time, since companies with
their own proprietary UNIX systems are showing more and more interest in
GNU/Linux and offering some of their own developments for inclusion in

© FUOC « PID_00148470 18

Linux. We can expect a more or less slow extinction of proprietary UNIX ver-
sions towards Linux-based distributions from manufacturers adapted to their
equipment.

Overview of these companies:

e SUN: it offers a UNIX implementation called Solaris (SunOS evolution). It
started as a BSD system, but is now mostly System V with parts of BSD;
it is commonly used on Sun machines with a SPARC architecture, and in
multiprocessor machines (up to 64 processors). They promote GNU/Lin-
ux as a Java development environment and have a GNU/Linux distribu-
tion known as Java Desktop System, which has been widely accepted in a
number of countries. Also, it has started using Gnome as a desktop, and
offers financial support to various projects such as Mozilla, Gnome and
OpenOffice. We should also mention its initiative with its latest version of
Solaris UNIX, to almost totally free its code in Solaris version 10. Creating
a community for Intel and SPARC architectures, called OpenSolaris, which
has made it possible to create free Solaris distributions. On a separate note,
we should mention recent initiatives (2006) to free the Java platform un-
der GPL licenses, such as the Open]DK project.

e IBM: it has its proprietary version of UNIX called AIX, which survives in
some segments of the company's workstations and servers. At the same
time, it firmly supports the Open Source community, by promoting free
development environments (eclipse.org) and Java technologies for Linux,
it incorporates Linux in its large machines and designs marketing cam-
paigns to promote Linux. It also has influence among the community be-
cause of its legal defence against SCO, which accuses it of violating intel-
lectual property alleging that it incorporated elements of UNIX in GNU/
Linux.

e HP: it has its HPUX UNIX, but offers Linux extensive support, both in the
form of Open Source code and by installing Linux on its machines. It is
said to be the company that has made the most money with Linux.

e SGI: Silicon Graphics has a UNIX system known as IRIX for its graph-
ics machines, but lately tends to sell machines with Windows, and possi-
bly some with Linux. The company has been through difficulties and was
about to break up. It offers support to the Linux community in OpenGL
(3D graphics technology), different file systems and peripheral device con-
trol.

e Apple: joined the UNIX world recently (in the mid-nineties), when it de-
cided to replace its operating system with a UNIX variant. The core known
as Darwin derives from BSD 4.4; this Open Source kernel together with
some very powerful graphic interfaces is what gives Apple its MacOS X
operating system. Considered today to be one of the best UNIX and, at

Introduction to the GNU/Linux operating system

Note

Many companies with pro-
prietary UNIX participate in
GNU/Linux and offer some
of their developments to the
community.

© FUOC « PID_00148470 19

least, one of the most appealing in its graphics aspect. It also uses a large
amount of GNU software as system utilities.

e Linux distributors: both commercial and institutional, we will mention
companies such as Red Hat, SuSe, Mandriva (formerly known as Man-
drake), and non-commercial institutions such as Debian etc. These (the
most widespread distributions) and the smallest ones are responsible for
most of the development of GNU/Linux, with the support of the Linux
community and the FSF with GNU software, in addition to receiving con-
tributions from the abovementioned companies.

e BSD: although it is not a company as such, BSD versions continue to de-
velop, as well as other BSD clone projects such as the FreeBSD, netBSD,
OpenBSD (the UNIX considered to be the securest), TrustedBSD etc. These
operating systems will also result in improvements or software incorpora-
tions to Linux sooner or later. Additionally, an important contribution is
the Darwin kernel stemming from BSD 4.4, which Apple developed as the
Open Source kernel of its MacOS X operating system.

e Microsoft: apart from hindering the development of UNIX and GNU/Lin-
ux, by setting up obstacles through incompatibilities between different
technologies, it has no direct participation in the world of UNIX/Linux.
However, in its early days it developed Xenix (1980) for PCs, based on an
AT&T UNIX license, which although not sold directly was sold through
intermediaries, such as SCO, which acquired control in 1987, and was
renamed SCO UNIX (1989). As a curious side note, later it bought the
rights to the UNIX license from SCO (which in turn had obtained them
from Novell). Microsoft's motives for this acquisition are not clear, but
some suggest that there is a relation with the fact that it supports SCO in
the lawsuit against IBM. In addition, recently (2006), Microsoft reached
agreements with Novell (current provider of the SuSe distribution and the
OpenSuse community), in a number of bilateral decisions to give busi-
ness promotion to both platforms. But part of the GNU/Linux communi-
ty remains sceptical due to the potential implications for Linux intellec-
tual property and issues that could include legal problems for the use of
patents.

Another interesting historical anecdote is that together with a company called
UniSys, they launched a marketing campaign on how to convert UNIX sys-
tems to Windows systems; and although its purpose may be more or less com-
mendable, a curious fact is that the original web server of the business was
on a FreeBSD machine with Apache. Occasionally, it also pays "independent"
companies (some would say they are not very independent) to conduct com-
parative performance analyses between UNIX/Linux and Windows.

Introduction to the GNU/Linux operating system

Note

Open letter from Novell to the
GNU/Linux community
http://www.novell.com/linux/
microsoft/community_open_
letter.html

© FUOC » PID_00148470 20 Introduction to the GNU/Linux operating system

As a general summary, some comments that tend to appear in UNIX
bibliography point to the fact that UNIX is technically a simple and
coherent system designed with good ideas that were put into practice,
but we should not forget that some of these ideas were obtained thanks
to the enthusiastic support offered by a large community of users and
developers who collaborated by sharing technology and governing its
evolution.

And since history tends to repeat itself, currently that evolution and enthusi-
asm continues with GNU/Linux systems.

© FUOC » PID_00148470 21 Introduction to the GNU/Linux operating system

3. GNU/Linux systems

Twenty years ago the users of the first personal computers did not have many
operating systems to choose from. The market for personal computers was
dominated by Microsoft DOS. Another possibility was Apple's MAC, but at an
exorbitant cost in comparison to the rest. Another important option reserved
to large (and expensive) machines was UNIX.

A first option to appear was MINIX (1984), created from scratch by Andrew
Tanenbaum, for educational purposes in order to teach how to design and
implement operating systems [Tan87] [Tan06].

MINIX was conceived for running on an Intel 8086 platform, which was very
popular at the time as it was the basis for the first IBM PCs. The main advantage
of this operating system stemmed from its source code, which was accessible
to anyone (twelve thousand lines of code for assembler and C), and available
from Tanenbaum's teaching books on operating systems [Tan87]. However,
MINIX was an educational tool rather than an efficient system designed for
professional performance or activities.

In the nineties, the Free Software Foundation (FSF) and its GNU project, moti-
vated many programmers to promote quality and freely distributed software.
And aside from utilities software, work was being done on the kernel of an
operating system known as HURD, which would take several years to develop.

Meanwhile, in October 1991, a Finnish student called Linus Torvalds present-
ed version 0.0.1 of his operating system's kernel, which he called Linux, de-
signed for Intel 386 machines, and offered under a GPL license to communi-
ties of programmers and the Internet community for testing, and if they liked
it, for helping with its development. There was such enthusiasm that in no
time a large number of programmers were working on the kernel or on appli-
cations for it.

Some of the features that distinguished Linux from other operating systems
of the time and which continue to be applicable, and others inherited from
UNIX could be:

a) It is an open source operating system: anyone can have access to its sources,
change them and create new versions that can be shared under the GPL license
(which, in fact, makes it free software).

b) Portability: like the original UNIX, Linux is designed to depend very little
on the architecture of a specific machine; as a result, Linux is, mostly, inde-
pendent from its destination machine and can be carried to practically any

© FUOC « PID_00148470 22

architecture with a C compiler such as the GNU gcc. There are just small parts
of assembler code and a few devices that depend on the machine, which need
to be rewritten at each port to a new architecture. Thanks to this, GNU/Lin-
ux is one of the operating systems running on the largest number of architec-
tures: Intel x86 and 1A64, AMD x86 and x86_64, Sun's SPARC, MIPS of Silicon,
PowerPC (Apple), IBM S390, Alpha by Compaq, m68k Motorola, Vax, ARM,
HPPArisc...

¢) Monolith-type kernel: the design of the kernel is joined into a single piece
but is conceptually modular in its different tasks. Another school of design
for operating systems advocates microkernels (Mach is an example), where
services are implemented as separate processes communicated by a more basic
(micro) kernel. Linux was conceived as a monolith because it is difficult to
obtain good performance from microkernels (it is a hard and complex task).
At the same time, the problem with monoliths is that when they grow they
become very large and untreatable for development; dynamic load modules
were used to try to resolve this.

d) Dynamically loadable modules: these make it possible to have parts of the
operating system, such as file systems, or device controllers, as external parts
that are loaded (or linked) with the kernel at run-time on-demand. This makes
it possible to simplify the kernel and to offer these functionalities as elements
that can be separately programmed. With this use of modules, Linux could be
considered to be a mixed kernel, because it is monolithic but offers a number
of modules that complement the kernel (similar to the microkernel concepts).

e) System developed by an Internet-linked community: operating systems had
never been developed so extensively and dispersely, they tend not to leave
the company that develops them (in the case of proprietary systems) or the
small group of academic institutions that collaborate in order to create one.
The phenomenon of the Linux community allows everyone to collaborate
as much as their time and knowledge will permit. The result is: hundreds to
thousands of developers for Linux. Additionally, because of its open-source
nature, Linux is an ideal laboratory for testing ideas for operating systems at
minimum cost; it can be implemented, tested, measures can be taken and the
idea can be added to the kernel if it works.

Projects succeeded each other and — at the outset of Linux with the kernel —
the people of the FSF, with the GNU utility software and, above all, with the
(GCC) C compiler, were joined by other important projects such as XFree (a PC
version of X Window), and desktop projects such as KDE and Gnome. And the
Internet development with projects such as the Apache web server, the Mozilla
navigator, or MySQL and PostgreSQL databases, ended up giving the initial
Linux kernel a sufficient coverage of applications to build the GNU/Linux
systems and to compete on an equal level with proprietary systems. And to
convert the GNU/Linux systems into the paradigm of Open Source software.

Introduction to the GNU/Linux operating system

Note

Original Mach project:
http://www.cs.cmu.edu/afs/
cs/project/mach/public/www/
mach.html

© FUOC « PID_00148470 23

GNU/Linux systems have become the tip of the spear of the Open Source
community, for the number of projects they have been capable of drawing
together and concluding successfully.

The birth of new companies that created GNU/Linux distributions (packaging
of the kernel + applications) and supported it, such as Red Hat, Mandrake,
SuSe, helped to introduce GNU/Linux to reluctant companies and to initiate
the unstoppable growth we are now witnessing today.

We will also comment on the debate over the naming of systems such as GNU/
Linux. The term Linux is commonly used (in order to simplify the name) to
identify this operating system, although in some people's opinion it under-
mines the work done by the FSF with the GNU project, which has provided
the system's main tools. Even so, the term Linux, is extensively used commer-
cially in order to refer to the full operating system.

In general, a more appropriate term that would reflect the community's partic-
ipation, is Linux, when we are referring only to the operating system's kernel.
This has caused a certain amount of confusion because people talk about the
Linux operating system in order to abbreviate. When we work with a GNU/
Linux operating system, we are working with a series of utilities software that
is mostly the outcome of the GNU project on the Linux kernel. Therefore, the
system is basically GNU with a Linux kernel.

The purpose of the FSF's GNU project was to create a UNIX-style free software
operating system called GNU [Sta02].

In 1991, Linus Torvalds managed to join his Linux kernel with the GNU util-
ities when FSF still didn't have a kernel. GNU's kernel is called HURD, and
quite a lot of work is being done on it at present, and there are already beta
versions available of GNU/HURD distributions (see more under the chapter
"Kernel Administration").

It is estimated that in a GNU/Linux distribution there is 28% of GNU
code and 3% that corresponds to the Linux kernel code; the remain-
ing percentage corresponds to third parties, whether for applications or
utilities.

To highlight GNU's contribution [FSF], we can look at some of its contribu-
tions included in GNU/Linux systems:

e The C and C++ compiler (GCC)

e The bash shell

e The Emacs editor (GNU Emacs)

e The postscript interpreter (ghostscript)

Introduction to the GNU/Linux operating system

Note

GNU and Linux by Richard-
Stallman:
http://www.gnu.org/gnu/ lin-
ux-and-gnu.html.

© FUOC « PID_00148470 24

e The standard C library (GNU C library, or glibc)
e The debugger (GNU gdb)

e Makefile (GNU make)

e The assembler (GNU assembler or gas)

e The linker (GNU linker or gld)

GNU/Linux systems are not the only systems to use GNU software; for ex-
ample, BSD systems also incorporate GNU utilities. And some proprietary op-
erating systems such as MacOS X (Apple) also use GNU software. The GNU
project has produced high quality software that has been incorporated into
most UNIX-based system distributions, both free and proprietary.

It is only fair for the world to recognise everyone's work by calling the
systems we will deal with GNU/Linux.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 25 Introduction to the GNU/Linux operating system

4. The profile of the systems administrator

Large companies and organisations rely more and more on their IT resources
and on how these are administered and adapted to the required tasks. The
huge increase in distributed networks, with server and client machines, has
created a large demand for a new job in the marketplace: the so-called systems
administrator.

A systems administrator is responsible for a large number of important tasks.
The best systems administrators tend to have a fairly general practical and the-
oretical background. They can perform tasks such as: cabling installations or
repairs; installing operating systems or applications software; correcting sys-
tems problems and errors with both hardware and software; training users;
offering tricks or techniques for improving productivity in areas ranging from
word processing applications to complex CAD or simulator systems; financial-
ly appraising purchases of hardware and software equipment; automating a
large number of shared tasks, and increasing the organisation's overall work
performance.

The administrator can be considered the employee who helps the organisation
to make the most of the available resources, so that the entire organisation
can improve.

The relationship with the organisation's end users can be established in several
ways: either through training users or by offering direct assistance if problems
should arise. The administrator is the person responsible for ensuring that the
technologies employed by users function properly, meaning that the systems
satisfy users' expectations and do the tasks they need to fulfil.

Years ago, and even nowadays, many companies and organisations had no
clear vision of the system administrator's role. When business computing was
in its early days (in the eighties and nineties), the administrator was seen as
the person who understood computers (the "guru") responsible for installing
machines and monitoring or repairing them in case there were any prob-
lems. Normally, the job was filled by a versatile computer technician respon-
sible for solving problems as and when they appeared. There was no clear-cut
profile for the job because extensive knowledge was not required, just basic
knowledge of a dozen (at most) applications (the word processor, spreadsheet,
database etc.), and some basic hardware knowledge was enough for day to
day tasks. Therefore, anyone in the know who understood the issue could do
the job, meaning that usually administrators were not traditional computer
technicians and often knowledge was even communicated orally between an

existing or older administrator and a trainee.

© FUOC « PID_00148470 26

This situation reflected to some extent the prehistory of systems administra-
tion (although there are still people who think that it is basically the same
job). Nowadays, in the age of Internet and distributed servers, a systems ad-
ministrator is a professional (employed full-time exclusively for this purpose)
who offers services in the field of systems software and hardware. The systems
administrator has to execute several tasks destined for multiple IT systems,
mostly heterogeneous, with a view to making them operative for a number
of tasks.

Currently, systems administrators need general knowledge (theoretical and
practical) in a diversity of fields, from network technologies, to operating sys-
tems, diverse applications, basic programming in a large number of program-
ming languages, extensive hardware knowledge — regarding the computer it-
self as well as peripherals — Internet technologies, web-page design, database
management etc. And normally the profile is sought to correspond to the
company's area of work, chemistry, physics, mathematics etc. Therefore, it is
no surprise that any medium to large company has turned away from employ-
ing the available dogsbody towards employing a small group of professionals
with extensive knowledge, most with a university degree, assigned to different
tasks within the organisation.

The systems administrator must be capable of mastering a broad range
of technologies in order to adapt to a variety of tasks that can arise
within an organisation.

Because of the large amount of knowledge required, unsurprisingly there are
several sub-profiles for a systems administrator. In a large organisation it is
common to find different operating systems administrators (UNIX, Mac, or
Windows): database administrator, backup copies administrator, IT security
administrator, user help administrators etc.

In a smaller organisation, all or some of the tasks may be allocated to one or a
few administrators. The UNIX systems (or GNU/Linux) administrators would
be a part of these (unless there is one administrator responsible for all tasks).
Normally, the administrator's working platform is UNIX (or GNU/Linux in
our case), which requires enough specific elements to make this job unique.
UNIX (and its variants) is an open and very powerful operating system and,
like any software system, requires a certain level of adaptation, configuration
and maintenance in the tasks for which it will be used. Configuring and main-
taining an operating system is a serious job, and in the case of UNIX can be-
come quite frustrating.

Some important issues covered include the following:

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 27

a) The fact that the system is very powerful also means that there is a lot of
potential for adapting it (configuring it) for the tasks we need to do. We will
have to evaluate what possibilities it can offer us and which are appropriate
for our final objective.

b) A clear example of an open system is GNU/Linux, which will offer us per-
manent updates, whether to correct system bugs or to incorporate new fea-
tures. And, obviously, all of this has a considerable direct impact on the main-

tenance cost of administration tasks.

c) Systems can be used for critical cost tasks, or in critical points of the organ-
isation, where important failures that would slow down or impede the func-
tioning of the organisation cannot be allowed.

d) Networks are currently an important point (if not the most important), but
it is also a very critical problems area, due both to its own distributed nature
and to the system's complexity for finding, debugging and resolving problems
that can arise.

e) In the particular case of UNIX, and our GNU/Linux systems, the abundance
of both different versions and distributions, adds more problems to their ad-
ministration, because it is important to know what problems and differences
each version and distribution has.

In particular, system and network administration tasks tend to have different
features, and sometimes they are handled separately (or by different adminis-
trators). Although we could also look at it as the two sides of the same job,
with the system itself (machine and software) on the one hand, and the envi-
ronment (network environment) where the system coexists, on the other.

Usually, network administration is understood to mean managing the system
as part of the network and refers to the nearby services or devices required for
the machine to function in a network environment; it does not cover network
devices such as switches, bridges or hubs or other network devices, but basic
knowledge is essential in order to facilitate administration tasks.

In this course, we will first deal with the local aspects of the system itself and
secondly we will look at the tasks of administering a network and its services.

We have already mentioned the problem of determining exactly what a sys-
tems administrator is, because in the IT job market it is not very clear. It was
common to ask for systems administrators based on categories (established
by companies) of programmer or software engineer, which are not entirely
appropriate.

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 28

A programmer is basically a producer of code; in this case, an administrator

would not need to produce much, because it may be necessary for some tasks

but not for others. Normally, it is desirable for an administrator to have more

or less knowledge depending on the job category:

a)

b)

<)

d)

e)

8

h)

i

k)

Some qualification or university degree, preferably in IT, or in a field di-
rectly related to the company or organisation.

The profile of a systems administrator tends to include computer science
or enginnering studies or an education related to the organisation's sphere
of activity together with proven experience in the field and broad knowl-
edge of heterogeneous systems and network technologies.

It is common to ask for 1 to 3 years of experience as an administrator (un-
less the job is as an assistant of an already existing administrator). Experi-

ence of 3 to 5 years may also be requested.

Familiarity with or broad knowledge of network environments and ser-
vices. TCP/IP protocols, ftp, telnet, ssh, http, nfs, nis, ldap services etc.

Knowledge of script languages for prototyping tools or rapid task automa-
tion (for example, shell scripts, Perl, tcl, Python etc.) and programming
experience in a broad range of languages (C, C++, Java, Assembler etc.).

Experience in large applications development in any of these languages
may be requested.

Extensive knowledge of the IT market, for both hardware and software,
in the event of having to evaluate purchases or install new systems or
complete installations.

Experience with more than one version of UNIX (or GNU/Linux systems),
such as Solaris, AIX, AT&T System V, BSD etc.

Experience of non-UNIX operating systems, complementary systems that
may be found in the organisation: Windows 9x/NT/2000/XP/Vista, Mac
OS, VMS, IBM systems etc.

Solid knowledge of UNIX design and implementation, paging mecha-
nisms, exchange, interprocess communication, controllers etc., for exam-
ple, if administration tasks include optimising systems (tuning).

Knowledge and experience in IT security: construction of firewalls, au-
thentication systems, cryptography applications, file system security, se-

curity monitoring tools etc.

Experience with databases, knowledge of SQL etc.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 29 Introduction to the GNU/Linux operating system

1) Installation and repair of hardware and/or network cabling and devices.

© FUOC » PID_00148470 30 Introduction to the GNU/Linux operating system

5. Tasks of the administrator

As we have described, we could divide the tasks of a GNU/Linux administrator
(or UNIX in general) [Lev02] into two main parts: system administration and
network administration. In the following points we will show in summary
what these tasks in general consist of for GNU/Linux (or UNIX) systems; most
part of the content of this course manual will be treated in a certain amount
of detail; most of these administration tasks will be developed in this course
manual; for reasons of space or complexity, other parts of the tasks will be
explained superficially.

Administration tasks encompass a series of techniques and knowledge, of
which this manual only reflects the tip of the iceberg; in any case, the bibli-
ography attached to each unit offers references to expand on those subjects.
As we will see, there is an extensive bibliography for almost every point that
is treated.

System administration tasks could be summarised, on the one hand, as
to administer the local system, and on the other hand, to administer
the network.

Local system administration tasks (in no specific order)

e Switching the system on and off: any UNIX-based system has configurable
switching on and off systems so that we can configure what services are
offered when the machine switches on and when they need to be switched
off, so that we can program the system to switch off for maintenance.

e Users and groups management: giving space to users is one of the main
tasks of any systems administrator. We will need to decide what users will
be able to access the system, how, and with what permissions; and to es-
tablish communities through the groups. A special case concerns system
users, pseudousers dedicated to system tasks.

e Management of the system's resources: what we offer, how we offer it and
to whom we give access.

e Management of the file system: the computer may have different resources
for storing data and devices (diskettes, hard disks, optical disk drives etc.)
with different file access systems. They may be permanent or removable
or temporary, which will mean having to model and manage the process

© FUOC » PID_00148470 31 Introduction to the GNU/Linux operating system

of installing and uninstalling the file systems offered by related disks or

devices.

e System quotas: any shared resource will have to be administered, and de-
pending on the number of users, a quota system will need to be established
in order to avoid an abuse of the resources on the part of users or to dis-
tinguish different classes (or groups) of users according to greater or lesser
use of the resources. Quota systems for disk space or printing or CPU use

are common (used computing time).

e System security: local security, about protecting resources against undue
use or unauthorised access to system data or to other users or groups data.

e System backup and restore: (based on the importance of the data) peri-
odic policies need to be established for making backup copies of the sys-
tems. Backup periods need to be established in order to safeguard our da-
ta against system failures (or external factors) that could cause data to be-
come lost or corrupted.

e Automation of routine tasks: many routine administration tasks or tasks
associated to daily use of the machine can be automated easily, due to their
simplicity (and therefore, due to the ease of repeating them) as well as their
timing, which means that they need to be repeated at specific intervals.
These automations tend to be achieved either through programming in
an interpreted language of the script type (shells, Perl etc.), or by inclusion

in scheduling systems (crontab, at...).

e Printing and queue management: UNIX systems can be used as printing
systems to control one or more printers connected to the system, as well as
to manage the work queues that users or applications may send to them.

e Modem and terminals management. These devices are common in envi-
ronments that are not connected to a local network or to broadband:
— Modems make it possible to connect to a network through an inter-
mediary (the ISP or access provider) or to our system from outside, by
telephone access from any point of the telephone network.

— In the case of terminals, before the introduction of networks it was
common for the UNIX machine to be the central computing element,
with a series of dumb terminals that were used merely to visualise in-
formation or to allow information to be entered using external key-
boards; these tended to be series or parallel type terminals. Nowadays,
they are still common in industrial environments and our GNU/Linux
desktop system has a special feature: the virtual text terminals accessed
using the Alt+Fxx keys.

© FUOC » PID_00148470 32 Introduction to the GNU/Linux operating system

e System accounting (or log): to check that our system is functioning cor-
rectly, we need to enforce log policies to inform us of potential failures of
the system or performance of an application, service or hardware resource.
Or to summarise spent resources, system uses or productivity in the form
of a report.

e System performance tunning: system tuning techniques for an established
purpose. Frequently, a system is designed for a specific job and we can
verify that it is functioning correctly (using logs, for example), in order to
check its parameters and adapt them to the expected service.

e System tailoring: kernel reconfiguration. In GNU/Linux, for example, the
kernels are highly configurable, according to the features we wish to in-
clude and the type of devices we have or hope to have on our machine,
in addition to the parameters that affect the system's performance or are
obtained by the applications.

Network administration tasks

e Network interface and connectivity: the type of network interface we use,
whether access to a local network, a larger network, or broadband type
connection with DSL or ISDN technologies. Also, the type of connectivity

we will have, in the form of services or requests.

e Data routing: data that will circulate, where from or where to, depending
on the available network devices, and the machine's functions within the
network; it may be necessary to redirect traffic from/to one or more places.

e Network security: a network, especially one that is open (like Internet)
to any external point, is a possible source of attacks and, therefore, can
compromise the security of our systems or our users' data. We need to
protect ourselves, detect and prevent potential attacks with a clear and
efficient security policy.

e Name services: a network has an infinite number of available resources.
Name services allow us to name objects (such as machines and services) in
order to be able to locate them. With services such as DNS, DHCP, LDAP
etc., we will be able to locate services or equipment later...

e NIS (Network Information Service): large organisations need mechanisms
to organise and access resources efficiently. Standard UNIX forms, such
as user logins controlled by local passwords, are effective when there are
few machines and users, but when we have large organisations, with hi-
erarchical structures, users that can access multiple resources in a unified
fashion or separately with different permissions... simple UNIX methods
are clearly insufficient or impossible. Then we need more efficient systems

© FUOC » PID_00148470 33 Introduction to the GNU/Linux operating system

in order to control all of this structure. Services such as NIS, NIS+, LDAP
help us to organise this complexity in an effective manner.

e NFS (Network Fylesystems): often, on network system structures informa-
tion needs to be shared (such as files themselves) by all or some users.
Or simply, because of the physical distribution of users, access to the files
is required from any point of the network. Network file systems (such as
NES) offer us transparent access to files, irrespective of our location on the

network.

e UNIX remote commands: UNIX has transparent network commands, in
the sense that irrespective of the physical connection it is possible to run
commands that move information along the network or that allow access
to some of the machines' services. These commands tend to have an "r" in
front of them, meaning "remote", such as: rcp, rlogin, rsh, rexec etc., which

remotely enable the specified functionalities on the network.

e Network applications: applications for connecting to network services,
such as telnet (interactive access), FTP (file transmission), in the form of
a client application that connects to a service served from another ma-
chine. Or that we can serve ourselves with the right server: telnet server,
FTP server, web server etc.

e Remote printing: access to remote printing servers, whether directly to
remote printers or to other machines that offer their own local printers.
Network printing transparently for the user or application.

e E-mail: one of the main services offered by UNIX machines is the e-mail
server, which can either store mail or redirect it to other servers, if it is not
directed at its system's own users. In the case of the web, a UNIX system
similarly offers an ideal web platform with the right web server. UNIX has
the biggest market share with regards to e-mail and web servers, and this is
one of its main markets, where it has a dominating position. GNU/Linux
systems offer open source solutions for e-mail and web, representing one
of its main uses.

e X Window: a special model of interconnection is the graphics system of
the GNU/Linux systems (and most of UNIX), X Window. This system al-
lows total network transparency and operates under client-server models;
it allows an application to be totally unlinked from its visualisation and
interaction with it by means of input devices, meaning that these can be
located anywhere on the network. For example, we may be executing a
specific application on one UNIX machine while on another we may vi-
sualise the graphic results on screen and we may enter data using the lo-
cal keyboard and mouse in a remote manner. Moreover, the client, called
client X, is just a software component that can be carried onto other op-
erating systems, making it possible to run applications on one UNIX ma-

© FUOC » PID_00148470 34 Introduction to the GNU/Linux operating system

chine and to visualise them on any other system. So-called X terminals
are a special case — they are basically a type of dumb terminal that can
only visualise or interact (using a keyboard and mouse) with a remotely
run application.

© FUOC » PID_00148470 35 Introduction to the GNU/Linux operating system

6. GNU/Linux distributions

When speaking about the origins of GNU/Linux, we have seen that there is
no clearly defined unique operating system. On the one hand, there are three
main software elements that make up a GNU/Linux system:

1) The Linux kernel: as we have seen, the kernel is just the central part of the
system. But without the utility applications, shells, compilers, editors etc. we
could not have a complete system.

2) GNU applications: Linux's development was complemented by the FSF's ex-
isting software under the GNU project, which provided editors (such as emacs),
a compiler (gcc) and various utilities.

3) Third party software: normally open source. Additionally, any GNU/Lin-
ux system incorporates third party software which makes it possible to add a
number of extensively used applications, whether the graphics system itself
X Windows, servers such as Apache for web, navigators etc. At the same time,
it may be customary to include some proprietary software, depending on to
what extent the distribution's creators want the software to be free.

Because most of the software is open source or free, whether the kernel, GNU
or third-party software, normally there is a more or less rapid evolution of
versions, either through the correction of bugs or new features. This means
that in the event of wanting to create a GNU/Linux system, we will have to
choose which software we wish to install on the system, and which specific
versions of that software.

The world of GNU/Linux is not limited to a particular company or communi-
ty, which means that it offers everyone the possibility of creating their own
system adapted to their own requirements.

Normally, among these versions there are always some that are stable and oth-
ers that are under development in phase alpha or beta, which may contain er-
rors or be unstable, which means that when it comes to creating a GNU/Linux
system, we will have to be careful with our choice of versions. Another addi-
tional problem is the choice of alternatives, the world of GNU/Linux is suffi-
ciently rich for there to be more than one alternative for the same software
product. We need to choose among the available alternatives, incorporating
some or all of them, if we wish to offer the user freedom of choice to select
their software.

© FUOC * PID_00148470 36
Example

We find a practical example with the X Window desktop managers, which, for example,
offer us (mainly) two different desktop environments such as Gnome and KDE; both
have similar characteristics and similar or complementary applications.

In the case of a distributor of GNU/Linux systems, whether commercial or non-profit,
the distributor's responsibility is to generate a system that works, by selecting the best
software products and versions available.

In this case, a GNU/Linux distribution [Dis] is a collection of software that makes up an
operating system based on the Linux kernel.

An important fact that needs to be taken into account, and that causes more
than a little confusion, is that because each of the distribution's software pack-
ages will have its own version (irrespective of the distribution it is located on)
the allocated distribution number does not correspond to the software pack-
ages versions.

Example

Let's look at a few versions as an example (the versions that appear refer to the end of
2003):

a) Linux kernel: we can currently find distributions that offer one or more kernels, such as
those of the old series 2.4.x or generally, the latest 2.6.x in revisions of varying recentness
(the number x).

b) The X Window graphics option, in open source version, which we can find on prac-
tically all GNU/Linux systems, whether as some residual versions of Xfree86 such as the
ones handled by 4.x.y versions or as the new Xorg project (a fork of the previous one in
2003), which is more popular in various versions 6.x or 7.X.

c) Desktop or windows manager: we can have Gnome or KDE, or both; Gnome with
versions 2.x or KDE 3.x.y.

For example, we could obtain a distribution that included kernel 2.4, with XFree 4.4 and
Gnome 2.14; or another, for example, kernel 2.6, Xorg 6.8, KDE 3.1. Which is better? It
is difficult to compare them because they combine a mixture of elements and depending
on how the mixture is made, the product will come out better or worse, and more or
less adapted to the user's requirements. Normally, the distributor will maintain a balance
between the system's stability and the novelty of included versions. As well as provide
attractive application software for the distribution's users, whether it is of a general nature
or specialized in any specific field.

In general, we could analyse the distributions better on the basis of the
following headings, which would each have to be checked:

a) Version of the Linux kernel: the version is indicated by numbers X.Y.Z,
where normally X is the main version, which represents important
changes to the kernel; Y is the secondary version and usually implies im-
provements in the kernel's performance: Y is even for stable kernels and
uneven for developments or tests. And Z is the build version, which indi-
cates the revision number of X.Y, in terms of patches or corrections made.
Distributors tend not to include the kernel's latest version, but rather the
version that they have tested most frequently and have checked is stable
for the software and components that they include. This classical num-
bering scheme (which was observed for branches 2.4.x, until the first ones
of 2.6), was slightly modified to adapt to the fact that the kernel (branch
2.6.X) becomes more stable and that there are fewer revisions all the time

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 37

b)

<)

d)

e)

(meaning a leap in the first numbers), but development is continuous and
frenetic. Under the latest schemes, fourth numbers are introduced to spec-
ify in Z minor changes or the revision's different possibilities (with differ-
ent added patches). The version thus defined with four numbers is the
one considered to be stable. Other schemes are also used for the various
test versions (normally not advisable for production environments), using
suffixes such as -rc (release candidate), -mm, experimental kernels testing
different techniques, or -git, a sort of daily snapshot of the kernel's devel-
opment. These numbering schemes are constantly changing in order to
adapt to the kernel community's way of working, and its needs in order
to speed up the kernel's development.

Packaging format: this is the mechanism used for installing and admin-
istering the distribution's software. It tends to be known for the format
of the software packages it supports. In this case we normally find RPM,
DEB, tar.gz, mdk formats, and although every distribution usually offers
the possibility of using different formats, it tends to have a default format.
The software normally comes with its files in a package that includes in-
formation on installing it and possible dependencies on other software
packages. The packaging is important if third party software that does not
come with the distribution is used, since the software may only be found

in some package systems, or even in just one.

File system structure: the main file system structure (/) tells us where we
can find our fils (or the system's files) in the file system. GNU/Linux and
UNIX have some file location standards (as we will see in the tools unit),
such as FHS (filesystem hierarchy standard) [LinO3b]. Therefore, if we have
an idea of the standard, we will know where to find most of the files; then
it depends whether the distribution follows it more or less and tells us of

any changes that have been made.

System boot scripts: UNIX and GNU/Linux systems incorporate boot
scripts (or shell scripts) that indicate how the machine should start up,
what will be the process (or phases) followed, and what has to be done
at each step. There are two models for this start up, those of SysV or BSD
(this is a difference between the two main UNIX branches); and every dis-
tribution may choose one or the other. Although both systems have the
same functionality, they differ in the details, and this will be important
for administration issues (we will look at this under local administration).
In our case, the analysed systems, both Fedora and Debian, use the SysV
system (which we will look at under the unit on local administration), but
there are other distributions such as Slackware that use the other BSD sys-
tem. And there are some proposals (like Ubuntu's Upstart) of new options

for this start up aspect.

Versions of the system library: all the programs (or applications) that we
have on the system will depend on a (bigger or smaller) number of system

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 38

)

libraries for running. These libraries, normally of two types, whether static
joined to the program (libxxx.a files) or dynamic runtime loaded (libxxx.so
files), provide a large amount of utility or system code that the applica-
tions will use. Running an application may depend on the existence of
corresponding libraries and the specific version of these libraries (it is not
advisable, but can happen). A fairly common case affects the GNU C li-
brary, the standard C library, also known as glibc. An application may ask
us for a specific version of glibc in order to be run or compiled. It is a fair-
ly problematic issue and therefore, one of the parameters valued by the
distribution is knowing what version of the glibc it carries and possible
additional versions that are compatible with old versions. The problem
appears when trying to run or compile an old software product on a recent
distribution, or a very new software product on an old distribution.

The biggest change occurred in moving to a glibc 2.0, in which all the pro-
grams had to be recompiled in order to run correctly, and in the different
revisions numbered 2.x there have been a few minor modifications that
could affect an application. In many cases, the software packages check
whether the correct version of glibc is available or the name itself mentions
the version that needs to be used (example: package-xxx-glibc2.rpm).

X Window desktop: the X Window system is the graphics standard for
desktop visualisation in GNU/Linux. It was developed by MIT in 1984 and
practically all UNIX systems have a version of it. GNU/Linux distributions
have different versions such as Xfree86 or Xorg. Usually, X Window is an
intermediary graphic layer that entrusts another layer known as the win-
dows manager to visualise its elements. Also, we can combine the win-
dows manager with a variety of application programs and utilities to cre-
ate what is known as a desktop environment.

Linux mainly has two desktop environments: Gnome and KDE. Each one
is special in that it is based on a library of its own components (the dif-
ferent elements of the environment such as windows, buttons, lists etc.):
gtk+ (in Gnome) and Qtf (in KDE), which are the main graphics libraries
used to program applications in these environments. But in addition to
these environments, there are many more windows or desktop managers:
XCFE, Motif, Enlightement, Blacklce, FVWM etc., meaning that there is a
broad range of choice. In addition, each one makes it possible to change
the appearance (look & feel) of the windows and components as users'

desire, or even to create their own.

User software: software added by the distributor, mostly Open Source, for
common tasks (or not so common, for highly specialised fields).

Common distributions are so large that we can find hundreds to thou-
sands of these extra applications (many distributions have 1 to 4 CDs — ap-
proximately 1 DVD of extra applications). These applications cover prac-
tically all fields, whether domestic, administrative or scientific. And some
distributions add third party proprietary software (for example, in the case

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 39 Introduction to the GNU/Linux operating system

of an Office-type suite), server software prepared by the distributor, for
example an e-mail server, secure web server etc.

This is how each distributor tends to release different versions of their
distribution, for example, sometimes there are distinctions between a per-
sonal, professional or server version.

Often, this financial cost does not make sense, because the standard soft-
ware is sufficient (with a bit of extra administration work); but it can be
interesting for companies because it reduces server installation times and
maintenance and also optimises certain critical servers and applications

for the company's IT management.
6.1. Debian
The case of Debian [Debb] is special, in the sense that it is a distribution deliv-
ered by a community with no commercial objectives other than to maintain

its distribution and promote the use of free and open source software.

Debian is a distribution supported by an enthusiastic community of its own
users and developers, based on the commitment to use free software.

The Debian project was founded in 1993 to create the Debian GNU/Linux dis- Note

tribution. Since then it has become fairly popular and even rivals other com-
We can see the Debian So-
cial Contract documents at:

is a community project, the development of this distribution is governed by debian.org.

mercial distributions in terms of use, such as Red Hat or Mandrake. Because it

a series of policies or rules; there are documents known as the Debian Social
Contract, which mention the project's overall philosophy and Debian's poli-
cies, specifying in detail how to implement its distribution.

The Debian distribution is closely related to the objectives of the FSF and its
GNU Free Software project; for this reason, they always include "Debian GNU/
Linux" in their name; also, the text of their social contract has served as the
basis for open source definitions. Where their policies are concerned, anyone

who wishes to participate in the distribution project, must abide by them. Al- d b’
though not a collaborator, these policies can be interesting because they ex- e lan
plain how the Debian distribution operates. Figure 2

We should also mention a practical aspect where end users are concerned: De-
bian has always been a difficult distribution. It tends to be the distribution
used by Linux hackers, meaning those that gut the kernel and make changes,
low level programmers, who wish to be on the leading edge to test new soft-
ware, and to test unpublished kernel developments... in other words, all man-
ner of folk who are mad about GNU/Linux.

Earlier versions of Debian became famous for the difficulty of installing them.
The truth is that not enough effort had been made to make it easy for non-
experts. But with time things have improved. Now, the installation still re-

© FUOC » PID_00148470 40 Introduction to the GNU/Linux operating system

quires a certain amount of knowledge, but can be done following menus (text
menus, unlike other commercial versions that are totally graphic), and there
are programs to facilitate package installations. But even so, the first attempts
can be somewhat traumatic.

Normally, they tend to be variants (called flavours) of the Debian distribution.
Currently, there are three branches of the distribution: stable, testing and un-
stable. And, as their names indicate, stable is the one used for production en-
vironments (or users who want stability), testing offers newer software that has
been tested minimally (we could say it is a sort of beta version of Debian) that
will soon be included in the stable branch. And the unstable branch offers the
latest novelties in software, and its packages change over a short time period;
within a week, or even every day, several packages can change. All distribu-
tions are updatable from various sources (CD, FTP, web) or by a system known
as APT which manages Debian DEB software packages. The three distributions
have more common names assigned to them e.g. (in a Debian specific line

of time):

e Etch (stable)
e Lenny (testing)
e Sid (unstable)

The previous stable version was called Sarge (3.1r6), formerly Woody (that was
3.0). The most current one (in 2007), is the Debian GNU/Linux Etch (4.0). The
most extended versions are Etch and Sid, which are the two extremes. At this
time, Sid is not recommended for daily working environments (production),
because it may have features that are halfway through testing and can fail
(although this is uncommon); it is the distribution that GNU/Linux hackers
tend to use. Also, this version changes almost daily; it is normal, if a daily
update is wanted, for there to be between 10 and 20 new software packages
per day (or even more at certain points in the development).

Etch is perhaps the best choice for daily working environments, it is updated
periodically in order to cover new software or updates (such as security up-
dates). Normally, it does not have the latest software which is not included
until the community has tested it with an extensive range of tests.

We will comment briefly on some of this distribution's characteristics (current
default versions of Etch and Sid):

a) The current (stable) version consists of between 1 and 21 CDs (or 3 DVDs)
of the latest available version of Etch. Normally there are different possi-
bilities depending on the set of software that we find on physical support
(CD or DVD) or what we can subsequently download from the Internet,
for which we only need a basic CD (netinstall CD), plus the internet access
to download the rest upon demand. This distribution can be bought (at a

© FUOC « PID_00148470 41

b)

<)

d)

e)

8

h)

i)

1)

k)

D

symbolic cost for the physical support, thus contributing to maintain the
distribution) or can be downloaded from debian.org or its mirrors.

The testing and unstable versions tend not to have official CDs, but rather
a stable Debian can be converted into a festing or unstable version by chang-
ing the configuration of the APT packages system.

Linux kernel: the default kernels were 2.4.x series and included an optional
2.6.x, which is now the default in the latest versions. The focus of the stable
Debian is to promote stability and to leave users the option of another
more updated software product if they need it (in unstable or testing).

Packaging format: Debian supports one of the formats that offers most
facilities, APT. The software packages have a format known as DEB. APT
is a high level tool for managing them and maintaining a database of
instantly installable or available ones. Also, the APT system can obtain
software from various sources, CD, FTP, or web.

The APT system is updatable at any time, from a list of Debian software
sources (APT sources), which may be default Debian (debian.org) or third
party sites. This way we are not linked to a single company or to a single
subscription payment system.

Some of the versions used are, for example: Xfree86(4.x), glibc (2.3.x)...
Debian Sid has Xorg (7.1), glibc (2.3.x%)...

For the desktop, it accepts Gnome 2.16.x (default) or KDE 3.3.x (K Desktop
Environment). Unstable with Gnome 2.18.x and KDE 3.5.x.

In terms of interesting applications, it includes the majority of those we
tend to find in GNU/Linux distributions; in Sid: editors such as emacs (and
xemacs), gcc compiler and tools, Apache web server, Mozilla (or Firefox)
web browser, Samba software for sharing files with Windows etc.

It also includes office suites such as OpenOffice and KOffice.

Debian includes many personalised configuration files for distribution in
/etc directories.

Debian uses the lilo, boot manager by default, although it can also use
Grub.

The configuration for listening to TCP/IP network services, which is done,
as on most UNIX systems, with the inetd server (/etc/inetd.conf). Al-
though it also has an optional xinetd, which is becoming the preferred
choice.

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 42

m) There are many more GNU/Linux distributions based on Debian, since the
system can be easily adapted to make bigger or smaller distributions with
more or less software adapted to a particular segment. One of the most
famous ones is Knoppix, a single CD distribution, of the Live CD type (run
on CD), which is commonly used for GNU/Linux demos, or to test it on
a machine without previously installing it, since it runs from the CD, al-
though it can also be installed on the hard disk and become a standard De-
bian. Linex is another distribution that has become quite famous because
of its development supported by the local authority of the autonomous
community of Extremadura. At the same time, we find Ubuntu, one of the
distributions to have achieved the greatest impact (even exceeding Debian
in several aspects), because of its ease for building an alternative desktop.

Note

Debian can be used as a base for other distributions; for example, Knoppix is a distri-
bution based on Debian that can be run from CD without having to install it on the
hard drive. Linex is a Debian distribution adapted to the autonomous community of
Extremadura as part of its project to adopt open source software. And Ubuntu is a distri-
bution optimised for desktop environments.

& Aplicaciones Lugares Escritorio [(Gl [BN 1 lun 19 de mar, 20:27 @ B

=

Equipo

fle Edt View History Bookmarks Iools Help

& - - & @ @ httpspwww.debian.org/ e G

@ The Mozilla Organiza... [Latest Builds

>
About Deblan) News] Getting Deblan] Support | Developers' Corer { Site map] Search

About What is Debian?
Social Contract
Eree Sofware Debian is a free operating system (OS) for your computer. An
farus operating system is the set of basic programs and utilities that
Denaliens make your computer run. Debian uses the Linux kernel (the
Comaitds core of an operating system), but mogt-attha hasia OS taols -
News come from the GNU project; hence thj —
Weskly News
Events Debian GNU/Linux provides more thd P =
P
Gtting Deblan over 15490 packages, precompiled s4
R ey nice format for easy installation on y§ GNOME™ Aerca de Gnome - Noticias - Software - Resarrolladores - Amigos de Gnome - Contacte
CD ISO images Read more. Bienvenido al Escritorio Gnome
Network install - = Gnome incluye la mayoria de lo que ve en su
Bre-installed computadora, incluyendo el gestor de
archivos, navegador web, mends y muchas

Qeblanfackages Getting Started splcaciones.

The latest stable release of Debian i

W release was made on February 18th,
e available versions of Debian
Bone
Versién: 2.14.3
Distribuidor: Debian
Fecha de compilacién: 15/02/07

IB) [@ Debian -- The Universal Operating System - iceweasel || € Acerca del Escritorio de Gnome @ iniciando Capturar pantalla da =

Figure 3. Debian Sid environment with Gnome 2.14

6.2. Fedora Core

Red Hat Inc. [Redh] is one of the main commercial companies in the world
of GNU/Linux, with one of the most successful distributions. Bob Young and
Marc Ewing created Red Hat Inc. in 1994. They were interested in open source
software models and thought it would be a good way of doing business. Their
main product is their Red Hat Linux distribution (which we will abbreviate

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 43

to Red Hat), which is available to different segments of the market, individu-
al users (personal and professional versions), or medium or large companies
(with their Enterprise version and its different sub-versions).

Red Hat Linux is the main commercial distribution of Linux, oriented
at both the personal desktop and high range server markets. Addition-
ally, Red Hat Inc. is one of the companies that collaborates the most
in the development of Linux, since various important members of the
community work for it.

rednat fedord?

Figure 4

Although they work with an open source model, it is a company with com-
mercial objectives, which is why they tend to add value to their basic distri-
bution through support contracts, update subscriptions and other means. For
businesses, they add tailor-made software (or own software), to adapt it to the
company's needs, either through optimised servers or utility software owned
by Red Hat.

As of a certain point (towards the end of 2003), Red Hat Linux (version 9.x), de-
cided to discontinue its desktop version of GNU/Linux, and advised its clients
to migrate towards the company's business versions, which will continue to

be the only officially supported versions.

At that moment, Red Hat decided to initiate the project open to the commu-
nity known as Fedora [Fed], with a view to producing a distribution guided by
the community (Debian-style, although for different purposes), to be called
Fedora Core. In fact, the goal is to create a development laboratory open to
the community that makes it possible to test the distribution and at the same
time to guide the company's commercial developments in its business distri-

butions.

To some extent, critics have pointed out that the community is being used as
betatesters for technologies that will subsequently be included in commercial
products. Also, this model is subsequently used by other companies to create

Introduction to the GNU/Linux operating system

Note

See: http://fedoraproject.org

© FUOC « PID_00148470 44

in turn dual models of community and commercial distributions. Examples
such as OpenSuse appear (based on the commercial SuSe), or Freespire (based
on Linspire).

Normally, the duo of Red Hat and the Fedora community present a certain
conservative vision (less accentuated at Fedora) of the software elements it
adds to the distribution, since its main market is businesses, and it tries to
make its distribution as stable as possible, even if it means not having the lat-
est versions. What it does do as an added value is to extensively debug the
Linux kernel with its distribution and to generate corrections and patches to
improve its stability. Sometimes, it can even disable a functionality (or driver)
of the kernel, if it considers that it is not stable enough. It also offers many
utilities in the graphics environment and its own graphics programs, includ-
ing a couple of administration tools; in terms of graphics environments, it
uses both Gnome (by default) and KDE, but through its own modified envi-
ronment called BlueCurve, which makes the two desktops practically identi-
cal (windows, menus etc.).

The version that we will use will be the latest available Fedora Core, which
we will simply call Fedora. In general, the developments and features that are
maintained tend to be fairly similar in the versions released later, meaning
that most comments will be applicable to the different versions over time.
We should take into account that the Fedora [Fed] community tries to meet
a calendar of approximately 6 months for each new version. And there is a
certain consensus over what new features to include.

Red Hat, on the other hand, leaves its desktop versions in the hands of the
community and focuses its activity on the business versions (Red Hat Linux
Enterprise WS, ES, and AS).

Let's look briefly at a few characteristics of this Fedora Core distribution:

a) The current distribution consists of 5 CDs, the first one being the bootable
one, which serves for the installation. There are also extra CDs containing
documentation and the source code of most of the software installed with
the distribution. The distribution is also provided on 1 DVD.

b) Linux kernel: it uses kernels of the 2.6.x series, which can be updated with
the rpm packages system (see unit on the kernel) (through the yum utility
for example). Red Hat, for its part, subjects the kernel to many tests and
creates patches for solving problems, which are normally also incorporat-
ed into the version of the Linux community, since many important Linux

collaborators also work for Red Hat.

c) Packaging format: Red Hat distributes its software through the RPM pack-
ages system (red hat package manager), which are managed by the rpm com-
mand or the yum utilities (we will comment on this in the unit on local

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 45

d)

e)

)

h)

i)

1)

k)

D

m)

administration). RPM is one of the best available packaging systems (sim-
ilar to Debian's deb), and some proprietary UNIX systems are including it.
Basically, the RPM system maintains a small database with the installed
packages and verifies that the package to be installed with the rpm com-
mand is not already installed or does not enter into conflict with any oth-
er software package, or on the other hand that a software package or the
version required by the installation is not missing. The RPM package is
basically a set of compressed files containing information on dependen-
cies or on the software that it requires.

Regarding start up, it uses scripts of the System V type (which we will look

at in the unit on local administration).

Some of the versions used are: Xorg (7.x), glibc (2.5.x) etc.

The desktop accepts Gnome (default desktop) and KDE as an option.

Where interesting applications are concerned, it includes most of the ones
we tend to find with almost all GNU/Linux distributions: editors such as
emacs (and xemacs), gcc compiler and tools, Apache web server, Firefox/
Mozilla web browser, Samba software for sharing files with Windows etc.

It also includes office suites such as OpenOffice and KOffice.

Additional software can be obtained through the yum update services
(among others) in a similar way to the Debian APT system or using differ-
ent update tools, or from the Internet using RPM packages designed for
the distribution.

Fedora uses the Grub boot loader by default to start up the machine.

Red Hat has replaced the configuration for listening to the TCP/IP net-
work services, which for most UNIX systems uses the inetd server (/etc/
inetd.conf), with xinetd, which has a more modular configuration (direc-
tory/etc/xinetd.d).

Upon start up it has a program called Kudzu which verifies any changes
in hardware and detects newly installed hardware. We expect that it will
be left out of following versions, because there is now a new API called
HAL, which performs this function.

There are several more distributions based on the original Red Hat, which
retain many of its characteristics, in particular Mandriva (formerly Man-
drake): a French distribution, that was originally based on Red Hat and
that together with Red Hat remains among the leaders in terms of user
preferences (especially for desktop work). Mandriva develops its own soft-
ware and lots of wizards to help with the installation and administration

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 46

of the most common tasks, separating itself from its origin based on Red
Hat. At the same time, Red Hat business versions have also given rise to
a series of very popular free distributions in server environments, such as
CentOS [Cen] (which tries to maintain 100% compatibility with the busi-
ness Red Hat), and Scientific Linux [Sci] (specialised in scientific comput-
ing for scientific research projects). As for the packaging system, it is worth
noting that the rpm system is used for a large number of distributions,

including SuSe.

© Soquearta parkata| & rechay hora
J saw P isoma

er @ impnmiendo
EX mona

&rchivo Edtar Yer K Marcadores Hemamienta
g @

f
3 Release Notes fFedora Project) Fedora Weel @@, pegsstro de actividad del sisterma | Core 6 MIRed Hat Magazine

T Inssrhares g g { -] or [C

Smart Card Manager

S fedorc®

Terminado

@ | @ Mozma Firefox 3 (root@jserver.~]

Figure 5. Fedora Core desktop with Gnome

Regarding the community distribution Fedora Core, and its commercial ori-
gins in Red Hat:

a) It is a distribution created by a community of programmers and users
based on development; it does not have any support for updates or main-
tenance on the part of the manufacturer. This aspect comes to depend on
the community, as in the case of the Debian GNU/Linux distribution.

b) These versions are produced fairly rapidly, and new versions of the distri-
bution are expected approximately every six months.

c) It also uses the RPM package management system. In terms of the process
of updating the distribution's packages or installing other new ones, it can
be achieved by means of different tools, via update, through the Fedora
update channels or the new Yum update systems and in some cases Apt
(inherited from Debian, but that works with RPM files).

d) Other more technical aspects (some of which we will look at in later chap-

ters) can be found in the Fedora Core version notes.

Introduction to the GNU/Linux operating system

Note

See Fedora Release Notes at:
http://docs.fedoraproject.org/

© FUOC » PID_00148470 47 Introduction to the GNU/Linux operating system

7. What we will look at...

Having studied this "philosophical" introduction to the world of open source
and the history of UNIX and GNU/Linux systems, as well as defining the tasks
of a system administrator, we will look at how to handle the typical tasks
involved in administrating GNU /Linux systems.

Next, we will look at the different areas involved in administering GNU/Linux
systems. For each area, we will try to examine a few basic theoretical founda-
tions that will help us to explain the tasks that need to be done and to under-
stand how the tools that we will use work. Each subject will be accompanied
by a type of tutorial where we will look at a small work session or how some
tools are used. We will simply remember that, as mentioned in the introduc-
tion, the field of administration is very broad and any attempt at covering it
completely (like this one) is destined to fail because of its limited size; there-
fore, you will find an abundant bibliography for each subject (in the form of
books, web pages, web sites, howtos etc.), where you can broaden your knowl-
edge from the brief introduction we have made on the subject.

The subjects we will look at are as follows:

e Under the section on migration, we will gain a perspective of the type of
computer systems that are being used and in what work environments; we
will also look at how GNU/Linux systems adapt better or worse to each one
of them and will consider a first dilemma when it comes to introducing
a GNU/Linux system: do we change the system we had or do we do it in
stages with both coexisting?

e Under the section on tools we will study (basically) the set of tools that
the administrator will have to live with (and/or suffer with) on a daily
basis, and that could comprise the administrator's toolbox. We will talk
about the GNU/Linux standards, which will allow us to learn about com-
mon aspects of all GNU/Linux distributions, in other words, what we can
expect to find in any system. Other basic tools will be: simple (or not so
simple) editors; some basic commands for learning about the system's sta-
tus or for obtaining filtered information depending on what we are inter-
ested in; programming command scripts (or shell scripts) that will allow
us to automate tasks; characteristics of the languages we may find in the
administration tools or applications; basic program compilation processes
based on source codes; tools for managing the installed software, as well as
commenting on the dilemma over using graphics tools or command lines.

© FUOC » PID_00148470 48 Introduction to the GNU/Linux operating system

e Under the section concerning the kernel, we will observe the Linux kernel
and how, by tailoring it, we can adjust it better to the hardware or to the
services that we wish to provide from our system.

e Under the local administration heading, we will deal with those aspects
of the administration that we could consider "local" to our system. These
aspects may comprise most of the administrator's typical tasks when it
comes to handling elements such as users, printers, disks, software, pro-
cesses etc.

e In the section on the network, we will examine all the administration tasks
that concern our system and its neighbourhood in the network, irrespec-
tive of its type, and we will look at the different types of connectivity that
we can have with neighbouring systems or the services that we can offer
or receive from them.

e In the section on servers, we will look at a few typical configurations of
servers that we can commonly find on a GNU/Linux system.

e Inthe section on data, we will look at one of today's most relevant themes,
the data storage and consultation mechanisms that GNU/Linux systems
can offer us, in particular, database systems and version control mecha-

nisms.

e In the section on security, we will handle one of today's most relevant and
important issues regarding the whole GNU/Linux system. The existence
of a world interconnected by the Internet entails a series of important
dangers for our systems' correct functioning and gives rise to the issue of
reliability, both of these systems and of the data that we may receive or
offer through the net. Therefore, our systems need to provide minimum
levels of security and to prevent unauthorised access to or handling of our
data. We will look at the most frequent types of attacks, security policies
that can be enforced and the tools that can help us to control our security
level.

e In the section on optimisation, we will see how, because of the large num-
ber of servers and services on offer, as well as the large number of environ-
ments for which the system is designed, GNU/Linux systems tend to have
many functioning parameters that influence the performance of the ap-
plications or services on offer. We can (or should) try to extract maximum
performance by analysing the system's own configurations to adjust them
to the quality of service that we wish to offer clients.

e In the section on clustering, we will look at some of the techniques for
providing high performance computing on GNU/Linux systems, exten-
sively used in the fields of scientific computing and becoming more fre-
quently used by a large number of industries (pharmaceuticals, chemistry,

© FUOC » PID_00148470 49 Introduction to the GNU/Linux operating system

materials etc.), for researching and developing new products. In addition
to the organisation of various GNU/Linux systems into clusters, to ampli-
fy the performance of individual systems, by creating groups of systems
that make it possible to scale the services offered to an increased client
demand.

© FUOC « PID_00148470 51

Activities

1) Read the Debian manifesto at:
http://www.debian.org/social_contract

2) Read up on the different distributions based on Debian: Knoppix, Linex, Ubuntu variants.
Apart from each distribution's website, the address www.distrowatch.com offers a good guide
to the distributions and their status, as well as the software that they include. Through this
webpage or by accessing the different communities or manufacturers we can obtain the ISO
images of the different distributions.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 52
Bibliography
Other sources of reference and information (see references under Bibliography)

[LPD] The Linux Documentation Project (LDP), collection of Howtos, manuals and guides
covering any aspect of GNU/Linux.

[OSDb] Community with various websites, news, developments, projects etc.
[Sla] Open Source community news site and general sites on IT and the Internet.
[New] [Bar] Open Source News.

[Fre] [Sou] List of Open Source projects.

[Dis] Monitoring of GNU/Linux distributions and new features of the software packages. And
links to the sites for downloading the ISO images of the GNU/Linux distribution CDs/DVDs.

[His] [Bul] [LPD] General documentation and communities of users.

[Mag03] [JouO3] GNU/Linux magazines.

Introduction to the GNU/Linux operating system

Migration and
coexistence
with non-Linux
systems

Josep Jorba Esteve

© FUOC PID_00148467 Migration and coexistence with non-Linux systems

© FUOC PID_00148467 Migration and coexistence with non-Linux systems

Index
INtroducCtion.. ... S
1. Computer systems: environments.................ccoooeiiiiiiiiiiiiinennnnnn. 7
2. GNU/LINUX SEFVICES.........ccotuiiiiiiiiiiiiiiiiiii et 11
3. TYPES OF WSC...ouiiiiiiiiiiiiiiiiii ettt ettt 13
4. Migration or coexistence.................ccocoooiiiii 16
4.1. Identify service reqQUirementscc..ccceeueieiemuiiriiniieeiieeecenneeens 17
4.2, MiZratioOn PIOCESS ...cceiiieniiiuniiiniiiiiiiiiiiici ettt eea e eaaeeaes 18
5. Migration workshop: case study analysis..................c..o 24

5.1. Individual migration of a Windows desktop user to a

GNU/LINUX SYSTEIML ..utiiiiiiiiiiiiiiiiiiieitiieeetiie et e eenieeeenneeeenaaeee 24
5.2. Migration of a small organisation with Windows systems
and a few UNIX ... e 27
5.3. Migration of a standalone Windows server to a Samba server
running GNU/LINUX ...coeeiiiiiiiiiiiiiiiiiiiiicctin e eeeenaens 29
ACHIVIHI@S. ... 35

BibLIOZrapluy........ccoooiiiiiiiiiiiiiiii e 36

© FUOC » PID_00148467 5 Migration and coexistence with non-Linux systems

Introduction

Having had a brief introduction to GNU/Linux systems, the following step is
to integrate them in the work environment as production systems. According
to the current system in use, we can consider either a full migration to GNU/
Linux systems or a coexistence through compatible services.

Migration to the GNU/Linux environment may be done progressively by re-
placing services partially or by substituting everything in the old system by
GNU/Linux equivalents.

In current distributed environments, the most relevant concern is the client/
server environments. Any task in the global system is managed by one or more
dedicated servers, with the applications or users directly accessing the offered
services.

Regarding the work environment, whether in the simplest case of the individ-
ual user or the more complex case of a business environment, every environ-
ment will require a set of services that we will need to select, later adjusting
client and server machines so that they can access them or provide their use.

The services may encompass different aspects and there tend to be various
types for sharing resources or information. File servers, print servers, web
servers, name servers, e-mail servers etc., are common.

The administrator will normally select a set of services that need to be present
in the work environment according to the needs of the end users and/or the
organisation; and must configure the right support for the infrastructure, in
the form of servers that support the expected workload.

© FUOC » PID_00148467 7 Migration and coexistence with non-Linux systems

1. Computer systems: environments

During the process of installing some GNU/Linux distributions, we often find
that we are asked about the type of environment or tasks our system will be
dedicated to, which often allows us to choose a sub-set of software that will be
installed for us by default, because it is the most suited to the contemplated
job. We will often be asked if the system will be used as a:

a) Workstation: this type of system usually incorporates particular applica-
tions that will be used most frequently. The system is basically dedicated
to running these applications and a small set of network services.

b) Server: basically it integrates most network services or, in any case, a par-
ticular service, which will be the system's main service.

c) Dedicated calculation unit: calculation-intensive applications, renders,
scientific applications, CAD graphics etc.

d) Graphics station: desktop with applications that require interaction with
the user in graphic form.

We can normally set up our GNU/Linux system with one or more of these
possibilities.

More generally, if we had to separate the work environments [Mor03]
where a GNU/Linux system can be used, we could identify three main
types of environments: workstation, server and desktop .

We could also include another type of systems, which we will generically Note

call embedded devices or small mobile systems like a PDA, mobile telephone,

GNU/Linux systems can be
dedicated to server, worksta-

with smaller personalised kernels for them. tion or desktop functions.

portable video console etc. GNU/Linux also offers support for these devices,

Example

For example, we should mention the initial work done by the Sharp company on its
Zaurus models, a PDA with advanced Linux features (there are four or five models on the
market). Or also other Linux initiatives of an embedded type such as POS (point of sale)
terminals. Or video consoles such as GP2X, and Sony Playstation 3 linux support. Also
new smartphone/PDA platforms like Google Android, Nokia Maemo, Intel Moblin.

Regarding the three main environments, let's look at how each one of these
computer systems is developed in a GNU/Linux environment:

© FUOC » PID_00148467 8 Migration and coexistence with non-Linux systems

1) A workstation type system tends to be a high performance machine
used for a specific task instead of a general set of tasks. The workstation
classically consisted of a high performance machine with specific hard-
ware suited to the task that needed doing; it was usually a Sun's SPARC,
IBM's RISC or Silicon Graphics machine (among others) with its variants
of proprietary UNIX. These high cost machines were oriented at a clear
segment of applications, whether 3D graphic design (in the case of Silicon
or Sun) or databases (IBM or Sun). Nowadays, the performance of many
current PCs is comparable (although not equal) to these systems and the
frontier between one of these systems and a PC is no longer clear, thanks
to the existence of GNU/Linux as an alternative to the proprietary UNIX

versions.

2) A server type system has a specific purpose, which is to offer services to
other machines on the network: it offers a clearly distinct set of charac-
teristics or functionality from other machines. In small computer systems
(for example, with less than 10 machines), there is not usually an exclu-
sive server system, and it tends to be shared with other functionalities, for
example as a desktop type machine. Medium systems (a few dozen ma-
chines) tend to have one or more machines dedicated to acting as a serv-
er, whether as an exclusive machine that centralises all services (e-mail,
web etc.) or as a pair of machines dedicated to sharing the main services.

In large systems (hundreds or even thousands of machines), the load
makes it necessary to have a large group of servers, with each one usual-
ly exclusively dedicated to a particular service, or even with a set of ma-
chines exclusively dedicated to one service. Moreover, if these services
are provided inwards or outwards of the organisation, through access by
direct clients or open to the Internet, depending on the workload to be
supported, we will have to resort to SMP multicore type solutions (ma-
chines with multiple processors/code) or of the cluster type (grouping of
machines that distribute a particular service's load).

The services that we may need internally (or externally) can encompass
(among others) the following service categories:

a) Applications: the server can run applications and as clients we just
observe their execution and interact with them. For example, it may
encompass terminals services and web-run applications.

b) Files: we are offered a shared and accessible space from any point

of the network where we can store/recover our files.

c) Database: centralisation of data for consultation or production by
the system's applications on the network (or for other services).

© FUOC » PID_00148467 9 Migration and coexistence with non-Linux systems

d) Printing: there are sets of printers and their queues and jobs sent
to them from any point of the network are managed.

e) E-mail: offers services for receiving, sending or resending incoming

or outgoing mail.

f) Web: server (or servers) belonging to the organisation for internal
or external use by customers.

g) Network information: for large organisations it is vital for finding
the services offered or the shared resources; or users themselves, if
they need services that make this localisation possible and to consult
the properties of each type of object.

h) Names services: services are required to name and translate the
different names by which the same resource is known.

i) Remote access services: in the case of not having direct access, we
need alternative methods that allow us to interact from the outside,
giving us access to the system that we want.

j) Name generation services: in naming machines, for example, there
may be a highly variable number of them, or they may not always be
the same ones. We need to provide methods for clearly identifying
them.

k) Internet access services: many organisations have no reasons for

direct access and rather have access through gateways or proxies.

1) Filtering services: security measures for filtering incorrect informa-
tion or information that affects our security.

3) A desktop type machine would simply be a machine used for routine
everyday computer tasks (such as our home or office PC).

© FUOC « PID_00148467 10

Example

For example, we could establish the following as common tasks (included in some of the
most used GNU/Linux programs):

Office tasks: providing the classical software of an office suite: word processor, spread-
sheet, presentations, a small database etc. We can find suites like OpenOffice (free),
StarOffice (paid for, produced by Sun), KOffice (by KDE), or various programs like
Gnumeric, AbiWord which would form part of a suite for Gnome (known as Gnome-
Office).

Web browser: browsers such as Mozilla Firefox, Konqueror, Epiphany etc.

Hardware support (USB, storage devices...). Supported in GNU/Linux by the appro-
priate drivers, usually provided in the kernel or by the manufacturers. There are also
new hardware analysis tools such as kudzu (Fedora/Red Hat) or discover (Debian).
Media and entertainment (graphics, image processing, digital photography, games
and more). In GNU/Linux there is an enormous amount of these applications of a
very professional quality: Gimp (touching up photographs), Sodipodi, Xine, Mplay-
er, gphoto etc.

Connectivity (remote desktop access, access to other systems). In this regard, GNU/
Linux has an enormous amount of own tools whether TCP/IP or FTP, telnet, web
etc., or X Window, which has remote desktop capabilities for any UNIX machine,
rdesktop (for connecting to Windows desktops), or VNC (for connecting to UNIX,
Windows, Mac etc.).

Migration and coexistence with non-Linux systems

Web sites

Open Source office suites:

http://openoffice.org
http://www.koffice.org/
http://live.gnome.org/Gnome-
Office

© FUOC » PID_00148467 11 Migration and coexistence with non-Linux systems

2. GNU/Linux services

GNU/Linux has servers adapted for any work environment.

The service categories we have mentioned have equivalents that we can pro-
vide from our GNU/Linux systems to all other machines on the network (and
from which they can also act as clients):

a) Applications: GNU/Linux can provide remote terminal services, whether
by direct connection through series interfaces of dumb terminals, serving
to visualise or interact with the applications. Another possibility is remote
connection in text mode, from another machine via TCP/IP services such
as rlogin, telnet, or in a secure way with ssh. GNU/Linux provides servers
for all these protocols. In the case of running graphics applications, we
have remote solutions through X Window, any UNIX, Linux or Windows
client (or others) with an X Window client can visualise the running of the
environment and its applications. At the same time, there are other solu-
tions such as VNC for the same problem. Regarding the issue of web-run
applications, GNU/Linux has the Apache server, and any of the multiple
web running systems are available, whether Servlets (with Tomcat), JSP,
Perl, PHP, xml, webservices etc., as well as web application servers such as
BEA Weblogic, IBM Websphere, JBoss (free) which are also run on GNU/
Linux platforms.

b) Files: files can be served in various ways, either through FTP access to the
files, or by serving them in a transparent manner to UNIX and Linux ma-
chines with NFS, or by acting as client or server towards Windows ma-
chines through Samba.

c) Database: it supports a large number of relational client/server type
databases such as MySQL, PostgreSQL and several commercial ones such
as Oracle or IBM DB2, among others.

d) Printing: it can serve local or remote printers, for both UNIX systems with
TCP/IP protocols and Windows through Samba/CIFS.

e) E-mail: it offers services for clients to obtain mail on their machines (POP3
or IMAP servers), as mail transfer agents (MTA) to recover and retransmit
mail, such as the Sendmail server (UNIX standard) or others like Exim and,
in the case of outward sending, the SMTP service for outgoing mail.

© FUOC « PID_00148467 12

f)

8

h)

i)

i

k)

D

Web: we have the http Apache server, whether in its 1.3.x versions or the
new 2.0.x. or 2.2.x. versions Also, we can integrate web application servers,
such as Tomcat for servlets, JSP...

Network information: services such as NIS, NIS+ or LDAP allow us to cen-
tralise the information from the machines, users, and various resources
on our network, facilitating administration and service to users, in such a
way that the latter do not depend on their situation in the network. Or if
our organisation has a certain internal structure, these services will allow

us to model it allowing access to the resources to whoever needs it.

Names services: services such as DNS for machine names and their trans-
lation from or to IP, by means of the Bind server for example (the standard
UNIX DNS).

Remote access services: whether to run applications or to obtain remote
information on the machines. The servers could be the ones we have men-
tioned for the applications: X Window, VNC etc., and also those that al-
low some remote commands to be run without interactivity such as rexec,
rsh, ssh etc.

Name generation services: services such as DHCP allow TCP/IP networks,
to dynamically (or statically) generate the available IP addresses according
to the machines that need it.

Internet access services: in certain situations there may be a single out-
put to Internet (or several). These points tend to act as proxy, since they
have access and they redirect it to potential Internet accesses on behalf of
clients. They also tend to act as content cache. In GNU/Linux we can have
Squid for example. In this category, a gateway or router could also come
into action in a GNU/Linux system, whether to direct packages to other
networks or to find alternative resending routes. Also, in the case of small
installations such as domestic ones, we could include the Internet access
by modem through the PPP services.

Filtering services: one of the most commonly used security measures at
present is firewalls. They basically represent filtering techniques for in-
coming or outgoing packages, for the different protocols we are using, to
put up barriers against unwanted ones. In GNU/Linux, we have mecha-
nisms such as ipchains and iptables (more modern) for implementing fire-
walls.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 13 Migration and coexistence with non-Linux systems

3. Types of use

GNU/Linux, as a system, offers characteristics that are valid for personal users
as well as users of a medium or large-scale infrastructure.

From the perspective of GNU/Linux system users, we could distinguish:

a) The individual or domestic user: normally, this type of user has one or
several machines at home that may or may not be shared. In general, in
this environment, GNU/Linux is used to develop a desktop system, which
means that the graphics part will be important: the GNU/Linux desktop.
For this desktop we have two main options in the form of Gnome and
KDE environments, both of which are perfectly valid. Either of the two
environments offers applications running and visualisation services, to-
gether with a broad range of basic own applications that allow us to de-
velop all sorts of routine tasks. The two environments offer a visual desk-
top with different menus, icon bars and icons, in addition to navigators
for own files and various useful applications. Any environment can run
its own applications and the others', although, in the same way as the ap-
plications, they run better in their own environment because their visual
aspect is more suited to the environment for which they were designed.
Regarding applications for the personal user, we should include the typical
ones of the desktop system. If the user has a home network, for example,
a small group of computers joined by an Ethernet type network, services
for sharing files and printers between machines could also be interesting.
Services such as NFS may be necessary if there are other Linux machines;
or Samba, if there are machines with Windows.

In the case of having an Internet connection through an ISP (Internet

Service Provider) depending on the type of connection used, we would

need to control the corresponding devices and protocols:

e Modem connection: telephone modems tend to use the PPP protocol
to connect with the provider. We would have to enable this protocol
and configure the accounts we have enabled with the provider. An
important problem with Linux is the winModems issue, which has
caused a lot of trouble. This modem (with some exceptions) is not sup-
ported, because it is not a real modem but rather a hardware simpli-
fication plus driver software, and most only function with Windows,
meaning that we need to avoid them (if not supported) and to buy
real (full) modems.

e ADSL modem connection: the functioning would be similar, the PPP
protocol could be used or another one called EoPPP. This may depend

© FUOC « PID_00148467 14

b)

<)

on the modem's manufacturer and on the type of modem: Ethernet
or USB.

e ADSL connection with a router: the configuration is very simple, be-
cause in this situation all we need to do is to configure the Ethernet
card and/or wireless card in our system to connect with the ADSL
router.

Once the interface to Internet is connected and configured, the last point
is to include the type of services that we will need. If we only want to
act as clients on Internet, it will be sufficient to use the client tools of the
different protocols, whether FTP, telnet, the web navigator, e-mail or news
reader etc. If we also wish to offer outgoing services — for example, to pub-
lish a website (web server) or to allow our external access to the machine
(ssh, telnet, FTP, X Window, VNC, services etc.), in this case, server — then
we must remember that this will only be possible if our provider gives us
fixed IP addresses for our machine. Otherwise, our IP address will change
every time we connect and the possibility of offering a service will become
either very difficult or impossible.

Another interesting service would be sharing access to the Internet be-
tween our available machines.

Mid-scale user: this is the user of a middle scale organisation, whether a
small company or group of users. Normally, this type of users will have
local network connectivity (through a LAN, for example) with some con-
nected machines and printers. And will have direct access to Internet,
either through some proxy (point or machine designed for an external
connection), or there will be a few machines physically connected to the
Internet. In general, in this environment, work is partly local and part-
ly shared (whether resources, printers or applications). Normally, we will
need desktop systems; for example, in an office we can use office suite
applications together with Internet clients; and perhaps also workstation
type systems; for example, for engineering or scientific jobs, CAD or im-
age processing applications may be used, as well as intensive mathemati-
cal calculation systems etc., and almost certainly more powerful machines
will be assigned to these tasks.

In this user environment, we will often have to share resources such as
files, printers, possibly applications etc. Therefore, in a GNU/Linux sys-
tem, NFS services will be appropriate, printer services, Samba (if there are
Windows machines with which files or printers need to be shared), and we
may also need database environments, an internal web server with shared

applications etc.

Large-scale users: this type of user resembles the preceding one and dif-
fers only in the size of the organisation and available resources, which
can be plenty, in such a way that some resources of the NIS, NIS+ or
LDAP type network system directory may be needed in order to handle
the organisation's information and reflect its structure, certainly also to

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 15 Migration and coexistence with non-Linux systems

have large service infrastructures for external clients generally in the form
of websites with various applications.

This type of organisation has high levels of heterogeneity in both system
hardware and software, and we could find lots of architectures and differ-
ent operating systems, meaning that the main tasks will consist of easing
data compatibility by means of databases and standard document formats
and to ease interconnectivity by means of standard protocols, clients and
servers (usually with TCP/IP elements).

© FUOC » PID_00148467 16 Migration and coexistence with non-Linux systems

4. Migration or coexistence

Next, we will consider another important aspect in adopting GNU/Linux sys-
tems. Let's suppose that we are amateurs at handling this system; or, the op-
posite, that we are experienced and wish to adopt one or several GNU/Linux
systems as individual users for working in our small organisation; or that we
are considering replacing the infrastructure of our large company or organi-
sation in full (or part).

Migrating to a new system is no trivial matter, it needs to be evaluated through
a study that analyses both the costs and the beneficial features that we expect
to obtain. Also, migration can be done in full or in part, with a certain degree

of coexistence with former systems.

We will be dealing with a full or partial migration project of our IT systems to
GNU/Linux and, as administrators, we will be responsible for this process.

As in any project, we will have to study the way of responding to questions
such as: Does the change make sense in financial terms or in terms of perfor-
mance benefits? What is the migration's objective? What requirements will
we want to or need to fulfil? Can we do a partial migration or do we need
to do a full migration? Is coexistence with other systems necessary? Will we
need to retrain users? Will we be able to use the same hardware or will we
need new hardware? Will there be important added costs? Or simply, will it
go okay? These and many others are the questions that we will have to try
and answer. In the case of a company, the answers would be provided in a mi-
gration project, specifying its objectives, requirements, the implementation
process, and including a financial analysis, user training plans etc. We will
not go into this in detail, but will consider some of these issues in a simple
manner. And in the final workshop we will examine a few small cases of how
we would implement the migration.

Also, the moment we start migrating to GNU/Linux, we will start to notice
the advantages the system brings to our organisation:

a) Costs: reduction in license costs for the system's software and applica-
tions. GNU/Linux has O cost for licenses if purchased from the Internet
(for example, in the form of images from the distribution's CDs), or a
negligible cost if we take into account that the nearest comparison for
systems with equivalent features would be Windows Server systems with
license costs ranging between € 1,500 and € 3,000, without including a
large amount of the additional software that a typical GNU/Linux distri-
bution would include.

© FUOC « PID_00148467 17

But careful, we should not underestimate maintenance and training costs.
If our organisation consists solely of users and administrators trained in
Windows, we may have high costs for retraining personnel and, possibly,
for maintenance. Therefore, many big companies prefer to depend on a
commercial distributor of GNU/Linux to implement and maintain the
system, such as the business versions offered by Red Hat, SuSe and others.
These GNU/Linux versions also have high license costs (comparable to
Windows), but at the same time are already adapted to business structures
and contain their own software for managing companies' IT infrastruc-
ture. Another important aspect, to conclude with cost estimates, is the
TCO concept (total cost of ownership), as a global evaluation of the asso-
ciated costs that we will find when we undertake a technological devel-
opment; we don't just have to evaluate the costs of licenses and machines,
but also the costs of training and support for the people and products
involved, which may be as high or more than the implemented solution.

b) Support: GNU/Linux offers the best maintenance support that any op-
erating system has ever had, and it is mostly free. Nevertheless, some com-
panies are reluctant to adopt GNU/Linux on the basis that there is no
product support and prefer to buy commercial distributions that come
with support and maintenance contracts. GNU/Linux has a well-estab-
lished support community worldwide, through various organisations that
provide free documentation (the famous HOWTOs), specialised user fo-
rums, communities of users in practically any region or country in the
world etc. Any question or problem we have can be searched on the Inter-
net and we can find answers within minutes. If we don't, if we have found
a bug, error, or untested situation, we can report it on various sites (fo-
rums, development sites, distribution bug sites etc.), and obtain solutions
within hours or, at the most, within days. Whenever we have a question
or problem, we should first try a few procedures (this is how we will learn)
and if we do not find the solution within a reasonable amount of time,
we should consult the GNU/Linux community in case any other user (or
group of users) has encountered the same problem and found a solution,
and if not, we can always post a report on the problem and see if we are
offered solutions.

4.1. Identify service requirements

Normally, if we have systems that are already functioning we will have to have
some services implemented for users or for helping the infrastructure of the IT
support. The services will fall within some of the categories seen above, with
the GNU/Linux options that we mentioned.

GNU/Linux systems are not at all new, and as we saw in the introduction,
stem from a history of more than thirty years of UNIX systems use and de-
velopment. Therefore, one of the first things that we will find is that we are
not lacking support for any type of service we want. If anything, there will

Migration and coexistence with non-Linux systems

Note

Linux Howto's: http://
www.tldp.org/

© FUOC « PID_00148467 18

be differences in the way of doing things. Also, many of the services used by
IT systems were conceived, researched, developed and implemented in their
day for UNIX, and only subsequently adapted to others systems (such as Win-
dows, more or less successfully).

Many companies with proprietary UNIX participate in GNU/Linux and
offer some of their developments to the community.

Any service available at the time may be adapted to GNU/Linux systems with
equivalent (if not the same) services.

Example

A famous case is the one of the Samba servers [Woo00] [Sam]. Windows offers what it
calls "sharing files and printers on the network" by means of its own protocols known
generically as SMB (server message block) [Smb] (with network support in the NetBios
and NetBEUI protocols). The name CIFS (common Internet file system) is also commonly
used, which is what the protocol was called in a second revision (which continued to
include SMB as a basic protocol). These protocols allowed the sharing of files (or disks)
and printers on a network of Windows machines (in a workgroup configuration or in
Windows domains). In UNIX this idea was already old when it appeared in Windows
and services such as NFS for sharing files or managing printers remotely were already
available using TCP/IP protocols.

One of the problems with replacing the Windows sharing services based on NetBios/Net-
Beui (and ultimately with NetBios over TCP/IP) was how to support these protocols, since
if we wanted to keep the client machines with Windows, we could not use the UNIX ser-
vices. For this purpose, Samba was developed as a UNIX server that supported Windows
protocols and that could replace a Windows server/client machine transparently, with
client users with Windows not having to notice anything at all. Moreover, the result in
most cases was that the performance was comparable if not better than in the original
machine with Windows services.

Currently, Samba [Sam] is constantly evolving to maintain compatibility with Windows
file and printer sharing services; because of the general changes that Microsoft subjects
SMB/CIFS [Smb] protocols to (the base implemented by Samba) with each new Windows
version, in particular the evolution of workgroup schemes in the operating systems' client
versions, to centralised server (or group of servers) schemes, with specific user authenti-
cation services (NTLM, NTLMv2, Kerberos), and centralised storage of the system's man-
agement such as Active Directory. In addition to this, the configuration of existing do-
main servers (whether with primary controller, backup or Active Directory).

Currently, in migration processes with Samba, we will need to observe what configura-
tions of Windows clients/servers (and its versions) exist on the system, as well as what
user authentication and/or information management systems are used. Also, we will
need to know how the system is structured into domains (and its controller servers,
members or isolated servers), in order to make a complete and correct mapping towards
Samba-based solutions, and into complementary user authentication (winbind, kerberos,
nss_ldap) and management services (for example openLDAP) [Sama] [Samb] .

4.2. Migration process

In the migration process, we need to consider how we want to migrate and
if we want to migrate totally or partially, coexisting with other services or
equipment that has a different operating system .

In the environments of large organisations, where we find a large number of
heterogeneous systems, we will need to take into account that we will almost
certainly not migrate every one of them, especially workstation type systems

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 19

that are dedicated to running a basic application for a specific task; it could be
that there is no equivalent application or simply that we wish to keep these
systems for financial reasons or in order to maximise an investment.

We can migrate various elements, whether the services we offer, the machines

that offer the services or the clients who access the services.

Elements that can be migrated include:

a) Services or machines dedicated to one or more services. In migrating,
we will replace the service with another equivalent one, normally with
minimum possible impact unless we also wish to replace the clients. In
the case of Windows clients, we can use the Samba server to replace the
file and printer services offered by the Windows machines. For other ser-
vices, we can replace them with GNU/Linux equivalents. In the case of
replacing just one service, normally we will disable the service on the ma-
chine that offered it and enable it on the new system. Client changes may
be necessary (for example, new machine addresses or parameters related
to the service).

If a server machine was responsible for an entire function, we will need to
analyse whether the machine was dedicated to one or more services and
whether they can all be replaced. If so, we will just have to replace the old
machine with the new one (or maintain the old one) with the services
under GNU/Linux and in any case, modify a client parameter if necessary.
Normally, before making a change, it is advisable to test the machine
separately with a few clients in order to make sure that it performs the
function correctly and then to replace the machines during a period when
the system is inactive.

In any case, we will certainly have to back up data existing prior to the
new system, for example, file systems or the applications available in the
original server. Another point to consider in advance is data portability; a
problem we often find is compatibility when the organisation used data
or applications that depended on a platform.

Example
To mention a few practical cases that some companies find nowadays:

e Web applications with ASP: these applications can only be executed on web platforms
with Windows and Microsoft's IIS web server. We should avoid them if we intend
to migrate platforms at any time and don't wish to rewrite them or pay another
company to do so. GNU/ Linux platforms have the Apache web server (the most
commonly used on the Internet), which can also be used with Windows, this server
supports ASP in Perl (in Windows it generally uses visual basic, C# and Javascript),
there are third party solutions to migrate ASP or to more or less convert them. But if
our company depended on this, it would be very costly in terms of time and money.
A practical solution would have been to make the web developments in Java (which
is portable between platforms) or other solutions such as PHP. On this point, we
should highlight the Mono project [Mon] (sponsored by Novell) for portability of
part of Microsoft's .NET environment to GNU/Linux, in particular a large amount
of the.NET API's, C# language, and the ASP.NET specification. Allowing a flexible

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 20 Migration and coexistence with non-Linux systems

migration of .NET applications based on .NET APIs that are supported by the Mono
platform. At the same time, we should mention the FSF's DotGnu [Dgn] project, as
a GPL alternative to Mono.

e Databases: using a Microsoft SQL Server for example, makes us totally dependant on
its Windows platform, plus, if we use proprietary solutions in a specific environment
for database applications, they will be difficult to transfer. Other databases such as
Oracle and DB2 (IBM) are more portable because they have a version in the different
platforms or because they use more portable programming languages. We could also
work with PostgreSQL or MySQL database systems (it also has a version for Windows)
available in GNU/Linux, and that allow an easier transition. At the same time, if
we combine it with a web development we have a lot of possibilities; in this sense,
nowadays we use systems such as: web applications with Java, whether servlets, ap-
plets, or EJB; or solutions such as the famous LAMP, the combination of GNU/Linux,
Apache, Mysql and Php.

b) Workstation: in these migrations, the biggest problem stems from the Note

applications, whether for CAD, animation, engineering or scientific pro-
For examples of GNU/Linux

. N . . o
grams, which are the workstation's main reason for being. Here it will equivalent applications, see:

be important to be able to replace them with equal or at least compat- http://www.linuxalt.com/

. http:

ible applications with the same expected features or functionality. Nor- wikFi).I/i:\uxquestions.org Jwi-

mally, most of these applications stem from a UNIX world, given that ki/Linux_software_equivalent
_to_Windows_software

most of these workstations were conceived as UNIX machines. Meaning http://www.linuxrsp.ru/win-

e lin-soft/table-eng.htmlg
that a compilation or minimum adaptation to the new GNU/Linux may

be enough, if we have source code (as tends to be the case with many
scientific applications). If we are dealing with commercial applications,
the manufacturers (of engineering and scientific software) are starting to
adapt them to GNU/Linux, although in these cases the applications are
usually very expensive (easily hundreds to thousands of euros).

c) Desktop client machines. Desktop machines continue to be a headache
for the world of GNU/Linux, because they involve a number of additional
problems. In servers, the machines are assigned clear functionalities, as a
rule they do not require complex graphic interfaces (often text commu-
nication is sufficient), and the normally specific high performance hard-
ware is purchased for a specific set of functions and the applications tend
to be the servers themselves included in the operating system or some
third party applications. Also, these machines are often managed by ad-
ministrators with extensive knowledge of what they are dealing with.
However, in the case of desktops, we are dealing with a problem factor (in
itself and more so for administrators): the system's end users. The users of
desktop systems expect to have powerful graphic interfaces that are more
or less intuitive and applications that allow them to run routine — usual-
ly office — tasks. This type of user (with a few exceptions) has no reason
to have advanced knowledge of computers; in general, they are familiar
with office suites and use a couple of applications with varying degrees
of skill. Here GNU/Linux has a clear problem, because UNIX as such was
never conceived as a purely desktop system and was only later adapted
with graphic interfaces such as X Window and the different desktops,

© FUOC » PID_00148467 21 Migration and coexistence with non-Linux systems

such as the current GNU/Linux ones: Gnome and KDE. Furthermore, the
end user tends to be familiar with Windows systems (which have almost
a 95% share of the desktop market).

In the case of desktops, GNU/Linux has a number of obstacles to over-
come. One of the most critical ones is that it does not come preinstalled
on machines, which obliges the user to have a certain amount of knowl-

edge in order to be able to install it. Other reasons could be:

Note

The desktop environment is a battle yet to be waged by GNU/Linux systems; which need
to defeat users' reluctance to switch systems and generate awareness of their ability to
offer simple alternatives and applications that can handle the tasks demanded by users.

e User reluctance: a question a user may ask is: Why should I switch
system? Will the new environment offer me the same thing? One of
the basic reasons for changing will be quality software and its cost,
since a large proportion will be free. On this point, we should con-
sider the issue of illegal software. Users seem to consider that their
software is free, when really they are in an illegal situation. GNU/Lin-
ux software offers good quality at a low cost (or at no cost in many
cases), with several alternatives for the same job.

e Simplicity: users are normally lost if the system does not have sim-
ilar reference points to those the user is already familiar with, such
as interface behaviour or tools with similar functionality. Users gen-
erally expect not to have to spend too much extra time on learning
how to handle the new system. GNU/Linux still has a few problems
with more or less automatic installations, which means that a certain
amount of knowledge is still required in order to install it correctly.
On this point, we should mention the ease of installing it in different
environments provided by recent desktop oriented distributions like
Ubuntu [Ubu]. Another common problem concerns support for the
PC hardware; even though it is improving all the time, manufactur-
ers still don't pay enough attention to it (partly for reasons of market
share). Until there is a clear intention in this regard, we will not be
able to have the same support as other proprietary systems (like Win-
dows). However, we should emphasise the work of the Linux kernel
community to offer the right support for new technologies, in some
cases by supporting the manufacturer or by preparing primary sup-
port (if not supported by the manufacturer) or alternative support to
that offered by the manufacturer.

e Transparency: GNU/Linux environments have many complex
mechanisms, such as daemons, services, difficult to configure ASCII
files etc. For end users, it should be necessary to hide all of these

© FUOC « PID_00148467 22

complexities by means of graphics programs, configuration wizards
etc. This is the path taken by some distributions such as Red Hat,
Mandriva, Ubuntu or SuSe.

e Support for known applications: a standard office suite user will
face the problem of data portability or handling data formats. What
to do with existing data? This problem is being solved daily, thanks
to the office suites that are starting to have the functionalities a desk-
top user needs. For example, if we consider a migration from using
a Windows Office suite, we can find suites such as OpenOffice (free
software) that can read (and create) the formats of Office files (with
some restrictions). Format compatibility is not difficult when it is
open, but in the case of Windows, Microsoft continues to maintain a
policy of closed formats; and a serious amount of work is needed in
order to be able to use these formats, by means of reverse engineering
(a fairly costly process). Also, in the Internet age, when information
is supposed to move about freely, undocumented closed formats are
more an obstacle than anything else. The best thing is to use open
formats such as RTF (although these also have some problems be-
cause of the many versions of it that there are), or XML based for-
mats (OpenOffice generates its own documents in XML), or PDF for
read-only documents. We should also highlight recent efforts by the
OpenOffice community to create the standard open document (used
by the suite from versions 2.x), which have made it possible to have
a free format as an ISO standard for document creation. This fact has
obliged Microsoft to (partially) open its format in versions starting
from Office 2007, to incorporate OpenXML formats.

e To provide valid alternatives: the software we stop using has to have
alternatives that do the same job as the previous system. Most ap-
plications have one or several alternatives with similar, if not better,
functionalities. On the Internet you can find different lists of (more
or less complete) applications for GNU/Linux that match the func-
tionality of Windows applications.

e Support for running applications for other systems: under some
conditions it is possible to run applications for other UNIX systems
(with the same architecture, for example, Intel x86), or for MS-DOS or
Windows, through compatibility packages or some type of emulator.

Most of the problems that affect desktop migrations are being overcome slow-
ly but surely and will allow us in future to have a larger number of GNU/Linux
desktop users, who, as they increase, will have access to better applications en-
couraging software companies to start implementing versions for GNU/Linux.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 23

In the case of companies, it can be overcome with a gentle migration, starting
with servers and workstations, and then desktops after following an extensive
training program for users in the new systems and applications.

A process that will help to a large extent is to introduce open code software in
education and in public administrations, as in the case of Extremadura region
in Spain with its GNU/Linux distribution called Linex; or recent measures for
taking this software to primary education, or the measures taken by universi-
ties by running courses and subjects using these systems.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 24 Migration and coexistence with non-Linux systems

5. Migration workshop: case study analysis

In this workshop we will try to apply what we have learned in this unit to anal-
yse some simple migration processes, and some detail of the required tech-
niques (in the case of network techniques, we will look at these in the units

on network administration).
We will consider the following case studies:

e Individual migration of a Windows desktop user to a GNU/Linux system.

e Migration of a small organisation with Windows systems and a few UNIX.

e Migration of a standalone Windows server to a Samba server running
GNU/ Linux.

5.1. Individual migration of a Windows desktop user to a
GNU/Linux system

A user considers migrating to GNU/Linux [Ray02b]. Normally, there will first
be a period of cohabitation, so that the user can have both systems and use
each one for a series of tasks: tasks will continue to be executed in Windows
while the user learns about the new system and finds equivalent software or
new software that does tasks for which no software was previously available.

Migration for a private user is perhaps one of the most complex processes; we
need to offer users alternatives to what they commonly use, so that adaptation
is as simple as possible and the user can adapt gradually and with ease to the
new system.

A first possibility would be a dual installation [Ban01] [SkoO3b] of the original Note

system (Windows) together with the GNU/Linux system.
Linux Hardware Howto: http:/
/www.tldp.org/HOWTO/Hard-

A first step for a determined machine configuration will consist of checking wareHOWTO/index.html

that our hardware is compatible with Linux [Pri02], either from a list of hard-
ware compatibility or by checking with the manufacturer if new components
need to be purchased or the existing ones require a particular configuration.
If we are unfamiliar with our hardware, we can check it through the Windows
"device administrator" (in the control panel) or using some type of hardware
recognition software. At the same time, an advisable method is to use LiveCD-
type GNU/Linux distributions, which will allow us to check the functioning of
GNU/Linux on our hardware without requiring a physical installation, since
the only requirement is the possibility of booting the system from a CD/DVD
(in some cases the BIOS configuration may have to be changed for this). There
are Live CDs such as Knoppix [Knp] with great support for hardware checks
and most GNU/Linux distributions tend to offer a Live CD in order to initially

© FUOC « PID_00148467 25

check its functioning (in some cases, Ubuntu [Ubn] for example, the full in-
stallation can be done using the same Live CD). In any case, we should men-
tion that checking with a specific Live CD does not mean that there will not
be any problems with the final installation, either because the Live CD is not
of the same GNU/Linux distribution that we eventually install or because the
versions of the system and/or applications will not be the same.

Regarding the physical installation on disk, we will either need to have un-
partitioned free disk space or, if we have FAT/32-type partitions, we can liber-
ate space using programs that make it possible to adjust the size of partitions,
reducing an existing partition (a previous data backup here is obviously ad-
visable). Currently, most distributions support various disk partitioning and
partition reduction schemes, although problems may arise depending on the
distribution. If there is not enough space or there are partitions with file sys-
tems that present problems (like NTFS with some distributions), we may have
to consider buying a new additional hard disk, to use totally or partially for
GNU/Linux.

After checking the hardware, we will have to decide on the distribution of the
GNU/Linux system that we will use (a possibility we mentioned before is to
choose a Live CD that has been satisfactory and to install that distribution).
If the user is inexperienced in GNU/Linux or only has basic computer knowl-
edge, it is preferable to choose one of the more user-friendly distributions such
as Fedora, Mandriva, SuSe, or similar (we would highlight the ease of Ubuntu
in this regard). If we are more knowledgeable or tempted to experiment, we
could try a Debian distribution. In the case of commercial distributions, on
most occasions the distributions with compatible hardware (business versions
like Red Hat and SuSe certify the hardware that they support), are installed
perfectly without any problem and basic configurations are made that allow
the operating system to be used immediately. During the process, we will have
to install the software, which will normally be defined by sets of oriented soft-
ware: for servers, specific applications or desktop applications, such as office
suites, development applications (if we are interested in programming) etc.

Once the system is installed, we have to tackle the issue of sharing data
[GonO0O] [KatO1], how will we share the data between the two systems? or is it
possible to share certain applications? There are various solutions for this:

e Indirect method: this consists of sharing data using a diskette for exam-
ple. For this, the best thing are the utilities known as mtools, which al-
low transparent access to diskettes in MS-DOS format, and there are sev-
eral commands that function in a very similar way to MS-DOS or Win-
dows. These commands have exactly the same names as the original MS-
DOS commands, except that they have an "m" in front, for example: mcd,
mcopy, mdir, mdel, mformat, mtype etc.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 26 Migration and coexistence with non-Linux systems

e Direct method: this consists of using the file system in Windows directly.
As we will see in the unit on local administration, GNU/Linux can read
and write a large number of file systems, including FAT, FAT32, and NTFS
(read only in some cases, although most distributions already include the
ntfs-3g [Nt3] driver that allows writing). Mounting the Windows disk is
required first and that makes it possible to incorporate the Windows file
system into a point of the Linux file tree; for example, we could mount our
Windows disk in /mnt/Windows and from this point access its folders and
files for reading and writing. With ASCII text files, conversions need to
be considered, since UNIX and Windows treat them differently: in UNIX,
the end of a line has only one character, the line feed, ASCII 10, whereas
Windows has two, the return and the line feed, characters ASCII 13 and
10 (as a curious note, in Mac it is ASCII 13). Which means that usually
when we read a DOS/Windows ASCII file, it contains strange characters
at the end of a line. There are editors such as emacs that handle them
transparently and, in any case, there are GNU/Linux utilities that make
it possible to convert them into another format (utilities such as duconv,
recode, dos2UNIX, UNIX2dos).

e Use of applications: there are a few alternatives for running the applica-

tions (not all of them) for MS-DOS and Windows. For GNU/Linux there are
MS-DOS emulators such as Dosemu [Sun02] or DOsBox, and for Windows
there is the Wine [Win] software. It can run various Windows applications
(for example, it can run some version of Office and Internet Explorer),
but it is constantly being improved. If it is vital to run Windows applica-
tions, some commercial software can help us; these applications give ex-
tra support to Wine, for example, Win4Lin, CrossOver and in some cases
special support for games like Cedega. Another potential solution is to use
virtual machines; an example of extensively used software is VMware and
VirtualBox, which creates a full PC as a virtual machine, simulated by the
software, where a large number of different operating systems can be in-
stalled. VMware and VirtualBox are available in versions for Windows and
for GNU/Linux, which makes it possible to have a GNU/Linux installed
with a Windows running on it virtually, or a Windows installed with a
virtual GNU/Linux. There are also other solutions of free virtual machines
like QEmu, KVM, Bochs. In another segment, virtual machines or generi-
cally virtualisation is used oriented at the creation of virtual servers, with
solutions such as VMware server or the open projects Xen, OpenVZ, Vserv-
er; where it is possible to make several virtual machines running on an
operating system coexist (normally through modifications to the kernel
that support this virtualisation), or even directly on the hardware, with
small layers of software.
Aside from sharing the information (applications and/or data) you can
search for GNU/Linux applications that replace the original Windows ones
as the user gradually learns to use them and sees that they offer the ex-
pected functionalities.

© FUOC * PID_00148467 27
Example

A typical case would be the office suite that can be migrated to OpenOffice, which has
a high degree of compatibility with Office files and functions fairly similarly, or KOffice
(for the KDE desktop), or GNumeric and AbiWord (for Gnome). Or, in the case of image
processing, we can take Gimp, with similar functionalities to Photoshop. And numerous
multimedia players: Xine, Mplayer (or also a version of RealPlayer). On the Internet we
can find numerous lists of equivalent programs between Windows and GNU/Linux.

5.2. Migration of a small organisation with Windows systems
and a few UNIX

Migration within an organisation (even a small one) has several difficulties:
we will have different work environments and heterogeneous software, and,
once more, users who are resistant to change.

Now, let's consider an organisation with Windows machines and some UNIX
machines as servers or workstations and somewhat "anarchic" users. For ex-
ample, let's study the following situation: the organisation has a small local
network of Windows machines shared by users as equal machines in a Win-
dows workgroup (there are no Windows server domains).

The group is diverse: we have machines with Windows 98, ME, NT, XD, but
configured for each user with the software needed for their daily jobs: whether
Office, a browser, e-mail reader, or development environments for different
language programmers (for example, C, C++, Java).

There are some extra hardware resources available, such as various printers
connected to the local network (they accept TCP/IP jobs), which can be used
from any point within the organisation. At the same time, there is a shared
machine, with a few special resources, such as a scanner, CD recorder and
directories shared by the network, where users can leave their own directories
with their files for backup processes or to recover scanned images, for example.

We also have several workstations, in this case Sun Microsystem's SPARC,
which are running Solaris (commercial UNIX of Sun). These stations are dedi-
cated to development and to some scientific and graphics applications. These
machines have NFS services for file sharing and NIS+ for handling the infor-
mation of users who connect to them and who can do so from any machine
in a transparent manner. Some of the machines include specific services; one
is the company's web server and another is used as an e-mail server.

We are considering the possibility of migrating to GNU/Linux because of an
interest in software development and the particular interest from some users

to use this system.

Also, the migration will be made the most of in order to resolve certain prob-
lems related to security — some old Windows systems are not the best way of
sharing files; we want to restrict use of the printer (the cost in paper and asso-
ciated costs are high) to more reasonable quotas. At the same time we would

Migration and coexistence with non-Linux systems

Note

For examples of GNU/Linux
equivalent applications, see:

http://www linuxalt.com/
http://
wiki.linuxquestions.org/wi-
ki/Linux_software_equivalent
_to_Windows_software
http://www.linuxrsp.ru/win-
lin-soft/table-eng.htmlg

© FUOC « PID_00148467 28

like users to have a certain amount of freedom, they will not be obliged to
change system, although the suggestion will be made to them. And we will
also take advantage in order to purchase new hardware to complement exist-
ing hardware, for example if the workstations require additional disk space,

which imposes limits on e-mail and user accounts.

Following this small description of our organisation (in other more complex
cases it could fill several pages or be a full document analysing the present
situation and making future proposals), we can start to consider the possibil-
ities for solving all this:

e What do we do with the current workstations? The cost of maintenance
and software licenses is high. We need to cover the maintenance of faults
in the stations, expensive hardware (in this case, SCSI disks) and also ex-
pensive memory extensions. The cost of the operating system and its up-
dates is also expensive. In this case, we have two possibilities (depending
on the budget that we have to make the change):

— We can cut costs by converting the machines to GNU/Linux systems.
These systems have a SPARC architecture and there are distributions
that support this architecture. We could replace the services for their
GNU/Linux equivalents; replacement would be virtually direct, since
we already use a UNIX system.

— Another possibility would be to eliminate Sun's proprietary hardware
and to convert the stations into powerful PCs with GNU/Linux; this
would make subsequent maintenance simpler, although the initial
cost would be high.

e And what about the workstations software? If the applications have been
developed in-house, it may be enough to compile them again or to make
a simple adjustment to the new environment. If they are commercial, we
will have to see whether the company can provide them in GNU/Linux
environments, or if we can find replacements with a similar functionality.
In the case of the developers, their environments of C, C++ and Java lan-
guages are easily portable; in the case of C and C++, gcc, the GNU compil-
er, can be used and there are numerous IDEs for development (KDevelop,
Anjuta,...); or in the case of Java, the Sun kit can be used in GNU/Linux
and in various open code environments (IBM's Eclipse or Netbeans).

e And what about users? For those who are interested in GNU/Linux sys-
tems, we can install dual equipment with Windows and GNU/Linux so
that they can start to test the system and if they are interested, we can
finally transfer to just the one GNU/Linux system. We can find two types
of users: purely office suite users, who will basically need the suite, navi-
gator and e-mail; all of which can be offered with a GNU/Linux desktop
such as Gnome or KDE and software such as OpenOffice, Mozilla/Firefox
navigator, and Mozilla Mail or Thunderbird e-mail (or any other Kmail,

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 29

Evolution...). They are more or less directly equivalent, it all depends on
users' desire to test and use the new software. For developers, the change
can be more direct, since they are offered many more environments and
flexible tools; they could pass completely over to the GNU/Linux systems
or work directly with the workstations.

e And the printers? We could establish a workstation as a printer server
(whether through TCP/IP queues or Samba server), and control printing
by means of quotas.

e The shared machine? The shared hardware can be left on the same ma-
chine or can be controlled from a GNU/Linux system. Regarding the
shared disk space, it can be moved to a Samba server that will replace the
current one.

e Do we expand the disk space? This will depend on our budget. We can
improve control by means of a quota system that distributes space equi-
tably and imposes limits on saturation.

5.3. Migration of a standalone Windows server to a Samba server
running GNU/Linux

The basic required process tends to me much more extensive, consult the bib-
liography for the full steps to be taken.

In this case, the basic required process for a migration from a Windows server
that shares files and a printer to a Samba server in a GNU/Linux system.

Thanks to software such as Samba, migration from Windows environments is

very flexible and fast and even improves the machine's performance.

Let's suppose a machine belonging to a workgroup GROUP, sharing a printer
called PRINTER and with a shared file called DATA, which is no more than
the machine's D drive. Several Windows clients access the folder for reading/
writing, within a local network with IP 192.168.1.x addresses, where x will be
1 for our Windows server, and the clients will have other values (192.168.x.x
networks are often used as addresses to install private internal networks).

As part of our process we will build a Samba server, which is what, as we saw,
will allow us to run the SMB/CIFS (server message block / common Internet
file system) protocol in GNU/Linux. This protocol allows the file system and
the printers to interact through networks on different operating systems. We
can mount folders belonging to Windows on the GNU/Linux machines, or

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 30

part of the GNU/Linux folders on Windows and similarly with each other's
printers. The server consists of two daemons (system processes) called smbd
and nmbd.

The smbd process manages clients' requests from shared files or printers. The
nmbd process manages the machines' names system and resources under the
NetBIOS protocol (created by IBM). This protocol is independent from the
network used (currently, in NT/2000/XP Microsoft generally uses Netbios over
TCP/IP). The nmbd also offers WINS services, which is the name assignment
service that is normally run on Windows NT/Server if we have a collection
of machines; it is a sort of combination of DNS and DHCP for Windows envi-
ronments. The process is somewhat complex, but to summarise: when a Win-
dows machine starts up or has a static IP address or dynamic address through a
DHCP server and additionally possibly a NetBIOS name (that the user assigns
to the machine: in network identification), then the WINS client contacts the
server to report its IP; if a network machine subsequently requests the NetBios
name, the WINS server is contacted to obtain its IP address and communica-
tion is established. The nmbd runs this process on GNU/Linux.

Like any other network service, it should not be run without considering the
risk activating it could entail, and how we can minimise this risk. Regarding
Samba, we need to be aware of security issues, because we are opening part
of our local or network files and printers. We will also have to check the com-
munication restrictions properly in order to prevent access to unwanted users
or machines. In this basic example, we will not comment on these issues; in
a real case scenario, we would have to examine the security options and only

allow access for those we want.

In the migration process, we will first have to configure the GNU/Linux sys-
tem to support Samba [Wo0o000], we will need the Samba file systems support
in the kernel (smbfs), which is normally already activated. We should add that
currently there is additional support in the kernel through the cifs module
[SteO7], which as of kernel version 2.6.20 is considered the default method,
leaving smbfs as a secondary option. The cifs module offers support for new
features related to the CIFS protocol (as an extension of SMB). Through "smbfs"
and "cifs" file system names these modules allow us to conduct operations for
mounting Windows file systems onto the Windows directory tree (mount -t
smbfs or mount -t cifs). Apart from the fact that the kernel support is inclined
towards the cifs module, there are some characteristics that may need smbfs
support, which means that usually both modules are activated in the kernel.
We should also mention the configuration issue, whereas smbfs bases its func-
tioning on the Samba configuration (as we will see in the smb.conf file), the
cifs module is given its configuration through the operations (for example, in
the mounting process through mount).

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 31

In the case of using a Samba server, in addition to the kernel support, we will
need to install the associated software packages: we will have to examine what
packages related to Samba the distribution includes and install those associat-
ed to the functioning of the server. And also, if wanted, those related to Samba
as a client, in the event we wish to be clients of Windows machines or to test
resources shared with the Windows machines from our GNU/Linux system. In
a Debian distribution, these packages are: samba, samba-common, smbclient,
smbfs. It may also be interesting to install swat, which is a web-based graph-
ics tool for Samba services administration. For our GNU/Linux Samba server
[Woo000] [War03], for the proposed example, we will have to transfer the con-
tents of the previous D disk (where we had our shared file system) from the
original machine to the new machine and place its content in a path, like,
/home/DATA, whether through a backup copy, FTP transfer, or using Samba
as a client to transfer the files.

Regarding the use of GNU/Linux as a Samba client, it is fairly simple. Through
the use of client commands for occasional use of the file system:

a) We mount a Windows shared directory (for instance, host being the

name of the Windows server), on an existing predefined mounting point:

smbmount //host/carpeta /mnt/windows

b) We will place the access to the Windows folder of the host machine in
our local directory, accessing in the directory tree:

/mnt /windows

¢) Next, when it is no longer in use we can dismount the resource with:

smbumount /mnt/windows

If we are not aware of the shared resources, we can obtain a list with:

smbclient -L host

And we can also use smbclient //host/folder, which is a similar program to an
FTP client.

In the event of wanting to make the file systems available permanently, or
to provide certain special configurations, we can study the use of mount di-
rectly (the smbxxxx utilities use it), whether with the smbfs or cifs file sys-
tems (supported in the kernel), taking the parameters into account (Windows
users/groups authentication or other service parameters) that we will have to
provide depending on the case, and of the pre-existing Samba configuration
[SteO7].

Migration and coexistence with non-Linux systems

Note

Always consult the man pages,
or manuals, that come with
the software package.

© FUOC « PID_00148467 32

In the case of the Samba server, once we have installed all the Samba software,
we will have to configure the server through its configuration file. Depending
on the version (or distribution), this file may be in /etc/smb.conf or in /etc/
samba/smb.conf. The options shown here belong to a Samba 3.x.x installed
on a Debian distribution system. Other versions may have a few minor mod-

ifications.

During the installation of the software packages we will normally be asked for
data regarding its configuration. In the case of Samba, we will be asked for
the workgroup to be served; we will have to place the same group name as in
Windows. We will also be asked if we want encrypted passwords (advisable for
security reasons, in Windows 9x they were sent in raw text, in a clear case of

scarce security and high system vulnerability).

Next we will look at the process of configuring the file smb.conf. This file has

three main sections:

1) Global (basic functioning characteristics).

2) Browser (controls what other machines see of our resources).

3) Share (controls what we share).

In this file's extensive manual we can see the available options (man
smb.conf). We will edit the file with an editor and see some of the file's lines
(characters '#' or ';' at the beginning of a line are comments: If the line contains
';' it is a comment; to enable a line, if it is an optional configuration line we
must edit it and remove the ';'):

workgroup = GROUP

This shows the Windows workgroup that the Windows client machines will
be members of.

server string = %$h server (Samba %Vv)

We can place a text description of our server. The h and the v that appear
are variables of Samba that refer to the host name and version of Samba. For
security reasons, it is a good idea to remove the v, since this will inform the
exterior what version of Samba we have; if there are known security bugs, this
can be used.

hosts allow = 192.168.1

This line may or may not be present, and we can include it to enable what
hosts will be served; in this case, all of those in the 192.168.1.x range.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 33

printcap name = /etc/printcap

The printcap file is where GNU/Linux stores the printers' definition, and this
is where Samba will look for information about them.

guest account = nobody

This is the guest account. We can create a different account, or just enable
access to Samba for the users registered on the GNU/Linux system.

log file = /var/log/samba/log.%m

This line tells us where the Samba log files will be stored. One is stored per
client (variable m is the name of the connected client).

encrypt passwords = true

For security reasons it is advisable to use encrypted passwords if we have client
machines with Windows 98, NT or above. These passwords are saved in a /etc/
samba/smbpasswd file, which is normally generated for users of the Samba
installation. Passwords can be changed with the smbpasswd command. There
is also an option called UNIX password sync, which allows the change to be
simultaneous for both passwords (Samba user and Linux user).

Next, we will jump to the Share Definitions section:

[homes]

These lines allow access to the users' accounts from the Windows machines.
If we don't want this, we will add some ';' to the start of these lines, and when
the machines connect they will see the name comment. In principle, writing

is disabled, to enable it, you just have to set "yes" as the writable option.

Any sharing of a specific directory (Samba tends to call a group of shared data
a partition), we will proceed as shown in the examples that appear (see, for
example the definition of sharing the CD-ROM in the lines that start with
[cdrom]). In path we will place the access route.

Example

In our case, for example, we would give the name DATA to the partition on the route
/home/DATA, where we had copied the D disk from the original Windows machine and
the path where it can be found, in addition to a large group of options that can be
modified, users authorised to access them and the way of doing so.

There is also a profiles definition, that makes it possible to control the profiles
of Windows users, in other words, the directory where their Windows desktop
configuration is saved, the start up menu etc.

Migration and coexistence with non-Linux systems

Note

See: man smb.conf

© FUOC « PID_00148467 34

The method is similar for the printers: a partition is made with the printer
name (the same one given in GNU/Linux), and in the path we place the queue
address associated to the printer (in GNU/Linux we will find it in: /var/spool/
samba/PRINTER). And the option printable = yes, if we want jobs to be sent
with Samba. And we can also restrict user access (valid users).

Once we have made these changes we will just have to save them and reinitiate
Samba so that it can read the new configuration. In Debian:

/etc/init.d/samba restart
Now, our shared directory and the printer through Samba will be available to

serve users without them noticing any difference in relation to the previous
connections with the Windows server.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 35

Activities

1) In the GNU/Linux services description, do we find we are missing any functionality? What
other type of services would we add?

2) In the second case study of the tutorial (the one of the organisation), how would you
change the IT infrastructure if you had zero budget, an average budget, or a high budget?
Present some alternative solutions to the ones shown.

3) Virtualisation technologies like VMware Workstation or VirtualBox, virtual machine
through software, which can install operating systems on a virtual PC. You can obtain the
software from www.vmware.com or www.virtualbox.org. Test (in the case of having a Win-
dows license) installing it on Windows, and then on GNU/Linux on the virtual PC (or the
other way around). What advantages does this method for sharing operating systems offer?
What problems does it cause?

4) If we have two machines for installing a Samba server, we can test the server installation or
configuration in configurations of Samba UNIX client-Windows server, or Windows client-
Samba server in GNU/Linux. You can test it on a single machine using the same machine
as a Samba server and client.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 36
Bibliography
Other sources of reference and information

[LPD] Linux Documentation Project offers Howtos regarding different aspects of a GNU/Lin-
ux system and a set of more detailed manuals.

[Mor03] Good reference for the configuration of Linux systems, with some case studies in
different environments; comments on different distributions of Debian and Red Hat.

Migration and coexistence with non-Linux systems

Basic tools for the
administrator

444444444444

© FUOC PID_00148464 Basic tools for the administrator

© FUOC PID_00148464 Basic tools for the administrator

Index
INtroducCtion.. ... 5
1. Graphics tools and command line................cc..oooiiiiiiiiii. 7
2. STANAArS.........cooeiiiiiiiiiii et 9
3. System documentation................ccoooiiiiiiiiiiiiiiiiiiiiii e 12
4. Shell scripting 14
4.1. Interactive SHellS...........ccoouiiiiiiiiiiiiiiiiiiiiiiiiiice e 15
4.2, SRELIS ittt e e 18
4.3. System variablesccccoiiiiiiiiiiiiiiiiiiii 21
4.4. Programming scripts in Bashoi 22
4.4.1. Variables in Bash 23
4.4.2. COMPATISOIIS .eeurirnriiiniiiiiiiiiiiiiieii et et ereeaaeaaaes 24
4.4.3. Control StrucCturescoooviiieiiiiiiiiiiiiiene 24
5. Package management toOls.................c....iiii 27
5.1. TGZ package 28
5.2. Fedora/Red Hat: RPM packagescccceeviiiiniiiiiiniiiiiinnniiiinnniennn. 30
5.3. Debian: DEB PacCKagescc.ceiiiiuuiiiiiiiiiiiiiieeeeieeeeeiee et e 34
6. Generic administration tools....................... 38
7. Other tOOlIS.. ... e 40
ACHIVEHIES......... 41

BibDLOGIrapILy . ..ottt eea e 42

© FUOC PID_00148464 5 Basic tools for the administrator

Introduction

On a daily basis, an administrator of GNU/Linux systems has to tackle a large
number of tasks. In general, the UNIX philosophy does not have just one tool
for every task or just one way of doing things. What is common is for UNIX
systems to offer a large number of more or less simple tools to handle the
different tasks.

Note

It will be the combination of the basic tools, each with a well-defined

task that will allow us to resolve a problem or administration task. GNU/Linux has a very broad
range of tools with basic func-
tionalities, whose strength lies
in their combination.

In this unit we will look at different groups of tools, identify some of their
basic functions and look at a few examples of their uses. We will start by ex-
amining some of the standards of the world of GNU/Linux, which will help
us to find some of the basic characteristics that we expect of any GNU/Linux
distribution. These standards, such as LSB (or Linux standard base) [Linc] and
FHS (filesystem hierarchy standard) [Linb], tell us about the tools we can ex-
pect to find available, a common structure for the file system, and the various
norms that need to be fulfilled for a distribution to be considered a GNU/Lin-
ux system and to maintain shared rules for compatibility between them.

For automating administration tasks we tend to use commands grouped in-
to shell scripts (also known as command scripts), through language interpret-
ed by the system's shell (command interpreter). In programming these shell
scripts we are allowed to join the system's commands with flow control struc-
tures, and thus to have a fast prototype environment of tools for automating
tasks.

Another common scheme is to use tools of compiling and debugging high
level languages (for example C). In general, the administrator will use them to
generate new developments of applications or tools, or to incorporate appli-
cations that come as source code and that need to be adapted and compiled.

We will also analyse the use of some graphics tools with regards to the usu-
al command lines. These tools tend to facilitate the administrator's tasks but
their use is limited because they are heavily dependent on the GNU/Linux
distribution and version. Even so, there are some useful exportable tools be-
tween distributions.

Finally, we will analyse a set of essential tools for maintaining the system up-
dated, the package management tools. The software served with the GNU/
Linux distribution or subsequently incorporated is normally offered in units
known as packages, which include the files of specific software, plus the vari-

© FUOC « PID_00148464 6

ous steps required in order to prepare the installation and then to configure it
or, where applicable, to update or uninstall specific software. And every distri-
bution tends to carry management software for maintaining lists of installed
or installable packages, as well as for controlling existing versions or various
possibilities of updating them through different original sources.

Basic tools for the administrator

© FUOC PID_00148464 7 Basic tools for the administrator

1. Graphics tools and command line

There are a large number of tools, of which we will examine a small share in
this and subsequent modules, which are provided as administration tools by
third parties, independent from the distribution, or by the distributor of the
GNU/Linux system itself.

These tools may cover more or fewer aspects of the administration of a specific
task and can appear with various different interfaces: whether command line
tools with various associated configuration options and/or files or text tools
with some form of menus; or graphics tools, with more suitable interfaces for
handling information, wizards to automate the tasks or web administration

interfaces.

All of this offers us a broad range of possibilities where administration is con-
cerned, but we will always have to evaluate the ease of using them with the
benefits of using them, and the knowledge of the administrator responsible
for these tasks.

The common tasks of a GNU/Linux administrator can include working with
different distributions (for example, the ones we will discuss Fedora [Fed] or
Debian [Debb] or any other) or even working with commercial variants of oth-
er UNIX systems. This entails having to establish a certain way of working that

allows us to perform the tasks in the different systems in a uniform manner.

For this reason, throughout the different modules we will try to highlight the
most common aspects and the administration techniques will be mostly per-
formed at a low level through a command line and/or the editing of associated
configuration files.

Any of the GNU/Linux distributions tends to include command line, text, or
especially, graphics tools to complement the above and to a greater or lesser
degree simplify task administration [SmO02]. But we need to take several things
into account:

a) These tools are a more or less elaborate interface of the basic command line
tools and corresponding configuration files.

b) Normally they do not offer all the features or configurations that can be
carried out at a low level.

c) Errors may not be well managed or may simply provide messages of the
type "this task could not be performed".

© FUOC « PID_00148464 8

d) The use of these tools hides, sometimes completely, the internal function-
ing of the service or task. Having a good understanding of the internal func-
tioning is basic for the administrator, especially if the administrator is respon-
sible for correcting errors or optimising services.

€) These tools are useful for improving production once the administrator
has the required knowledge to handle routine tasks more efficiently and to
automate them.

f) Or, in the opposite case, the task may be so complex, require so many pa-
rameters or generate so much data, that it may become impossible to control
it manually. In these cases, the high level tools can be very useful and make
practicable tasks that are otherwise difficult to control. For example, this cat-
egory would include visualisation tools, monitorisation tools, and summaries
of tasks or complex services.

g) For automating tasks, these tools (of a higher level) may not be suitable: they
may not have been designed for the steps that need taking or may perform
them inefficiently. For example, a specific case would be creating users, where
a visual tool can be very attractive because of the way of entering the data;
but what if instead of entering one or a few users we want to enter a list of
tens or hundreds of them? if not prepared for this, the tool will become totally

inefficient.

h) Finally, administrators normally wish to personalise their tasks using the
tools they find most convenient and easy to adapt. In this aspect, it is common
to use basic low-level tools, and shell scripts (we will study the basics in this
unit) combining them in order to form a task.

We may use these tools occasionally (or daily), if we have the required knowl-
edge for dealing with errors that can arise or to facilitate a process that the
tool was conceived for, but always controlling the tasks we implement and
the underlying technical knowledge.

Basic tools for the administrator

© FUOC PID_00148464 9 Basic tools for the administrator

2. Standards

Standards, whether generic of UNIX or particular to GNU/Linux, allow us to
follow a few basic criteria that guide us in learning how to execute a task and
that offer us basic information for starting our job.

Note

In GNU/Linux we can find standards, such as the FHS (filesystem hierar-

chy standard) [Linb], which tells us what we can find in the our system's See FHS in:
. .) www.pathname.com/fhs
file system structure (or where to look for it), or the LSB (Linux standard

base), which discusses the different components that we tend to find
in the systems [Linc].

The FHS filesystem hierchachy standard describes the main file system tree struc- Note

ture (/), which specifies the structure of the directories and the main files that
The FHS standard is a basic

they will contain. This standard is also used to a greater or lesser extent for tool that allows us to under-

commercial UNIX, where originally there were many differences that made stand the structure and func-
tionality of the system's main
each manufacturer change the structure as they wished. The standard original- file system.

ly conceived for GNU/Linux was made to normalise this situation and avoid
drastic changes. Even so, the standard is observed to varying degrees, most
distributions follow a high percentage of the FHS, making minor changes or
adding files or directories that did not exist in the standard.

A basic directories scheme could be:

e /bin:basic system utilities, normally programs used by users, whether from
the system's basic commands (such as /bin/ls, list directory), shells (/bin/
bash) etc.

e /boot: files needed for booting the system, such as the image of the Linux
kernel, in /boot/vmlinuz.

e /dev: here we will find special files that represent the different possible
devices in the system, access to peripherals in UNIX systems is made as if
they were files. We can find files such as /dev/console, /dev/modem, /dev/
mouse, /dev/cdrom, /dev/floppy... which tend to be links to more specific
devices of the driver or interface type used by the devices: /dev/mouse,
linked to /dev/psaux, representing a PS2 type mouse; or /dev/cdrom to
/dev/hdc, a CD-ROM that is a device of the second IDE connector and
master. Here we find IDE devices such as /dev/hdx, scsi /dev/sdx... with x
varying according to the number of the device. Here we should mention
that initially this directory was static, with the files predefined, and/or
configured at specific moments, nowadays we use dynamic technology

© FUOC « PID_00148464 10 Basic tools for the administrator

techniques (such as hotplug or udev), that can detect devices and create
/dev files dynamically when the system boots or while running, with the
insertion of removable devices.

e /etc: configuration files. Most administration tasks will need to examine
or modify the files contained in this directory. For example: /etc/passwd

contains part of the information on the system's user accounts.

e /home: it contains user accounts, meaning the personal directories of each

user.

e /lib: the system's libraries, shared by user programs, whether static (.a ex-
tension) or dynamic (.so extension). For example, the standard C library,
in libc.so files or libc.a. Also in particular, we can usually find the dynamic
modules of the Linux kernel, in /lib/modules.

e /mnt: point for mounting (mount command) file systems temporarily; for
example: /mnt/cdrom, for mounting a disk in the CD-ROM reader tem-

porarily.

e /media: for common mounting point of removable devices.

e /opt: the software added to the system after the installation is normally
placed here; another valid installation is in /usr/local.

e /sbin: basic system utilities. They tend to be command reserved for the
administrator (root). For example: /sbin/fsck to verify the status of the file

systems.

e /tmp: temporary files of the applications or of the system itself. Although
they are for temporary running, between two executions the application/
service cannot assume that it will find the previous files.

e /usr: different elements installed on the system. Some more complete sys-
tem software is installed here, in addition to multimedia accessories (icons,
images, sounds, for example in: /usr/share) and the system documenta-
tion (/usr/share/doc). It also tends to be used in /usr/local for installing

software.

e /var: log or status type files and/or error files of the system itself and of
various both local and network services. For example, log files in /var/log,
e-mail content in /var/spool/mail, or printing jobs in /var/spool/lpd.

© FUOC « PID_00148464 11

These are some of the directories defined in the FHS for the root system, then
for example it specifies some subdivisions, such as the content of /usr and /var,
and the typical data and/or executable files expected to be found at minimum
in the directories (see references to FHS documents).

Regarding the distributions, Fedora/Red Hat follows the FHS standard very
closely. It only presents a few changes in the files present in /usr, /var. In /etc
there tends to be a directory per configurable component and in /opt, /usr/
local there is usually no software installed unless the user installs it. Debian
follows the standard, although it adds some special configuration directories
in /etc.

Another standard in progress is the LSB (Linux standard base) [Linc]. Its idea is
to define compatibility levels between the applications, libraries and utilities,
so that portability of applications is possible between distributions without
too many problems. In addition to the standard, they offer test sets to check
the compatibility level. LSB in itself is a collection of various standards applied
to GNU/Linux.

Basic tools for the administrator

Note

See standard specifications:

http://
www . linuxfoundation.org/en/
Specifications

© FUOC « PID_00148464 12 Basic tools for the administrator

3. System documentation

One of the most important aspects of our administration tasks will be to have
the right documentation for our system and installed software. There are nu-
merous sources of information, but we should highlight the following:

a) man is by far the best choice of help. It allows us to consult the GNU/
Linux manual, which is grouped into various sections corresponding to
administration commands, file formats, user commands, C language calls

etc. Normally, to obtain the associated help, we will have enough with:
man command

Every page usually describes the command together with its options and,
normally, several examples of use. Sometimes, there may be more than
one entry in the manual. For example, there may be a C call with the
same name as a command; in this case, we would have to specify what

section we want to look at:
man n command
with n being the section number.

There are also several tools for exploring the manuals, for example xman
and tkman, which through a graphic interface help to examine the dif-
ferent sections and command indexes. Another interesting command is
apropos word, which will allow us to locate man pages that discuss a spe-
cific topic (associated with the word).

b) info is another common help system. This program was developed
by GNU to document many of its tools. It is basically a text tool where
the chapters and pages can be looked up using a simple keyboard-based
navigation system.

c) Applications documentation: in addition to certain man pages, it is
common to include extra documentation in the applications, in the form
of manuals, tutorials or simple user guides. Normally, these documenta-
tion components are installed in the directory /usr/share/doc (or /usr/doc
depending on the distribution), where normally a directory is created for
each application package (normally the application can have a separate
documentation package).

© FUOC « PID_00148464 13 Basic tools for the administrator

d) Distributions' own systems. Red Hat tends to come with several CDs
of consultation manuals that can be installed on the system and that
come in HTML or PDF formats. Fedora has a documentation project on
its webpage. Debian offers its manuals in the form of one more software
package that is usually installed in /usr/doc. At the same time, it has tools
that classify the documentation in the system, organising it by means of
menus for visualisation, such as dwww or dhelp, which offer web interfaces
for examining the system's documentation.

e) Finally, X desktops, such as Gnome and KDE, usually also carry their
own documentation systems and manuals, in addition to information for
developers, whether in the form of graphic help files in their applications
or own applications that compile all the help files (for example devhelp
in Gnome).

© FUOC « PID_00148464 14 Basic tools for the administrator

4. Shell scripting

The generic term shell is used to refer to a program that serves as an interface
between the user and the GNU/Linux system's kernel. In this section, we will
focus on the interactive text shells, which are what we will find as users once
we have logged in the system.

The shell is a system utility that allows users to interact with the kernel
through the interpretation of commands that the user enters in the
command line or files of the shell script type.

The shell is what the users see of the system. The rest of the operating system
remains mostly hidden from them. The shell is written in the same way as a
user process (program); it does not form part of the kernel, but rather is run
like just another user program.

When our GNU/Linux system starts up, it tends to offer users an interface
with a determined appearance; the interface may be a text or graphic interface.
Depending on the modes (or levels) of booting the system, whether with the
different text console modes or modes that give us a direct graphic start up
in X Window.

In graphic start up modes, the interface consists of an access administrator to
manage the user login procedure using a graphic cover page that asks for the
corresponding information to be entered: user identification and passsword.
Access managers are common in GNU/Linux: xdm (belonging to X Window),
gdm (Gnome) and kdm (KDE), as well as a few others associated to different
window managers. Once we have logged in, we will find ourselves in the X
Window graphic interface with a windows manager such as Gnome or KDE.
To interact through an interactive shell, all we will need to do is to open one
of the available terminal emulation programs.

If our access is in console mode (text), once logged in, we will obtain direct
access to the interactive shell.

Another case of obtaining an interactive shell is by remote access to the ma-
chine, whether through any of the text possibilities such as telnet, rlogin, ssh,
or graphic possibilities such as the X Window emulators.

© FUOC « PID_00148464 15 Basic tools for the administrator

Login: josep
Passwd:

Login: josep
Passwd:
Welcome!

$

Figure 1. Example of starting up a text shell textual and the system processes involved [Oke]

4.1. Interactive shells

Having initiated the interactive shell [QuiO1], the user is shown a prompt, in-
dicating that a command line may be entered. After entering it, the shell be-
comes responsible for validating it and starting to run the required processes,
in a number of phases:

e Reading and interpreting the command line.

e Evaluating wildcard characters such as $ * ? and others.

e Managing the required I/O redirections, pipes and background processes
(&).

e Handling signals.

e DPreparing to run programs.

Normally, command lines will be ways of running the system's commands,
interactive shell commands, starting up applications or shell scripts.

© FUOC « PID_00148464 16

Shell scripts are text files that contain command sequences of the sys-
tem, plus a series of internal commands of the interactive shell, plus
the necessary control structures for processing the program flow (of the
type while, for etc.).

The system can run script files directly under the name given to the file. To
run them, we invoke the shell together with the file name or we give the shell
script execution permissions.

To some extent, we can see shell script as the code of an interpreted language
that is executed on the corresponding interactive shell. For the administrator,
shell scripts are very important, basically for two reasons:

1) The system's configuration and most of the services are provided through
tools in the form of shell scripts.

2) The main way of automating administration processes is creating shell
scripts.

Returns prompt <«
—» Reads next command

Shell looks
for corlnmand

Is it an

internal Yes » Command is run
command?
No
i Parent shell
Creates cf*ld process ~ arent she
waits
Is it an % i
executable Yes . Kernel loaas a new program

program? and runs it as child

| New process runs
and completes

It is the end

. Yes » end
of a script
| Parent shell
wakes up
No

Figure 2. Basic shell flow control

Basic tools for the administrator

© FUOC « PID_00148464 17 Basic tools for the administrator

All the programs that are invoked by a shell possess three predefined files,
specified by the corresponding file handles. By default, these files are:

1) standard input: normally assigned to the terminal's keyboard (console);
uses file handle number O (in UNIX the files use whole number file han-
dles).

2) standard output: normally assigned to the terminal's screen; uses file
handle 1.

3) standard error: normally assigned to the terminal's screen; uses file han-
dle 2.

This tells us that any program run from the shell by default will have the
input associated to the terminal's keyboard, the output associated to the
screen, and that it will also send errors to the screen.

Also, the shells tend to provide the three following mechanisms:

1) Redirection: given that I/O devices and files are treated the same way
in UNIX, the shell simply handles them all as files. From the user's point
of view, the file handles can be reassigned so that the data flow of one
file handle goes to any other file handle; this is called redirection. For
example, we refer to redirecting file handles O or 1 as redirecting standard
I/0.

2) Pipes: a program's standard output can be used as another's standard
input by means of pipes. Various programs can be connected to each other
using pipes to create what is called a pipeline.

3) Concurrence of user programs: users can run several programs simul-
taneously, indicating that they will be run in the background, or in the
foreground, with exclusive control of the screen. Another way consists
of allowing long jobs in the background while interacting with the shell
and with other programs in the foreground.

In practice, in UNIX/Linux these shells entail:

e Redirection: a command will be able to receive input or output from other
files or devices.

© FUOC » PID_00148464 18
Example
let's see
command op file
where op may be:

e < :receive input from file.
e >:send output to file.
e >>:ijtindicates to add the output (by default, with > the file is created again).

e DPipes: chaining several commands, with transmission of their data:

commandl | command2 | command3

e This instruction tells us that command1 will receive input possibly from
the keyboard, send its output to command2, which will receive it as input
and produce output towards command3, which will receive it and send
its output to the standard output (by default, the screen).

e Background concurrence: any command executed with the '&' at the end
of the line will be run in the background and the prompt of the shell will
be returned immediately while it continues to be executed. We can follow
the execution of commands with the ps command and its options, which
allows us to observe the status of the system's processes. And we also have
the kill order, which allows us to eliminate processes that are still being
run or that have entered an error condition: kill -9 PID allows us to kill the
process with PID identification number. PID is the identifier associated to
the process, a whole number assigned to it by the system and that can be
obtained using the ps command.

4.2. Shells

The shell's independence in relation to the operating system's kernel (the shell
is just an interface layer), allows us to have several of them on the system
[QuiO1]. Although some of the more frequent ones are:

a) The Bash (initialism for Bourne-again shell). The default GNU/Linux
shell.

b) The Bourne shell (sh). This has always been the standard UNIX shell,
and the one that all UNIX systems have in some version. Normally, it is
the administrator's default shell (root). In GNU/Linux it tends to be Bash,
an improved version of the Bourne shell, which was created by Stephen
Bourne at AT&T at the end of the seventies. The default prompt tends to
be a'$' (in root a '#').

Basic tools for the administrator

© FUOC « PID_00148464 19 Basic tools for the administrator

c) The Korn shell (ksh). It is a supergroup of Bourne (some compatibility is
maintained), written at AT&T by David Korn (in the mid eighties), which
some functionalities of Bourne and C, with some additions. The default
prompt is the $.

d) The C shell (csh). It was developed at the University of Berkeley by Bill
Joy towards the end of the seventies and has a few interesting additions
to Bourne, like a command log, alias, arithmetic from the command line,
it completes file names and controls jobs in the background. The default
prompt for users is '%'. UNIX users tend to prefer this shell for interaction,
but UNIX administrators prefer to use Bourne, because the scripts tend to
be more compact and to execute faster. At the same time, an advantage
of the scripts in C shell is that, as the name indicates, the syntax is based
on C language (although it is not the same).

e) Others, such as restricted or specialised versions of the above.

The Bash (Bourne again shell) [Bas] [Coo] has grown in importance since it
was included in GNU/Linux systems as the default shell. This shell forms
part of the GNU software project. It is an attempt to combine the three
preceding shells (Bourne, C and Korn), maintaining the syntax of the
original Bourne shell. This is the one we will focus on in our subsequent

examples.

A rapid way of knowing what shell we are in as users is by using the
variable $SHELL, from a command line with the instruction:

echo $ SHELL

We will find that some aspects are common to all shells:

e They all allow shell scripts to be written, which are then interpreted
executing them either by the name (if the file has an execution per-
mission) or by passing it as a parameter to the command of the shell.

e System users have a default shell associated to them. This informa-
tion is provided upon creating the users' accounts. The administra-
tor will assign a shell to each user, or otherwise the default shell will
be assigned (bash in GNU/Linux). This information is saved in the
passwords file in /etc/passwd and can be changed with the chsh com-
mand, this same command with the option -1 will list the system's
available shells (see also /etc/shells).

e Every shell is actually an executable command, normally present

in the /bin directories in GNU/Linux (or /usr/bin).

© FUOC « PID_00148464 20 Basic tools for the administrator

e Shell scripts can be written in any of them, but adjusting to each
one's syntax, which is normally different (sometimes the differences
are minor). The construction syntax, as well as the internal com-
mands, are documented in every shell's man page (iman bash for ex-

ample).

e Every shell has some associated start up files (initialisation files),
and every user can adjust them to their needs, including code, vari-

ables, paths...

Note
e The capacity in the programming lies in the combination of each
shell's syntax (of its constructions), with the internal commands of To program a shell it is advis-
. able to have a good knowl-
each shell, and a series of UNIX commands that are commonly used edge of these UNIX com-
in the scripts, like for example cut, sort, cat, more, echo, grep, wc, awk, mands and of their different
options.

sed, mv, Is, cp...

e If as users we are using a specific shell, nothing prevents us from
starting up a new copy of the shell (we call it a subshell), whether it
is the same one or a different one. We simply invoke it through the
name of the executable, whether sh, bash, csh or ksh. Also when we
run a shell script a subshell is launched with the corresponding shell

for executing the requested script.

Some basic differences between them [QuiO1]:

a) Bash is the default shell in GNU/Linux (unless otherwise specified
in creating the user account). In other UNIX systems it tends to be the
Bourne shell (sh). Bash is compatible with sh and also incorporates some
features of the other shells, csh and ksh.

b) Start-up files: sh, ksh have .profile (in the user account, and is execut-
ed in the user's login) and ksh also tends to have a .kshrc which is ex-
ecuted next, csh uses .login (it is run when the user login initiates one
time only), .logout (before leaving the user's session) and .cshrc (similar to
the .profile, in each initiated C subshell). And Bash uses the .bashrc and
the .bash_profile. Also, the administrator can place common variables and
paths in the /etc/profile file that will be executed before the files that each

© FUOC « PID_00148464 21

user has. The shell start-up files are placed in the user's account when it
is created (normally they are copied from the /etc/skel directory), where
the administrator can leave some skeletons of the prepared files.

c) The system or service configuration scripts are usually written in
Bourne shell (sh), since most UNIX systems used them this way. In GNU/
Linux we can also find some in Bash and also in other script languages
not associated to the shell such as Perl or Python.

d) We can identify what shell the script is run on using the file command,
for example file <scriptname>. Or by examining the first line of the script,
which tends to be: #!//bin/name, where the name is bash, sh, csh, ksh... This
line tells us, at the moment of running the script, what shell needs to be
used to interpret it (in other words, what subshell needs to be launched in
order to run it). It is important for all scripts to contain it, since otherwise
they will try to run the default shell (Bash in our case) and the syntax
may not be the right one, causing many syntax errors in the execution.

4.3. System variables

Some useful system variables (we can see them using the echo command for

example), which can be consulted in the command line or within the pro-

gramming of the shell scripts are:

Basic tools for the administrator

Variable Value Example Description

HOME /home/juan Root directory of the user
LOGNAME |juan User ID at login

PATH /bin:/usr/local/bin:/usr/X11/bin Paths

SHELL /bin/bash User shell

PS1 $ Shell prompt, the user can change it
MAIL /var/mail/juan E-mail directory

TERM xterm Type of terminal used by the user
PWD /home/juan Current user directory

The different variables of the environment can be seen using the env com-

mand. For example:

$ env

SSH_AGENT_PID = 598
MM_CHARSET = IS0O-8859-15

TERM = xterm

DESKTOP_STARTUP_ID =

SHELL =

/bin/bash

© FUOC « PID_00148464 22

WINDOWID = 20975847

LC_ALL = es_ESQReuro

USER = juan

LS_COLORS = no = 00:fi = 00:di = 01;34:1n = 01;
SSH_AUTH_SOCK = /tmp/ssh-wJzVY570/agent.570
SESSION_MANAGER = local/aopcjj:/tmp/.ICE-unix/570
USERNAME = Jjuan
PATH=/soft/jdk/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/
X11l:/usr/games

MAIL = /var/mail/juan

PWD = /etc/skel

JAVA_HOME = /soft/jdk

LANG = es_ES@euro

GDMSESSION = Gnome

JDK_HOME = /soft/jdk

SHLVL = 1

HOME = /home/juan

GNOME_DESKTOP_SESSION_ID = Default

LOGNAME = Jjuan

DISPLAY = :0.0

COLORTERM = gnome-terminal

XAUTHORITY = /home/juan/.Xauthority

_ = /usr/bin/env

OLDPWD = /etc

4.4. Programming scripts in Bash

Here we will look at some basic concepts of the shell scripts in Bash, we advise
further reading in [Bas] [Coo0].

All Bash scripts have to start with the line:

#!/bin/bash

This line indicates the shell used by the user, the one active at the time, what
shell is needed for running the script that appears next.

The script can be run in two different ways:
1) By running directly from the command line, on condition it has an execu-
tion permission. If this is not the case, we can establish the permission with:

chmod +x script.

2) By running through the shell, we call on the shell explicitly: /bin/bash script.

Basic tools for the administrator

© FUOC « PID_00148464 23

We should take into account that, irrespective of the method of execution, we
are always creating a subshell where our script will be run.

4.4.1. Variables in Bash

The assignment of variables is done by:

variable = value

The value of the variable can be seen with:

echo $variable

where '$' refers us to the variable's value.

The default variable is only visible in the script (or in the shell). If the variable
needs to be visible outside the script, at the level of the shell or any subshell
that is generated a posteriori, we will need to "export" it as well as assign it.
We can do two things:

e Assign first and export after:

var=value

export var

e Export during assignment:

export var=value

In Bash scripts we have some accessible predetermined variables:

e $1-$N: It saves past arguments as parameters to the script from the com-
mand line.

e $0: It saves the script name, it would be parameter O of the command line.

e $*: It saves all parameters from 1 to N of this variable.

e $:Itsaves both parameters, but with double inverted commas (" ") for each
of them.

e $?: "Status": it saves the value returned by the most recent executed com-
mand. Useful for checking error conditions, since UNIX tends to return O

if the execution was correct, and a different value as an error code.

Another important issue regarding assignments is the use of inverted commas:

Basic tools for the administrator

© FUOC « PID_00148464 24 Basic tools for the administrator

e Double inverted commas allow everything to be considered as a unit.

e Single inverted commas are similar, but ignore the special characters inside

them.

e Those pointed to the left (command”) are used for evaluating the inside,
if there is an execution or replacement to be made. First the content is ex-
ecuted, and then what there was is replaced by the result of the execution.
For example: var ='Is' saves the list of the directory in $var.

4.4.2. Comparisons

For conditions the order test expression tends to be used or directly [expression].

We can group available conditions in:

e Numerical comparison: -eq, -ge, -gt, -le, -It, -ne, corresponding to: equal
to, greater than or equal to (ge), greater than, less than or equal to (le),

less than, not equal to.

e Chain comparison: :=, !=, -n, -z, corresponding to chains of characters:
equal, different, with a greater length than 0, length equal to zero or emp-

ty.

e File comparison: -d, -f -1, -s, -w, -x. The file is: a directory, an ordinary file,
is readable, is not empty, is writable, is runnable.

e Booleans between expressions: !, -a, -0, conditions of not, and, and or.

4.4.3. Control structures

Regarding the script's internal programming, we need to think that we are

basically going to find:

e Commands of the operating system itself.
e Internal commands of the Bash (see: man bash).
e Programming control structures (for, while...), with the syntax of Bash.

The basic syntax of control structures is as follows:

a) Structure if...then, evaluates the expression and if a certain value is obtained,
then the commands are executed.

if [expresion]
then

commands

© FUOC « PID_00148464 25 Basic tools for the administrator

b) Structure if...then...else, evaluates the expression and if a certain value is

obtained then the commands1 are executed, otherwise comands2 are execut-
ed:

c) Structure if..then...else if...else, same as above, with additional if structures.

d) Structure case select, multiple selection structure according to the selection _
value (in case)

Shells such as Bash offer a
wide set of control structures
that make them comparable
to any other language.

e) Loop for, replacement of the variable for each element of the list:

f) Loop while, while the expression is fulfilled:

© FUOC « PID_00148464 26 Basic tools for the administrator

g) Loop until, until the expression is fulfilled:

h) Declaration of functions:

or with a call accompanied by parameters:

and function calls with fname or fname2 p1 p2 p3 ... pN.

© FUOC « PID_00148464 27 Basic tools for the administrator

5. Package management tools

In any distribution, the packages are the basic item for handling the tasks
of installing new software, updating existing software or eliminating unused
software.

Basically, a package is a set of files that form an application or the
combination of several related applications, normally forming a single
file (known as a package), with its own format, normally compressed,
which is distributed via CD/DVD or downloading service (ftp or http
repositories).

The use of packages is helpful for adding or removing software, because it
considers it as a unit instead of having to work with the individual files.

In the distribution's content (its CD/DVDs) the packages tend to be grouped
into categories such as: a) base: essential packages for the system's functioning
(tools, start-up programs, system libraries); b) system: administration tools,
utility commands; c) development: programming tools: editors, compilers, de-
buggers... d) graphics: graphics controllers and interfaces, desktops, windows
managers... e) other categories.

Normally, to install a package we will need to follow a series of steps:

1) Preliminary steps (pre-installation): check that the required software
exists (and with the correct versions) for its functioning (dependencies),
whether system libraries or other applications used by the software.

2) Decompress the package content, copying the files to their definitive
locations, whether absolute (with a fixed position) or can be relocated to

other directories.

3) Post-installation: retouching the necessary files, configuring possible
software parameters, adjusting it to the system...

Depending on the types of packages, these steps may be mostly automat-
ic (this is the case in RPM [BaiO3] and DEB [Deb02]) or they may all be
needed to be done by hand (.tgz case) depending on the tools provided
by the distribution.

© FUOC « PID_00148464 28

Next, let's see perhaps the three most classical packages of most distribu-
tions. Each distribution has one as standard and supports one of the oth-
ers.

5.1. TGZ pacKkage

TGZ packages are perhaps those that have been used for longest. The first
GNU/Linux distributions used them for installing the software, and several
distributions still use it (for example, Slackware) and some commercial UNIX.
They are a combination of files joined by the tar command in a single .tar file
that has then been compressed using the gzip utility, and that tends to appear
with the .tgz or .tar.gz extension. At the same time, nowadays it is common
to find tar.bz2 which instead of gzip use another utility called bzip2, which in
some cases obtains greater file compression.

Contrary to what it may seem, it is a commonly used format especially by the
creators or distributors of software external to the distribution. Many software
creators that work for various platforms, such as various commercial UNIX and
different distributions of GNU/Linux prefer it as a simpler and more portable
system.

An example of this case is the GNU project, which distributes its software in
this format (in the form of source code), since it can be used in any UNIX,
whether a proprietary system, a BSD variant or a GNU/Linux distribution.

If in binary format, we will have to bear in mind that it is suitable for our
system, for example a denomination such as the following one is common (in

this case, version 1.4 of the Mozilla web navigator):

mozilla-i686-pc—-linux—-gnu—-1l.4-installer.tar.gz

where we have the package name, as Mozilla, designed for i686 architecture
(Pentium II or above or compatible), it could be 1386, 1586, 1686, k6 (amd k6),
k7 (amd athlon), amdé64 u x86_64 (for AMD64 and some 64bit intels with
emo64t), o ia64 (intel Itaniums) others for the architectures of other machines
such as sparc, powerpc, mips, hppa, alpha... then it tells us that it is for Linux,
on a PC machine, software version 1.4.

If it were in source format, it could appear as:
mozilla—-source-1l.4.tar.gz
where we are shown the word source; in this case it does not mention the

machine's architecture version, this tells us that it is ready for compiling on
different architectures.

Basic tools for the administrator

Note

TGZ packages are a basic tool
when it comes to installing un-
organised software. Besides,
they are a useful tool for back-
up processes and restoring
files.

© FUOC « PID_00148464 29 Basic tools for the administrator

Otherwise, there would be different codes for every operating system or
source: GNU/Linux, Solaris, Irix, bsd...

The basic process with these packages consists of:

1) Decompressing the package (they do not tend to use absolute path,
meaning that they can be decompressed anywhere):

tar —zxvf file.tar.gz (or .tgz file)

With the tar command we use z options: decompress, x: extract files, v:
view process, f: name the file to be treated.

It can also be done separately (without the tar's z):

gunzip file.tar.gz

(leaves us with a tar file)

tar —xvf file.tar

2) Once we have decompressed the tgz, we will have the files it contained,
normally the software should include some file of the readme or install
type, which specifies the installation options step by step, and also pos-
sible software dependencies.

In the first place, we should check the dependencies to see if we have the
right software, and if not, look for it and install it.

If it is a binary package, the installation is usually quite easy, since it will
be either directly executable from wherever we have left it or it will carry
its own installer. Another possibility is that we may have to do it manu-
ally, meaning that it will be enough to copy it (cp -1, recursive copy) or to
move it (mv command) to the desired position.

Another case is the source code format. Then, before installing the soft-
ware we will first have to do a compilation. For this we will need to read
the instruction that the program carries in some detail. But most devel-
opers use a GNU system called autoconf (from autoconfiguration), which
normally uses the following steps (if no errors appear):

e ./configure: it is a script that configures the code so that it can be
compiled on our machine and that verifies that the right tools exist.
The --prefix = directory option makes it possible to specify where the
software will be installed.

© FUOC « PID_00148464 30 Basic tools for the administrator

e make: compilation itself.

e make install: installing the software in the right place, normally

previously specified as an option to configure or assumed by default.

This is a general process, but it depends on the software whether it follows it
or not, there are fairly worse cases where the entire process needs to be carried
out by hand, retouching configuration files or the makefile, and/or compiling
the files one by one, but luckily this is becoming less and less common.

In the case of wanting to delete all of the installed software, we will have to
use the uninstaller if provided or, otherwise, directly delete the directory or
installed files, looking out for potential dependencies.

The tgz packages are fairly common as a backup mechanism for administra-
tion tasks, for example, for saving copies of important data, making backups
of user accounts or saving old copies of data that we do not know if we will
need again. The following process tends to be used: let's suppose that we want
to save a copy of the directory "dir", we can type: tar —-cvf dir.tar dir
(c: compact dir in the file dir.tar) gzip dir.tar (compress) or in a single
instruction like:

tar —cvzf dir.tgz dir

The result will be a dir.tgz file. We need to be careful if we are interested in
conserving the file attributes and user permissions, as well as possibly links
that may exist (we must examine the tar options so that it adjusts to the re-
quired backup options).

5.2. Fedora/Red Hat: RPM packages

The RPM packages system [BaiO3] created by Red Hat represents a step
forward, since it includes the management of software configuration
tasks and dependencies. Also, the system stores a small database with
the already installed packages, which can be consulted and updated
with new installations.

Conventionally, RPM packages use a name such as:

package—-version—-rev.arq.rpm

© FUOC « PID_00148464 31

where package is the name of the software, version is the numbering of the soft-
ware version, rev normally indicates the revision of the RPM package, which
indicates the number of times it has been built and arq refers to the archi-
tecture that it is designed for, whether Intel/AMD (i386, i586, 1686, x86_64,
emo64t, ia64) or others such as alpha, sparc, PPC... The noarch "architecture'is
normally used when it is independent, for example, a Set of scripts and src in
the case of dealing with source code packages. A typical execution will include
running rpm, the options of the operation to be performed, together with one
or more names of packages to be processed together.

Typical operations with RPM packages include:

e Package information: specific information about the package is consult-
ed using the option -q together with the package name (with -p if on an
rpm file). If the package has not yet been installed, the option would be
-q accompanied by the information option to be requested, and if the re-
quest is to be made to all the installed packages at the same time, the op-
tion would be -qa. For example, requests from an installed package:

Basic tools for the administrator

Note

The package: apache-1.3.19-
23.i686.rpm would indicate
that it is Apache software (the
web server), in its version
1.3.19, package revision RPM
23, for Pentium Il architectures
or above.

Request RPM options Results
Files rpm —-gl List of the files it contains
Information rpm -gi Package description
Requirements rpm —-gR Prior requirements, libraries or software

e Installation: simply rpm -i package.rpm, or with the URL where the

package can be found, for downloading from FTP or web servers, we just
need to use the syntax ftp:// or http:// to obtain the package's location.
The installation can be completed on condition that the package depen-
dencies are met, whether in the form of prior software or the libraries that
should be installed. In the case of not fulfilling this requirement, we will
be told what software is missing, and the name of the package that pro-
vides it. We can force the installation (although the installed software may
not work) with the options -—force or ——nodeps, or simply by ignoring
the information on the dependencies.
The task of installing a package (done by rpm) entails various sub-tasks:
a) checking for potential dependencies; b) examining for conflicts with
other previously installed packages; ¢) performing pre-installation tasks; c¢)
deciding what to do with the configuration files associated to the package
if they existed previously; d) unpackaging the files and placing them in the
right place; e) performing other post-installation tasks; finally, f) storing
the log of tasks done in the RPM database.

© FUOC « PID_00148464 32

e Updating: equivalent to the installation but first checking that the soft-
ware already exists rom -U package.rpm. It will take care of deleting the
previous installation.

e Verification: during the system's normal functioning many of the in-
stalled files will change. In this regard, RPM allows us to check files in or-
der to detect any changes from a normal process or from a potential error
that could indicate corrupt data. Through rpm -V package we verify a
specific package and through rpm -va we will verify all of them.

e Deletion: erasing the package from the RPM system (-e or --erase); if there
are dependencies, we may need to eliminate others previously.

Example
For a remote case:
rpm -i ftp://site/directory/package.rpm

would allow us to download the package from the provided FTP or web site, with its
directory location, and proceed in this case to install the package.

We need to control where the packages come from and only use known and
reliable package sources, such as the distribution's own manufacturer or trust-
worthy sites. Normally, together with the packages, we are offered a digital
signature for them, so that we can check their authenticity. The sums mdS are
normally used for checking that the package has not been altered and other
systems, such as GPG (GNU version of PGP), for checking the authenticity
of the package issuer. Similarly, we can find different RPM package stores on
Internet, where they are available for different distributions that use or allow
the RPM format.

For a secure use of the packages, official and some third party repositories
currently sign the packages electronically, for example, using the abovemen-
tioned GPG; this helps us to make sure (if we have the signatures) that the
packages come from a reliable source. Normally, every provider (the reposito-
ry) will include some PGP signature files with the key for its site. From official
repositories they are normally already installed, if they come from third par-
ties we will need to obtain the key file and include it in RPM, typically:

$ rpm —import GPG-KEY-FILE
With GPP-KEY-FILE being the GPG key file or URL of the file, normally this

file will also have sum md5 to check its integrity. And we can find the keys
in the system with:

$ rpm -ga | grep “gpg-pubkey

we can observe more details on the basis of the obtained key:

Basic tools for the administrator

Note

View the site:
www.rpmfind.net.

© FUOC PID_00148464 33
$ rpm -gi gpg-key-—xXXXXX-YYYYY

For a specific RPM package we will be able to check whether it has a signature
and with which one it has been used:

$ rpm —-checksig —-v <package>.rpm

And to check that a package is correct based on the available signatures, we

can use:

$ rpm —-K <package.rpm>

We need to be careful to import just the keys from the sites that we trust.
When RPM finds packages with a signature that we do not have on our system
or when the package is not signed, it will tell us and, then, we will have to
decide on what we do.

Regarding RPM support in the distributions, in Fedora (Red Hat and also in its
derivatives), RPM is the default package format and the one used extensively
by the distribution for updates and software installation. Debian uses the for-
mat called DEB (as we will see), there is support for RPM (the rpm command
exists), but only for consulting or package information. If it is essential to in-
stall an rpm package in Debian, we advise using the alien utility, which can
convert package formats, in this case from RPM to DEB, and proceed to install
with the converted package.

In addition to the distribution's basic packaging system, nowadays each one
tends to support an intermediate higher level software management system,
which adds an upper layer to the basic system, helping with software manage-
ment tasks, and adding a number of utilities to improve control of the process.

In the case of Fedora (Red Hat and derivatives) it uses the YUM system, which
allows as a higher level tool to install and manage packages in rpm systems, as
well as automatic management of dependencies between packages. It allows
access to various different repositories, centralises their configuration in a file
(/etc/yum.conf normally), and has a simple commands interface.

The yum configuration is based on:

Basic tools for the administrator

Note

YUM in: http://
yum.baseurl.org

/etc/yum.config (options file)

/etc/yum (directory for some associated utilities)

/etc/yum.repos.d (directory for specifying repositories, a file for each one, including access information and location of
the gpg signatures).

A summary of the typical yum operations would be:

© FUOC « PID_00148464 34

Basic tools for the administrator

Order Description

yum install <name> Install the package with the name

yum update <name> Update an existing package

yum remove <name> Eliminate package

yum list <name> Search package by name (name only)
yum search <name> More extensive search

yum provices <file> Search for packages that provide the file
yum update Update the entire system

yum upgrade As above, including additional packages

Finally, Fedora also offers a couple of graphics utilities for YUM, pup for con-
trolling recently available updates, and pirutas a software management pack-
age. There are also others like yumex, with greater control of yum's internal
configuration.

5.3. Debian: DEB packages

Debian has interactive tools such as tasksel, which makes it possible to select
sub-sets of packages grouped into types of tasks: packages for X, for develop-
ment, for documentation etc., or such as dselect, which allows us to navigate
the entire list of available packages (there are thousands) and select those we
wish to install or uninstall. In fact, these are only a front-end of the APT mid-
level software manager.

At the command line level it has dpkg, which is the lowest level command
(would be the equivalent to rpm), for managing the DEB software packages
directly [Deb02], typically dpkg -i package.deb to perform the installation. All
sorts of tasks related to information, installation, removal or making internal
changes to the software packages can be performed.

The intermediary level (as in the case of Yum in Fedora) is presented by the
APT tools (most are apt-xxx commands). APT allows us to manage the pack-
ages from a list of current and available packages based on various software
sources, whether the installation's own CDs, FTP or web (HTTP) sites. This
management is conducted transparently, in such a way that the system is in-
dependent from the software sources.

The APT system is configured from the files available in /etc/apt, where
/etc/apt/sources.list is the list of available sources; an example could
be:

deb http://http.us.debian.org/debian stable main contrib non-—

free

© FUOC « PID_00148464 35 Basic tools for the administrator

debsrc http://http.us.debian.org/debian stable main contrib
non—free
deb http://security.debian.org stable/updates main contrib

non—free

Where various of the "official" sources for a Debian are compiled (etch in this
case, which is assumed to be stable), from which we can obtain the software
packages in addition to their available updates. Basically, we specify the type
of source (web/FTP in this case), the site, the version of the distribution (stable
in this example) and categories of software to be searched for (free, third party
contributions, non-free or commercial licenses).

The software packages are available for the different versions of the Debian Note

distribution, there are packages for the stable, testing, and unstable versions.
Debian's DEB packages are

The use of one or the others determines the type of distribution (after chang- perhaps the most powerful in-

ing the repository sources in sources.list). It is possible to have mixed package stallation system existing in
GNUY/Linux. A significant ben-
sources, but it is not advisable, because conflicts could arise between the ver- efit is the system's indepen-
. . - . dence from the sources of the
sions of the different distributions. packages (through APT).

Once we have configured the software sources, the main tool for handling
them in our system is apt-get, which allows us to install, update or remove
from the individual package, until the entire distribution is updated. There is
also a front-end to apt-get, called aptitude, whose options interface is practical-
ly identical (in fact it could be described as an apt-get emulator, since the in-
terface is equivalent); as benefits it manages package dependencies better and
allows an interactive interface. In fact it is hoped that aptitude will become the
default interface in the command line for package management in Debian.

Some basic functions of apt-get:

e Installation of a particular package:
apt—-get install package

e Removing a package:

apt—-get remove package

e Updating the list of available packages:
apt—-get update

e Updating the distribution, we could carry out the combined steps:
apt—get update
apt—get upgrade

© FUOC « PID_00148464 36

apt—-get dist-upgrade

Through this last process, we can keep our distribution permanently updated,
updating installed packages and verifying dependencies with the new ones.
Some useful tools for building this list are apt-spy, which tries to search for
the fastest official sites, or netselect, which allows us to test a list of sites. On
a separate note, we can search the official sites (we can configure these with
apt-setup) or copy an available source file. Additional (third party) software
may need to add more other sources (to etc/sources.list); lists of available source
sites can be obtained (for example: http://www.apt-get.org).

Updating a system in particular generates a download of a large number of
packages (especially in unstable), which makes it advisable to empty the
cache, the local repository, with the downloaded packages (they are kept
in /var/cache/apt/archive) that will no longer be used, either with apt—-get
clean to eliminate them all or with apt—get autoclean to eliminate the
packages that are not required because there are already new versions and, in
principle, they will no longer be needed. We need to consider whether we may
need these packages again for the purposes of reinstalling them, since, if so,
we will have to download them again.

The APT system also allows what is known as SecureAPT, which is the secure
management of packages through veritfying sums (md5) and the signatures of
package sources (of the GPG type). If the signatures are not available during
the download, apt-get reports this and generates a list of unsigned packages,
asking whether they will stop being installed or not, leaving the decision to
the administrator. The list of current reliable sources is obtained using:

apt—-key list

The GPG keys of the official Debian sites are distributed through a package,
and we can install them as follows:

apt—-get install debian-archive-keyring

Obviously, considering that we have the sources.list with the official sites. It
is hoped that by default (depending on the version of Debian) these keys will
already be installed when the system initiates. For other unofficial sites that
do not provide the key in a package, but that we consider trustworthy, we
can import their key, obtaining it from the repository (we will have to consult
where the key is available, there is no defined standard, although it is usually
on the repository's home page). Using apt-key add with the file, to add the
key or also:

gpg —import file.key
gpg —export —armor XXXXXXXX | apt-key add -

Basic tools for the administrator

© FUOC « PID_00148464 37

With X being a hexadecimal related to the key (see repository instructions for
the recommended way of importing the key and the necessary data).

Another important functionality of the APT system is for consulting package
information, using the apt-cache tool, which allows us to interact with the
lists of Debian software packages.

Example

The apt-cache tool has commands that allow us to search for information about the
packages, for example:

e Search packages based on an incomplete name:
apt—-cache search name

e Show package description:
apt—-cache show package

e What packages it depends on:
apt—-cache depends package

Other interesting apt tools or functionalities:

- apt-show-versions: tells us what packages may be updated (and for what ver-
sions, see option -u).

Other more specific tasks will need to be done with the lowest level tool, such
as dpkg. For example, obtaining the list of files of a specific installed package:

dpkg -L package

The full list of packages with

dpkg -1

Or searching for what package an element comes from (file for example):

dpkg —-s file

This functions for installed packages; apt-file can also search for packages that
are not yet installed.

Finally, some graphic tools for APT, such as synaptic, gnome-apt for gnome,
and kpackage or adept for KDE are also worth mentioning, as well as the al-
ready mentioned text ones such as aptitude or dselect.

Conclusion: we should highlight that the APT management system (in com-
bination with the dpkg base) is very flexible and powerful when it comes to
managing updates and is the package management system used by Debian
and its derived distributions such as Ubuntu, Kubuntu, Knoppix, Linex etc.

Basic tools for the administrator

© FUOC « PID_00148464 38

6. Generic administration tools

In the field of administration, we could also consider some tools, such as those
designed generically for administration purposes. Although it is difficult to
keep up to date with these tools because of the current plans of distribution
with different versions, which evolve very quickly. We will mention a few
examples (although at a certain time they may not be completely functional):

a) Linuxconf: this is a generic administration tool that groups together
different aspects in a kind of text menu interface, which in the latest ver-
sions evolved to web support; it can be used with practically any GNU/
Linux distribution and supports various details inherent to each one (un-
fortunately, it has not been updated for a while).

b) Webmin: this is another administration tool conceived from a web
interface; it functions with a series of plug-ins that can be added for each
service that needs to be administered; normally it has forms that spec-
ify the service configuration parameters; it also offers the possibility (if
activated) of allowing remote administration from any machine with a

navigator.

c) Others under development like cPanel, ISPConfig.

At the same time, the Gnome and KDE desktop environments tend to
include the "Control Panel" concept, which allows management of the
graphical interfaces' visual aspect as well as the parameters of some system
devices.

With regards to the individual graphics tools for administration, the GNU/
Linux distribution offers some directly (tools that accompany both Gnome
and KDE), tools dedicated to managing a device (printers, sound, network card
etc.), and others for the execution of specific tasks (Internet connection, con-
figuring the start up of system services, configuring X Window, visualising
logs...). Many of them are simple front-ends for the system's basic tools, or are
adapted to special features of the distribution.

In this section, we should particularly highlight the Fedora distribution (Red
Hat and derivatives), which tries to offer several (rather minimalist) utilities for
different administration functions, we can find them on the desktop (in the
administration menu), or in commands like system-config-xxxxx for differ-
ent management functionalities for: screen, printer, network, security, users,
packages etc. We can see some of them in the figure:

Basic tools for the administrator

Note

We can find them
in: Linuxconf http://
www.solucorp.qc.ca/linuxconf

© FUOC « PID_00148464

39

o Applications Places
] @] Preferences

| |
‘ EB Help

W
Background Services | oy té APout GNOME

These services are starte 9 About Fedora
You can specify in which

Currently Running in Run 6 Lock Screen

B %) w g Log Out josep.

Start Stop Restart Shut Down...

NetworkManagerDispatcher| |
acpid

Z v

1
anacron 8

O
=2

]

L apmd
=

[auditd
[}

(€l

7 avahi-daemon

‘4 April
[Sun Mon Tue @ SELinux Policy Analysis

9 1c
15 16
2 23
atd 29 30

W NetworkManager = [¥ Ivarfiogic

autofs 2848 lines (!

IE] | 3 service configuration

I E Network

e@@é Py =

) Keyboard

Fle View Actions Ed B Administration » %Language

6:38 PM Q)
= w7

1) - System Log Viewer [§

=== Logical Volume Management |

£ Login screen

&R Network

{3 Printing

() Root Password

a} Security Level and Firewall
[FJ sELinux Audit Log Analysis
[e seLinux Management

[F3 seuinux policy Dirference

17 .
SELinux Troubleshooter
24 %

@ Services

| smart Card Manager
@) soundcard Detection
@ System Log

@ System Monitor

@ Users and Groups

Figure 3. A few of the administration graphics utilities in Fedora

18:02: 38 fedora syslogd 1.4.1:
18:02: 38 fedora kernel: klogd 1
L8:02: 38 fedora kernel: Linux v

Network Configurat

s Profile Help
S B -
New Edit Copy Ac

svices | Hardware |IPsec | DS | Hosts

L»' [You may configure network dey
(|

&

physical hardware here. Multip|
be associated with a single piec

rofile Status Device Nickname¢

] Active eth0 eth0

ssages (mon... | I[NNI ©

Basic tools for the administrator

© FUOC « PID_00148464 40

7. Other tools

In this unit's limited space we cannot comment on all the tools that can offer
us benefits for administration. We will cite some of the tools that we could
consider basic:

e The various basic UNIX commands: grep, awk, sed, find, diff, gzip, bzip2,
cut, sort, df, du, cat, more, file, which...

e The editors, essential for any editing task, like: vi, very much used for
administration tasks because of the speed of making small changes to
the files. Vim is the vi compatible editor, which GNU/Linux tends to car-
ry; it allows a syntax coloured in various languages. Emacs, a very com-
plete editor, adapted to different programming languages (syntax and edit-
ing modes); it has a very complete environment and an X version called

Xemacs. Joe, editor compatible with Wordstar. And many more...

e Scripting languages, tools for administration, like: Perl, very useful for
handling regular expressions and analysing files (filtering, ordering etc.).
PHP, language that is very often used in web environments. Python, an-
other language that can make fast prototypes of applications...

e Tool for compiling and debugging high level languages: GNU gcc (com-
piler of C and C++), gdb (debugger), xxgdb (X interface for gdb), ddd (de-
bugger for various languages).

Basic tools for the administrator

Note

See material associated to the
introduction course to GNU/
Linux, the man pages of the
commands or a tools reference
such as [StuO1].

© FUOC « PID_00148464 41

Activities

1) For a fast reading, see the FHS standard, which will help us to have a good guide for
searching for files in our distribution.

2) To revise and broaden concepts and programming of shell scripts in bash, see: [Bas] [Coo].
3) For RPM packages, how would we do some of the following tasks?:

e Find out what package installed a specific command.

® Obtain a description of the package that installed a command.

® Frase a package whose full name we don't know.

Show all the files that were in the same package as a specific file.

4) Perform the same tasks as above, but for Debian packages, using APT tools.

5) Update a Debian (or Fedora) distribution.

6) Install a generic administration tool, such as Linuxconf or Webadmin for example, on our

distribution. What do they offer us? Do we understand the executed tasks, and the effects
they cause?

Basic tools for the administrator

© FUOC » PID_00148464 42

Bibliography

Other sources of reference and information

[Bas][Coo] offer a broad introduction (and advanced concepts) of programming shell scripts
in bash, as well as several examples. [QuiO1] discusses the different programming shells in

GNU/Linux, as well as their similarities and differences.

[Deb02][Bai03] offer a broad vision of the software package systems of the Debian and Fedo-
ra/Red Hat distributions.

[Stu] is a wide introduction to the tools available in GNU/Linux.

Basic tools for the administrator

