Linux kernel

Josep Jorba Esteve

PID_00148468

Universitat Oberta
de Catalunya

www.uoc.edu

© FUOC » PID_00148468 The kernel

© FUOC » PID_00148468 The kernel

Index
INtroducCtion.. ... 5
1. The Kernel of the GNU/Linux System............cccceeeiiiniiiiiinnienennnes 7
2. Configuring or updating the kermnel..................................... 15
3. Configuration and compilation process...............ccoceeeeevuiiieennnn. 18
3.1. Kernel compilation versions 2.4.Xcccceeeveiimiiiiiiniiiiiininicnnnneen. 19
3.2. Migration to kernel 2.6.x 24
3.3. Compilation of the kernel versions 2.6.x 26
3.4. Compilation of the kernel in Debian (Debian way) 27
4. Patching the Kernel........................ 30
5. Kermel modules................oooiiiiiiiiiiiiiiii e 32
6. Future of the Kernel and alternatives......................L 34
7. Tutorial: : configuring de Kernel to the requirements of
TE WSEE......ooiiiiiiiiiiii e 38
7.1. Configuring the kernel in Debianccccccoeeiiiiiiiiiiiiiiiniiiinne. 38
7.2. Configuring the kernel in Fedora/Red Hatcccceevvinniniiinnne 40
7.3. Configuring a generic kernelcccoceiviiiiiiiiiiiiiiiiiiiiiinnnennnnn, 42
ACHIVIHI@S. ..., 45

BibLIOZrapluy........ccoooiiiiiiiiiiiiiii e 46

© FUOC » PID_00148468 5 The kernel

Introduction

The kernel of the GNU/Linux system (which is normally called Linux) [Vasb] is
the heart of the system: it is responsible for booting the system, for managing
the machine's resources by managing the memory, file system, input/output,
processes and intercommunication of processes.

Its origin dates back to August 1991, when a Finnish student called Linus Tor-
valds announced on a news list that he had created his own operating system
core that worked together with the GNU project software and that he was of-
fering it to the community of developers for testing and suggesting improve-
ments for making it more usable. This was the origin of the operating system's
kernel that would later come to be known as Linux.

One of the particular features of Linux is that following the Free Software phi- Note

losophy, it offers the source code of the operating system itself (of the kernel),

The Linux kernel dates back

to 1991, when Linus Torvalds
made it available to the com-
munity. It is one of the few op-
Another main advantage, is that by having the source code, we can compile erating systems that while ex-
tensively used, also makes its
source code available.

in a way that makes it a perfect tool for teaching about operating systems.

it to adapt it better to our system and we can also configure its parameters to

improve the system's performance.

In this unit, we will look at how to handle this process of preparing a kernel for
our system. How, starting with the source code, we can obtain a new version
of the kernel adapted to our system. Similarly, we will discuss how to develop
the configuration and subsequent compilation and how to test the new kernel
we have obtained.

© FUOC » PID_00148468 7 The kernel

1. The Kernel of the GNU/Linux system

The core or kernel is the basic part of any operating system [Tan87], where
the code of the fundamental services for controlling the entire system lie.
Basically, its structure can be divided into a series of management components
designed to:

e Manage processes: what tasks will be run, in what order and with what
priority. An important aspect is the scheduling of the CPU: how do we op-
timise the CPU's time to run the tasks with the best possible performance
or interactivity with users?

e Intercommunication of processes and synchronisation: how do tasks com-
municate with each other, with what different mechanisms and how can
groups of tasks be synchronised?

e Input/output management (I/O): control of peripherals and management
of associated resources.

e Memory management: optimising use of the memory, paginating service,

and virtual memory.

e File management: how the system controls and organises the files present
in the system and access to them.

Shell, commands, applications

System basic services

File management

Process Memory
1/0 management management management

Core utilities

Figure 1. Basic functions of a kernel with regards to executed applications and commands

In proprietary systems, the kernel is perfectly "hidden" below the layers of the
operating system's software; the end user does not have a clear perspective of
what the kernel is and has no possibility of changing it or optimising it, other
than through the use of esoteric editors of internal "registers" or specialised

© FUOC » PID_00148468 8

third party programs, which are normally very expensive. Besides, the kernel
is normally unique, it is the one the manufacturer provides and the manufac-
turer reserves the right to introduce any changes it wants whenever it wants
and to handle the errors that appear in non-stipulated periods through up-
dates offered to us in the form of error "patches" (or service packs).

One of the main problems of this approach is precisely the availability of these
patches, having the error updates on time is crucial and if they are security-
related, even more so, because until they are corrected we cannot guarantee
the system's security for known problems. Many organisations, large compa-
nies, governments, scientific and military institutions cannot depend on the
whims of a manufacturer to solve the problems with their critical applications.

The Linux kernel offers an open source solution with the ensuing permissions
for modifying, correcting, generating new versions and updates very quickly
by anyone anywhere with the required knowledge for doing so.

This allows critical users to control their applications and the system itself
better, and offers the possibility of mounting systems with a "tailor-made"
operating system adjusted to each individual's taste and in turn to have an
open source operating system developed by a community of programmers
who coordinate via the Internet, accessible for educational purposes because it
has open source code and abundant documentation, for the final production
of GNU/Linux systems adapted to individual needs or to the needs of a specific

group.

Because the source code is open, improvements and solutions can be found
immediately, unlike proprietary software, where we have to wait for the
manufacturer's updates. Also, we can personalise the kernel as much as we
wish, an essential requirement, for example, in high performance applica-
tions, applications that are critical in time or solutions with embedded sys-
tems (such as mobile devices).

Following a bit of (quick) history of the kernel [Kera] [Kerb]: it was initially
developed by a Finnish student called Linus Torvalds, in 1991, with the in-
tention of creating a similar version to Minix [Tan87] (version for PC of UNIX
[Bac86]) for the Intel 386 processor. The first officially published version was
Linux 1.0 in March 1994, which only included the execution for the i386 ar-
chitecture and supported single-processor machines. Linux 1.2 was published
in March 1995, and was the first version to cover different architectures such
as Alpha, SPARC and Mips. Linux 2.0, in June 1996, added more architectures
and was the first version to include multiprocessor support (SMP) [Tum]. In
Linux 2.2, January 1999, SMP benefits were significantly increased, and con-
trollers were added for a large amount of hardware. In 2.4, released in January
2001, SMP support was improved, new supported architectures were incorpo-
rated and controllers for USB, PC card devices were included (PCMCIA for lap-
tops) part of PnP (plug and play), RAID and volumes support etc. Branch 2.6

The kernel

© FUOC » PID_00148468 9

of the kernel (December 2003), considerably improved SMP support, offered
a better response of the CPU scheduling system, use of threads in the kernel,
better support for 64-bit architectures, virtualisation support and improved

adaptation to mobile devices.

Where the development is concerned, since the kernel was created by Linus
Torvalds in 1991 (version 0.01), he has continued to maintain it, but as his
work allowed it and as the kernel matured (and grew) he was helped to main-
tain the different stable versions of the kernel by different collaborators, while
Linus continued (insofar as possible) developing and compiling contributions
for the latest version of the kernel's development. The main collaborators of

these versions have been [Ikm]:

e 2.0 David Weinehall.

e 2.2 Alan Cox (who also develops and publishes patches for most versions).
e 2.4 Marcelo Tosatti.

e 2.6 Andrew Morton / Linus Torvalds.

In order to understand a bit about the complexity of the Linux kernel, let's
look at a table with a bit of a summarised history of its different versions and
its size in relation to the source code. The table only shows the production
versions; the (approximate) size is specified in thousands of lines (K) of source

The kernel

Note

The kernel has its origins in the
MINIX system, a development
by Andrew Tanenbaum, as a
UNIX clone for PC.

code:
Version Publication date Code lines (thousands)

0.01 09-1991 10
1.0 03-1994 176
1.20 03-1995 311
2.0 06-1996 649
2.2 01-1999 1800
2.4 01-2001 3378
2.6 12-2003 5930

As we can see, we have moved from about ten thousand lines to six million.

Now, development of branch 2.6.x of the kernel continues, the latest stable Note

version, which most distributions include as the default version (although
some still include 2.4.x, but 2.6.x is an option during the installation); al-
though a certain amount of knowledge about the preceding versions is essen-
tial, because we can easily find machines with old distributions that have not
been updated, which we may have to maintained or migrated to more mod-
ern versions.

Today's kernel has reached a
significant degree of complexi-
ty and maturity.

© FUOC » PID_00148468 10

During the development of branch 2.6, the works on the kernel accelerated
considerably, because both Linus Torvalds, and Andrew Morton (who main-
tain Linux 2.6) joined (in 2003) OSDL (Open Source Developement Labora-
tory) [OSDa], a consortium of companies dedicated to promoting the use of
Open Source and GNU/Linux by companies (the consortium includes among
many other companies with interests in GNU/Linux: HP, IBM, Sun, Intel, Fu-
jitsu, Hitachi, Toshiba, Red Hat, Suse, Transmeta...). Now we are coming across
an interesting situation, since the OSDL consortium sponsored the works of
both the stable version of the kernel's maintainer (Andrew) and developer (Li-
nus), working full time on the versions and on related issues. Linus remains
independent, working on the kernel, while Andrew went to work for Google,
where he continued his developments full time, making patches with differ-
ent contributions to the kernel. After some time, OSDL became The Linux
Foundation.

We need to bear in mind that with current versions of the kernel, a high degree
of development and maturity has been achieved, which means that the time
between the publication of versions is longer (this is not the case with partial
revisions).

Another factor to consider is the number of people that are currently working
on its development. Initially, there were just a handful of people with com-
plete knowledge of the entire kernel, whereas nowadays many people are in-
volved in its development. Estimates are almost two thousand with different
levels of contribution, although the number of developers working on the
hard core is estimated at several dozen.

We should also take into consideration that most only have partial knowl-
edge of the kernel and neither do they all work simultaneously nor is their
contribution equally relevant (some just correct simple errors); it is just a few
people (such as the maintainers who have full knowledge of the kernel. This
means that developments can take a while to occur, contributions need to be
debugged to make sure that they do not come into conflict with each other
and choices need to be made between alternative features.

Regarding the numbering of the Linux kernel's versions ([lkm][DBo]), we
should bear in mind the following:

a) Until kernel branch 2.6.x, the versions of the Linux kernel were gov-
erned by a division into two series: one was known as the "experimental"
version (with the second number being an odd number, such as 1.3.xx,
2.1.x or 2.5.x) and the other was the "production" version (even series,
such as 1.2.xx, 2.0.xx, 2.2.x, 2.4.x and more). The experimental series
were versions that moved rapidly and that were used for testing new fea-
tures, algorithms, device drivers etc. Because of the nature of the exper-

The kernel

Note

The Linux Foundation:
www.linuxfoundation.org

© FUOC » PID_00148468 11 The kernel

imental kernels, they could behave unpredictably, losing data, blocking
the machine etc. Therefore, they were not suited to production environ-
ments, unless for testing a specific feature (with the associated dangers).

Production or stable kernels (even series) were kernels with a well defined
set of features, a low number of known errors and with tried and tested
device controllers. They were published less frequently than the experi-
mental versions and there were a variety of versions, some better than
others. GNU/Linux distributions are usually based on a specifically cho-
sen stable kernel, not necessarily the latest published production kernel.

b) The current Linux kernel numbering (used in branch 2.6.x), contin-
ues to maintain some basic aspects: the version is indicated by numbers
X.Y.Z, where normally X is the main version, which represents important
changes to the kernel; Y is the secondary version and usually implies im-
provements in the kernel's performance: Y is even for stable kernels and
odd for developments or tests; and Z is the build version, which indicates
the revision number of X.Y, in terms of patches or corrections made. Dis-
tributors do not tend to include the latest version of the kernel, but rather
the one they have tested most frequently and can verify is stable for the
software and components it includes. On the basis of this classical num-
bering scheme (followed during versions 2.4.x, until the early versions of
branch 2.6), modifications were made to adapt to the fact that the kernel
(branch 2.6.x) is becoming more stable (fixing X.Y to 2.6), and that there
are fewer and fewer revisions (thus the leap in version of the first num-
bers), but development remains continuous and frenetic.

Under the latest schemes, four numbers are introduced to specify in Z mi-
nor changes or the revision's different possibilities (with different added
patches). The version thus defined with four numbers is the one consid-
ered to be stable. Other schemes are also used for the various test versions
(normally not advisable for production environments), such as -rc suf-
fixes (release candidate), -mm which refers to experimental kernels with
tests for different innovative techniques, or -git which are a sort of dai-
ly snapshot of the kernel's development. These numbering schemes are
constantly changing to adapt to the way of working of the kernel com-
munity and its needs to accelerate the development.

c) To obtain the latest published kernel, you need to visit the Linux ker-

nels file (at http://www.kernel.org) or its local mirror in Spain (http:// NoLE
www.es.kernel.org). It will also be possible to find some patches for the Kernel repository:
original kernel, which correct errors detected after the kernel's publica- www.kernel.org

tion.

Some of the technical characteristics ([DBo][Arc]) of the Linux kernel that
we should highlight are:

© FUOC » PID_00148468 12 The kernel

e Kernel of the monolithic type: basically it is a program created as a
unit, but conceptually divided into several logical components.

e It has support for loading/downloading portions of the kernel,
these portions are known as modules, and tend to be characteristics
of the kernel or device drivers.

e Kernel threading: for internal functioning, several execution
threads are used internal to the kernel, which may be associated to a
user program or to an internal functionality of the kernel. In Linux,
this concept was not used intensively. The revisions of branch 2.6.x
offered better support and a large proportion of the kernel is run us-
ing these various execution threads.

e Multithreaded applications support: user applications support of
the multithread, since many computing paradigms of the client/serv-
er type, need servers capable of attending to numerous simultaneous
requests, dedicating an execution thread to each request or group of
requests. Linux has its own library of threads that can be used for
multithread applications, with the improvements made to the ker-
nel, they have also allowed a better use for implementing thread li-
braries for developing applications.

e The kernel is of a nonpreemptive type: this means that within
the kernel, system calls (in supervisory mode) cannot be interrupt-
ed while the system task is being resolved and, when the latter fin-
ishes, the execution of the previous task is resumed. Therefore, the
kernel within a call cannot be interrupted to attend to another task.
Normally, preemptive kernels are associated to systems that operate
in real time, where the above needs to be allowed in order to han-
dle critical events. There are some special versions of the Linux ker-
nel for real time, that allow this by introducing some fixed points
where they can be exchanged. This concept has also been especially
improved in branch 2.6.x of the kernel, in some cases allowing some
resumable kernel tasks to be interrupted in order to deal with others
and resuming them later. This concept of a preemptive kernel can
also be useful for improving interactive tasks, since if costly calls are
made to the system, they can cause delays in interactive applications.

e Multiprocessor support, known as symmetrical multiprocessing
(SMP). This concept tends to encompass machines that incorporate
the simple case of 2 up to 64 CPUs. This issue has become particularly
relevant with multicore architectures, that allow from 2 or 4 to more
CPU cores in machines accessible to domestic users. Linux can use
multiple processors, where each processor can handle one or more
tasks. But some parts of the kernel decreased performance, since they
were designed for a single CPU and forced the entire system to stop

© FUOC » PID_00148468 13 The kernel

under certain cases of blockage. SMP is one of the most studied tech-
niques in the Linux kernel community and important improvements
have been achieved in branch 2.6. Since SMP performance is a de-
termining factor when it comes to companies adopting Linux as an
operating system for servers.

e File systems: the kernel has a good file system architecture, internal
work is based on an abstraction of a virtual system (VFS, virtual file
system), which can be easily adapted to any real system. As a result,
Linux is perhaps the operating system that supports the largest num-
ber of file systems, from ext2, to MSDOS, VFAT, NTES, journaled sys-
tems, such as ext3, ReiserFS, JFS(IBM), XFS(Silicon), NTFS, ISO9660
(CD), UDF and more added in the different revisions.

Other less technical characteristics (a bit of marketing):

a) Linux is free: together with the GNU software and included in any
distribution, we can have a full UNIX-like system practically for the cost
of the hardware, regarding GNU/Linux distribution costs, we can have it
practically free. Although it makes sense to pay a bit extra for a complete
distribution, with the full set of manuals and technical support, at a lower
cost than would be paid for some proprietary systems or to contribute
with the purchase to the development of distributions that we prefer or
that we find more practical.

b) Linux can be modified: the GPL license allows us to read and to modify
the source code of the kernel (on condition that we have the required
know-how).

¢) Linux can run on fairly limited old hardware; for example, it is possible
to create a network server on a 386 with 4 MB of RAM (there are distribu-
tions specialised for limited resources).

d) Linux is a powerful system: the main objective of Linux is efficiency,
it aims to make the most of the available hardware.

e) High quality: GNU/Linux systems are very stable, have a low fault ratio
and reduce the time needed for maintaining the systems.

f) The kernel is fairly small and compact: it is possible to place it, together
with some basic programs, on a disk of just 1.44 MB (there are several
distributions on just one diskette with basic programs).

© FUOC » PID_00148468 14 The kernel

g) Linux is compatible with a large number of operating systems, it can
read the files of practically any file system and can communicate by net-
work to offer/receive services from any of these systems. Also, with certain
libraries it can also run the programs of other systems (such as MSDOS,
Windows, BSD, Xenix etc.) on the x86 architecture.

h) Linux has extensive support: there is no other system that has the
same speed and number of patches and updates as Linux, not even any
proprietary system. For a specific problem, there is an infinite number of
mail lists and forums that can help to solve any problem within just a few
hours. The only problem affects recent hardware controllers, which many
manufacturers are still reluctant to provide if they are not for proprietary
systems. But this is gradually changing and many of the most important
manufacturers in sectors such as video cards (NVIDIA, ATI) and printers
(Epson, HDP)) are already starting to provide the controllers for their de-

vices.

© FUOC » PID_00148468 15 The kernel

2. Configuring or updating the kernel

As GNU/Linux users or system administrators, we need to bear in mind the
possibilities the kernel offers us for adapting our requirements and
equipment.

At installation time, GNU/Linux distributions provide a series of preconfig-
ured and compiled binary Linux kernels and we will usually have to choose
which kernel from the available set best adapts to our hardware. There are
generic kernels, oriented at IDE devices, others at SCSI, others that offer a mix
of device controllers [ARO1] etc.

Another option during the installation is the kernel version. Distributions nor-
mally use an installation that they consider sufficiently tested and stable so
that it does not cause any problems for its users. For example, nowadays many
distributions come with versions 2.6.x of the kernel by default, since it is con-
sidered the most stable version (at the time the distribution was released). In
certain cases, as an alternative, more modern versions may be offered during
the installation, with improved support for more modern (latest generation)
devices that perhaps had not been so extensively tested at the time when the
distribution was published.

Distributors tend to modify the kernel to improve their distribution's be- Note

haviour or to correct errors detected in the kernel during tests. Another fairly

The possibility of updating and

common technique with commercial distributions is to disable problematic adapting the kernel offers a

features that can cause errors for users or that require a specific machine con- good adjustment to any sys-
tem through tuning and opti-
figuration or when a specific feature is not considered sufficiently stable to be misation.

included enabled by default.

This leads us to consider that no matter how well a distributor does the job
of adapting the kernel to its distribution, we can always encounter a number
of problems:

e The kernel is not updated to the latest available stable version; some mod-
ern devices are not supported.

e The standard kernel does not support the devices we have because they
have not been enabled.

e The controllers a manufacturer offers us require a new version of the kernel
or modifications.

e The opposite, the kernel is too modern, and we have old hardware that is
no longer supported by the modern kernels.

e The kernel, as it stands, does not obtain the best performance from our

devices.

© FUOC » PID_00148468 16

e Some of the applications that we want to use require the support of a new
kernel or one of its features.

e We want to be on the leading edge, we risk installing the latest versions
of the Linux kernel.

e We like to investigate or to test the new advances in the kernel or would
like to touch or modity the kernel.

e We want to program a driver for an unsupported device.

For these and other reasons we may not be happy with the kernel we have; in
which case we have two possibilities: updating the distribution's binary kernel

or tailoring it using the source.

Let's look at a few issues related to the different options and what they entail:

1) Updating the distribution's kernel: the distributor normally also publishes
kernel updates as they are released. When the Linux community creates a new
version of the kernel, every distributor joins it to its distribution and conducts
the relevant tests. Following the test period, potential errors are identified,
corrected and the relevant update of the kernel is made in relation to the one
offered on the distribution's CDs. Users can download the new revision of the
distribution from the website, or update it via some other automatic package
system through a package repository. Normally, the system's version is veri-
fied, the new kernel is downloaded and the required changes are made so that
the following time the system functions with the new kernel, maintaining the

old version in case there are any problems.

This type of update simplifies the process for us a lot, but may not solve
our problems, since our hardware may not yet be supported or the fea-
ture of the kernel to be tested is still not in the version that we have
of the distribution; we need to remember that there is no reason for
distributor to use the latest available version (for example in kernel.org)
but rather the one it considers stable for its distribution.

If our hardware is not enabled by default in the new version either, we will
find ourselves in the same situation. Or simply, if we want the latest version,

this process is no use.

2) Tailoring the Kernel (this process is described in detail in the following sec-
tions). In this case, we will go to the sources of the kernel and "manually" ad-
just the hardware or required characteristics. We will pass through a process
of configuring and compiling the source code of the kernel so as to create a
binary kernel that we will install on the system and thus have it available the

following time the system is booted.

The kernel

© FUOC » PID_00148468 17

Here we may also encounter two more options, either by default we will obtain
the "official" version of the kernel (kernel.org), or we can go to the sources
provided by the distribution itself. We need to bear in mind that distributions
like Debian and Fedora do a lot of work on adapting the kernel and correcting
kernel errors that affect their distribution, which means that in some cases we
may have additional corrections to the kernel's original code. Once again, the
sources offered by the distribution do not necessarily have to correspond to
the latest published version.

This system allows us maximum reliability and control, but at a high
administration cost; since we will need to have extensive knowledge of
the devices and characteristics that we are selecting (what they mean
and what implications they may have), in addition to the consequences
that the decisions we make may imply.

The kernel

© FUOC » PID_00148468 18 The kernel

3. Configuration and compilation process

Configuring the kernel [Vasb] is a costly process and requires extensive knowl- Note

edge on the part of the person doing it, it is also one of the critical tasks on
The process of obtaining a
new personalised kernel in-
the system's central component. volves obtaining the sources,
adapting the configuration,
and compiling and installing

. . . the obtained kernel on the sys-
Any error in the procedure can cause instability or the loss of the system. tem. 4

which the system's stability depends, given the nature of the kernel, which is

Therefore, it is advisable to make a backup of user data, configurations we
have tailored, or, if we have the required devices, to make a complete system
backup. It is also advisable to have a start up diskette (or Live CD distribution
with tools) to help us in the event of any problem, or a rescue disk which
most distributions allow us to create from the distribution's CDs (or by directly
providing a rescue CD for the distribution).

Without meaning to exaggerate, if the steps are followed correctly, we know
what we are doing and take the necessary precautions, errors almost never

occur.

Let's look at the process required to install and configure a Linux kernel. In
the following sections, we look at:

1) The case of old 2.4.x versions.

2) Some considerations regarding migrating to 2.6.x

3) Specific details regarding versions 2.6.x.

4) A particular case with the Debian distribution, which has its own more
flexible compilation system (debian way).

Versions 2.4.x are practically no longer offered by current distributions, but
we should consider that on more than one occasion we may find ourselves
obliged to migrate a specific system to new versions or to maintain it on the
old ones, due to incompatibilities or the existence of old unsupported hard-
ware.

The general concepts of the compilation and configuration process will be
explained in the first section (2.4.x), since most of them are generic, and we
will subsequently see the differences with regard to the new versions.

© FUOC » PID_00148468 19

3.1. Kernel compilation versions 2.4.x

The instructions are specifically for the Intel x86 architecture, by root user
(although part of the process can be done as a normal user):

1) Obtaining the kernel: for example, we can visit www.kernel.org (or its
FTP server) and download the version we would like to test. There are
mirrors for different countries. In most GNU/Linux distributions, such
as Fedora/Red Hat or Debian, the kernel's source code is also offered as a
package (normally with some modifications included), if we are dealing
with the version of the kernel that we need, it may be preferable to use
these (through the kernel-source packages or similar). If we want the latest
kernels, perhaps they are not available in the distribution and we will
have to go to kernel.org.

2) Unpack the kernel: the sources of the kernel were usually placed and
unpacked from the directory /usr/src, although we advise using a sep-
arate directory so as not to mix with source files that the distribution may
carry. For example, if the sources come in a compressed file of the bzip2

type:
bzip2 —-dc linux-2.4.0.tar.bz2 | tar xvf -

If the sources come in a gz file, we will replace bzip2 with gzip. When
we decompress the sources, we will have generated a directory linux-
version_kernel that we will enter in order to configure the kernel.

Before taking the steps prior to compilation, we should make sure that
we have the right tools, especially the gcc compiler, make and other com-
plementary gnu utilities for the process. For example, the modutils, the
different utilities for using and handling the dynamic kernel modules.
Likewise, for the different configuration options we should take into ac-
count a number of pre-requirements in the form of libraries associated to
the configuration interface used (for example ncurses for the menuconfig
interface).

In general, we advise checking the kernel documentation (whether via
the package or in the root directory of the sources) to know what pre-re-
quirements and versions of the kernel source will be needed for the pro-
cess. We advise studying the README files in this root directory of the
kernel source, and Documentation/Changes or the documentation index of
the kernel in Documentation/00-INDEX.

If we have made previous compilations in the same directory, we need to
make sure that the directory we use is clear of previous compilations; we
can clear it using make mrproper (from the "root" directory).

The kernel

© FUOC » PID_00148468 20

For the process of configuring the kernel [Vasb], we have several alterna-
tive methods, which offer us different interfaces for adjusting the various
parameters of the kernel (which tend to be stored in a configuration file,
normally .config in the "root" directory of the sources). The different al-

ternatives are:

e make config: from the command line we are asked for each option,
and we are asked for confirmation (y/n) — yes or no, the option, or we
are asked for the required values. Or the long configuration, where
we are asked for many answers, and depending on each version, we
will likewise have to answer almost a hundred questions (or more
depending on the version).

e make oldconfig: it is useful if we want to reuse an already used
configuration (normally stored in a .config file, in the root directory
of the sources), we need to take into account that it is only valid if we
are compiling the same version of the kernel, since different kernel
versions can have variable options.

e make menuconfig: configuration based on text menus, fairly con-
venient; we can enable or disable what we want and it is faster than

make config.

e make xconfig: the most convenient, based on graphic dialogues
in X Window. We need to have tcl/tk libraries installed, since this
configuration is programmed in this language. The configuration is
based on tables of dialogues and buttons/checkboxes, can be done
fairly quickly and has help with comments on most options. But it
has a defect, which is that some options may not appear (it depends
on whether the configuration program is updated and sometimes
it is not). In this last case, make config (or menuconfig) is the only
one we can be sure will offer all the options we can choose; for the
other types of configuration it depends on whether the programs
have been adapted to the new options in time for the kernel being
released. Although in general they try to do it at the same time.

The kernel

© FUOC » PID_00148468

21

Code maturity level options
Loadable module support

Processor type and features
General setup

Memory Technology Devices (MTD)
Parallel port support.

Plug and Play configuration

Block devices

Multi-device support (RAID and LVM)
Cryptography support (CryptoAPl)
Networking oplions

Telephony Support
ATA/IDE/MFM/RLL support

SCSI support

Fusion MPT device support

120 device support
Network device support
Amateur Radio support
IrDA (infrared) support
ISDN subsystem

Old CD-ROM drivers (not SCSI, not IDE)
Input core support
Character devices
Multimedia devices
Crypto Hardware support
File systems

Console drivers

Sound
USB support
Additional device driver support

Bluetooth support

Kemel hacking

Library routines

Save and Exit
Quit Without Saving
Load Configuration from File

Store Configuration to File

Figure 2. Configuration of the kernel (make xconfig) from graphic interface in X Window

Once the configuration process has been done, we need to save the
file (.config), since the configuration requires a considerable amount
of time. Also, it may be useful to have the configuration done if the
plan is to do it on several similar or identical machines.

Another important issue concerning configuration options is that in
many cases we will be asked if we want a specific characteristic inte-
grated into the kernel or as a module (in the section on modules we
will provide more details on them). This is a fairly important deci-
sion, since in certain cases our choice will influence the performance
of the kernel (and therefore of the entire system).

The Linux kernel has become very large, due both to its complexity
and to the device controllers (drivers) [ARO1] that it includes. If we
integrated everything, we could create a very large kernel file that
would occupy a lot of memory and, therefore, slow down some func-
tioning aspects. The modules of the kernel [Hen] are a method that
makes it possible to divide part of the kernel into smaller sections,
which will be loaded dynamically upon demand or when they are
necessary for either explicit load or use of a feature.

The normal choice is to integrate what is considered fundamental
for functioning or critical for performance within the kernel and to
leave parts or controllers that will be used sporadically as modules
for future extensions of the equipment.

e A clear case are the device controllers: if we are updating the ma-
chine, it may be that when it comes to creating the kernel we are not
sure what hardware it will have: for example, what network card; but
we do know that it will be connected to a network, so, the network
support will be integrated into the kernel, but for the card controllers
we can select a few (or all) of them and install them as modules.
Then, when we have the card we can load the required module or

The kernel

© FUOC » PID_00148468 22 The kernel

if we need to change one card for another later, we will just have to
change the module to be loaded. If just one controller were integrat-
ed into the kernel and we changed the card, we would be forced to
reconfigure and recompile the kernel with the new card's controller.

e Another case that arises (although it is not very common) is when
we have two devices that are incompatible with each other, or when
one or the other is functioning (for example, this tends to happen
with a parallel cable printer and hardware connected to the parallel
port). Therefore, in this case, we need to put the controllers as mod-
ules and load or download the one we need.

e Another example is the case of file systems. Normally we would
hope that our system would have access to some of them, like ext2
or ext3 (belonging to Linux), VFAT (belonging to Windows 95/98/
ME), and we will enable them in configuring the kernel. If at some
moment we have to read another unexpected type, for example data
stored on a disk or partition of the Windows NT/XP NTES system, we
would not be able to: the kernel would not know how to or would
not have support to do so. If we have foreseen that at some point (but
not usually) we may need to access these systems, we could leave the
other file systems as modules.

3) Compiling the kernel

We will start the compilation using make, first we will have to generate
the possible dependencies between the code and then the type of image
of the kernel that we want (in this case, a compressed image, which tends

to be the normal case):

make dep

make bzImage

When this process is completed, we will have the integrated part of the
kernel; we are missing the parts that we have set as modules:

make modules
At this point we have done the configuring and compiling of the kernel.
This part could be done by a normal user or by the root user, but now
we will definitely need the root user, because we will move onto the in-
stallation part.

4) Installation

We'll start by installing the modules:

© FUOC » PID_00148468 23 The kernel

make modules_install

And the installation of the new kernel (from the directory /usr/src/linux-
version or the one we have used as temporary):

cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.0
cp System.map /boot/System.map-2.4.0

the file bzImage is the newly compiled kernel, which is placed in the /boot
directory. Normally, we will find the old kernel in the same /boot directory
with the name vmlinuz or vmlinuz-previous-version as a symbolic link to
the old kernel. Once we have our kernel, it is better to keep the old one,
in case any faults occur or the new one functions badly, so that we can
recover the old one. The file System.map contains the symbols available
for the kernel and is necessary for the processing of starting it up; it is
also placed in the same directory.

On this point, we also need to consider that when the kernel starts up it
may need to create initrd type files, which serve as a compound image
of some basic drivers and is used when loading the system, if the system
needs those drivers before booting certain components. In some cases, it
is vital because in order to boot the rest of the system, certain drivers need
to be loaded in a first phase; for example specific disk controllers such as
RAID or volume controllers, which would be necessary so that in a second
phase, the disk can be accessed for booting the rest of the system.

The kernel can be generated with or without an initrd image, depending
on the needs of the hardware or system in question. In some cases, the
distribution imposes the need to use an initrd image, in other cases it will
depend on our hardware. It is also often used to control the size of the
kernel, so that its basics can be loaded through the initrd image and later
the rest in a second phase in the form of modules. In the case of requiring
the initrd image, it would be created using the mkinitrd utility (see man,
or chapter workshop), within the /boot directory.

5) The following step is to tell the system what kernel it needs to boot
with, although this depends on the Linux booting system:

e From booting with lilo [Zan][Skoa], whether in the MBR (master
boot record) or from an own partition, we need to add the following
lines to the configuration file (in: /etc/lilo.conf):

image = /boot/vmlinuz-2.4.0

label = 2.4.0

© FUOC » PID_00148468 24

where image is the kernel to be booted, and label is the name that
the option will appear with during booting. We cam add these lines
or modify the ones of the old kernel. We recommend adding them
and leaving the old kernel, in case any problems occur, so that the
old one can be recovered. In the file /etc/lilo.conf we may have one or
more start up configurations, for either Linux or other systems (such

as Windows).

Every start up is identified by its line image and the label that ap-
pears in the boot menu. There is a line default = label that indicates
the label that is booted by default. We can also add root = /dev/...
to the preceding lines to indicate the disk partition where the main
file system is located (the '/'), remembering that the disks have de-
vices such as /dev/hda (1st disk ide) /dev/hdb (2 disk ide) or /dev/sdx
for SCSI (or emulated) disks, and the partition would be indicated as
root = /dev/hdaZ2 if the '/' of our Linux were on the second partition
of the first ide disk. Using "append =" we can also add parameters to
the kernel start up [Gor]. If the system uses initrd, we will also have
to indicate which is the file (which will also be located in /boot/ini-
trd-versionkernel), with the option "initrd=". After changing the lilo
configuration, we need to write it for it to boot:

/sbin/lilo -v

We reboot and start up with the new kernel.

If we have problems, we can recover the old kernel, by selecting the
option of the old kernel, and then, using the retouch lilo.conf, we can
return to the old configuration or study the problem and reconfigure

and recompile the kernel.

e Boot with grub [KanO1][Pro]. In this case, handling is simple, we
need to add a new configuration consisting of the new kernel and
adding it as another option to the grub file. Next, reboot in a similar
way as with lilo, but remembering that in grub it is sufficient to edit
the file (typically /boot/grub/menu.lst) and to reboot. It is also bet-
ter to leave the old configuration in order to recover from potential

€rTors.
3.2. Migration to Kernel 2.6.x

In the case of having to update versions of old distributions, or changing the
kernel generation using the source code, we will have to take some aspects

into account, due to the novelties introduced into kernel branch 2.6.x.

Here is a list of some of the specific points to consider:

The kernel

© FUOC » PID_00148468 25 The kernel

e Some of the kernel modules have changed their name, and some may have
disappeared, we need to check the situation of the dynamic modules that
are loaded (for example, examine /etc/modules and/or /etc/modules.conf)
and edit them to reflect the changes.

e New options have been added to the initial configuration of the kernel:
like make gconfig, a configuration based on gtk (Gnome). In this case, as
a prerequisite, we will need to look out for Gnome libraries. The option
make xconfig has now been implemented with the qt libraries (KDE).

e The minimum required versions of various utilities needed for the compi-
lation process are increased (consult Documentation/Changes in the ker-
nel sources). Especially, the minimum gcc compiler version.

e The default package for the module utilities has changed, becoming mod-
ule-init-tools (instead of modutils used in 2.4.x). This package is a prereq-
uisite for compiling kernels 2.6.x, since the modules loader is based on
this new version.

e The devfs system becomes obsolete in favour of udev, the system that con-
trols the hotplug start up (connection) of devices (and their initial recog-
nition, in fact simulating a hotplug start up when the system boots), dy-
namically creating inputs in the directory /dev, only for devices that are
actually present.

e In Debian as of certain versions of branch 2.6.x, for the binary images of
the kernels, headers and source code, the name of the packages changes
from kernel-images/source/headers to linux-image/source/headers.

e In some cases, new technology devices (like SATA) may have moved from
/dev/hdX to /dev/sdX. In these cases, we will have to edit the configura-
tions of /etc/fstab and the bootloader (lilo or grub) in order to reflect the
changes.

e There may be some problems with specific input/output devices. The
change in name of kernel modules has affected, among others, mouse de-
vices, which likewise can affect the running of X-Window, until the re-
quired models are verified and the correct modules are loaded (for example
psmouse). At the same time, the kernel integrates the Alsa sound drivers.
If we have the old OSS, we will have to eliminate them from the loading
of modules, since Alsa already takes care of emulating these.

e Regarding the architectures that the kernel supports, we need to bear in
mind that kernel 2.6.x, in its different revisions, has been increasing the
supported architectures which will allow us to have the binary images of
the kernel in the distributions (or the options for compiling the kernel)
best suited to supporting our processors. Specifically, we can find archi-

© FUOC » PID_00148468 26

tectures such as i386 (for Intel and AMD): supporting the compatibility
of Intel in 32 bits for the entire family of processors (some distributions
use the 486 as the general architecture), some distributions integrate dif-
ferentiated versions for i686 (Intel from pentium pro thereafter), for k7
(AMD Athlon thereafter), and those specific to 64 bits, for AMD 64 bits,
and Intel with em64t extensions of 64 bits such as Xeon, and multicores.
At the same time, there is also the IA64 architecture for 64bit Intel Itanium
models. In most cases, the architectures have SMP capabilities activated
in the kernel image (unless the distribution supports versions with and
without SMP, created independently, in this case, the suffix -smp is usually
added to the image that supports it).

e In Debian, to generate inirtrd images, as of certain versions of the kernel
(>=2.6.12) the mkinitrd tools are considered obsolete, and are replaced with
new utilities such as initramfs tools or yaird. Both allow the initrd image
to be built, but the former is the recommended one (by Debian).

3.3. Compilation of the kernel versions 2.6.x

In versions 2.6.x, bearing in mind the abovementioned considerations, the
compilation takes place in a similar way to the one described above:

Having downloaded the kernel 2.6.x (with x the number or pair of numbers
of the kernel revision) to the directory that will be used for the compilation
and checking the required versions of the basic utilities, we can proceed to the
step of compiling and cleaning up previous compilations:

make clean mrproper

configuration of parameters (remember that if we have a previous .config, we
will not be able to start the configuration from zero). We do the configuration
through the selected make option (depending on the interface we use):

make menuconfig

construction of the kernel's binary image

make dep

make bzImage

construction of the modules (those specified as such):

make modules

installation of the created modules (/lib/modules/version)

The kernel

© FUOC » PID_00148468 27 The kernel

make modules_install

copying of the image to its final position (assuming i386 as the architecture):

cp arch/i386/boot/bzimage /boot/vmlinuz—-2.6.x.img

and finally, creating the initrd image that we consider necessary, with the
necessary utilities according to the version (see subsequent comment). And
adjustment of the lilo or grub bootloader depending on which one we use.

The final steps (vimlinuz, system.map and initrd) of moving files to /boot can
normally also be done with the process:

make install

but we need to take into account that it does the entire process and will update
the bootloaders, removing or altering old configurations; at the same time, it
may alter the default links in the /boot directory. We need to bear this in mind
when it comes to thinking of past configurations that we wish to save.

Regarding the creation of the initrd, in Fedora/Red Hat it will be created au-
tomatically with the install option. In Debian we should either use the tech-
niques of the following section or create it expressly using mkinitrd (versions
<=2.6.12) or, subsequently, with mkinitramfs, or a utility known as update-
initramfs, specifying the version of the kernel (it is assumed that it is called
vmlinuz-version within the /boot directory):

update—-initramfs -c -k 'version'

3.4. Compilation of the Kkernel in Debian (Debian way)

In Debian, in addition to the examined methods, we need to add the config-
uration using the method known as Debian Way. A method that allows us to

build the kernel in a fast and flexible manner.

For the process, we will need several utilities (install the packages or similar):
kernel-package, ncurses-dev, fakeroot, wget, bzip2.

We can see the method from two perspectives, rebuilding a kernel equiva-
lent to the one provided by the distribution or tailoring it and then using the
method for building an equivalent personalised kernel.

© FUOC » PID_00148468 28

In the first case, we initially obtain the version of the kernel sources provided
by the distribution (meaning x the revision of the kernel 2.6):

apt—-get install linux-source—-2.6.x

$ tar —-xvjf /usr/src/linux—-source-2.6.x.tar.bz2

where we obtain the sources and decompress them (the package leaves the
file in /usr/src).

Installing the basic tools:

apt—-get install build-essential fakeroot

Checking source dependencies

apt—-get build-dep linux—-source—-2.6.x

And construction of the binary, according to the pre-established package con-
figuration (similar to that included in the official image packages of the kernel
in Debian):

$ cd linux—-source—-2.6.x

$ fakeroot debian/rules binary

There are some extra procedures for creating the kernels based on different
patch levels provided by the distribution and possibilities of generating dif-
ferent final configurations (view the reference note to complement these as-

pects).

In the second, more common case, when we would like a personalised kernel,
we will have to follow a similar process through a typical tailoring step (for
example, using make menuconfig); the steps would be:

obtaining and preparing the directory (here we obtain the distribution's pack-
ages, but it is equivalent to obtaining the sources from kernel.org):

apt—-get install linux-source—-2.6.x
$ tar xjf /usr/src/linux—-source-2.6.x.tar.bz2

$ cd linux-source-2.6.x
next, we configure the parameters, as always, we can base ourselves on .config
files that we have used previously, to start from a known configuration (for

tailoring we can also use any of the other methods, xconfig, gconfig...):

$ make menuconfig

The kernel

Note

We can see the Debian

way process in a detailed
manner in: http://kernel-
handbook.alioth.debian.org/

© FUOC » PID_00148468 29

final construction of the kernel depending on initrd or not, without initrd
available (we need to take care with the version we use; as of a certain version
of the kernel, the use of the initrd image can be mandatory):

$ make-kpkg clean

$ fakeroot make-kpkg ——-revision=custom.1l.0 kernel_image

or if we have initrd available (already built)

$ make-kpkg clean
$ f akeroot mMake—kpkg - —initrd - —revision=custom.1.0 kernel _image

The process will end with adding the associated package to the kernel image,
which we will finally be able to install:

dpkg —-i ../linux—-image—-2.6.x_custom.1.0_1386.deb

In this section, we will also add another peculiarity to be taken into consider-
ation in Debian, which is the existence of utilities for adding dynamic kernel
modules provided by third parties. In particular, the module-assistant utility
helps to automate this process on the basis of the module sources.

We need to have the headers of the kernel installed (package linux-headers-
version) or the sources we use for compiling the kernel. As of here, the mod-
ule-assistant can be used interactively, allowing us to select from an extensive
list of previously registered modules in the application, and it can be respon-
sible for downloading the module, compiling it and installing it in the exist-
ing kernel.

Also from the command line, we can simply specify (m-a is equivalent to mod-
ule-assistant):

m—-a prepare

m—-a auto—-install module_name

which prepares the system for possible dependencies, downloads the module
sources, compiles them and, if there are no problems, installs them for the
current kernel. We can see the name of the module on the interactive list of
the module assistant.

The kernel

© FUOC » PID_00148468 30

4. Patching the Kkernel

In some cases the application of patches to the kernel [Ikm] is also common.

A patch file in relation to the Linux kernel is an ASCII text file that
contains the differences between the original source code and the new
code, with additional information on file names and code lines. The
patch program (see man patch) serves to apply it to the tree of the kernel
source code (normally in /usr/src).

The patches are usually necessary when special hardware requires some mod-
ification of the kernel or some bugs (errors) have been detected subsequent
to a wide distribution of a kernel version or else a new specific feature is to
be added. In order to correct the problem (or add the new feature), it is usual
to distribute a patch instead of an entire new kernel. When there are already
several of these patches, they are added to various improvements of the pre-
ceding kernel to form a new version of the kernel. In all events, if we have
problematic hardware or the error affects the functioning or stability of the
system and we cannot wait for the next version of the kernel; we will have
to apply the patch.

The patch is usually distributed in a compressed file of the type bz2 (bunzip2,
although you can also find it in gzip with the extension .gz), as in the case
of for example:

patchxxxx—2.6.21-pversion.bz2

where xxxx is usually any message regarding the type or purpose of the patch
2.6.21 would be the version of the kernel to which the patch is to be applied,
and pversion would refer to the version of the patch, of which there can also
be several. We need to bear in mind that we are speaking of applying patches
to the sources of the kernel (normally installed, as we have already seen, in
/usr/src/linuxor a similar directory).

Once we have the patch, we must apply it, we will find the process to follow
in any readme file that accompanies the patch, but generally the process fol-
lows the steps (once the previous requirements are checked) of decompressing
the patch in the source files directory and applying it over the sources of the

kernel, for example:

cd /usr/src/linux (or /usr/src/linux—-2.6.21 or any other ver-—

sion) .

The kernel

© FUOC » PID_00148468 31

bunzip2 patch-xxxxx-2.6.21l-version.bz2

patch -pl < patch-xxxxx—-2.6.21l-version

and afterwards we will have to recompile the kernel in order to generate it

again.

The patches can be obtained from different places. Normally, we can find them
in the kernel storage site (www.kernel.org) or else in www.linuxhqg.com, which
has a complete record of them. Some Linux communities (or individual users)
also offer corrections, but it is better to search the standard sites in order to
ensure that the patches are trustworthy and to avoid possible security prob-
lems with "pirate" patches. Another way is the hardware manufacturer, which
may offer certain modifications of the kernel (or controllers) so that its devices
work better (one known example is Linux NVIDIA and the device drivers for

its graphic cards).

Finally, we should point out that many of the GNU/Linux distributions (Fedo-
ra/Red Hat, Mandriva...), already offer the kernels patched by themselves and
systems for updating them (some even automatically, as in the case of Fedo-
ra/Red Hat and Debian). Normally, in production systems it is more advisable
to keep up with the manufacturer's updates, although it does not necessarily
offer the latest published kernel, but rather the one that it finds most stable
for its distribution, at the expense of missing the latest generation features or
technological innovations included in the kernel.

The kernel

Note

For systems that we want to
update, for testing reasons or
because we need the latest
features, we can always go to
www.kernel.org and obtain
the latest published kernel.

© FUOC » PID_00148468 32 The kernel

5. Kernel modules

The kernel is capable of loading dynamic portions of code (modules) on de-
mand [Hen], in order to complement its functionality (this possibility is avail-
able from kernel version 1.2 and higher). For example, the modules can add
support for a file system or for specific hardware devices. When the function-
ality provided by the module is not necessary, the module can be download-
ed, freeing up memory.

On demand, the kernel usually identifies a characteristic not present in the
kernel at that moment it makes contact with a thread of the kernel known as
kmod (in kernel versions 2.0.x the daemon was called kerneld), this executes
a command, modprobe, to try and load the associated module from or of a
chain with the name of the module or else from an generic identifier; this
information is found in the file /etc/modules.conf in the form of an alias be-
tween the name and the identifier.

Next, we search in /1ib/modules/version_kernel/modules.dep

to find out whether there are dependencies with other modules. Final-
ly, with the insmod command the module is loaded from /lib/modules/
version_kernel/ (the standard directory for modules), the version_kernel is the
current version of the kernel using the uname -r command in order to set it.
Therefore, the modules in binary form are related to a specific version of the
kernel, and are usually located in /lib/modules/version-kernel.

If we need to compile them, we will need to have the sources and/or headers Note

of the version of the core for which it is designed.
The modules offer the system
a large degree of flexibility, al-

There are some utilities that allow us to work with modules (they usually ap- "?tW"EQ it to adapt to dynamic
situations.

pear in a software package called modutils, which was replaced by the module
-init-tools for managing modules of the 2.6.x branch):

e Ismod: we can see the loaded modules in the kernel (the information is
obtained from the pseudofile /proc/modules). It lists the names and de-
pendencies with others (in []), the size of the module in bytes, and the
module use counter; this allows it to be downloaded if the count is zero.

© FUOC » PID_00148468

Example

Some modules in a Debian distribution:

33

The kernel

Module Size Used by Tainted: P
agpgart 37.344 3 (autoclean)
apm 10.024 1 (autoclean)
parport_pc 23.304 1 (autoclean)
1p 6.816 0 (autoclean)
parport 25.992 1 [parport_pc 1lp]
snd 30.884 0

af_packet 13.448 1 (autoclean)
NVIDIA 1.539.872 10

esl371 27.116 1

soundcore 3.972 4 [snd es1371]
ac97_codec 10.9640 0 [es1371]
gameport 1.676 0 [es1371]
3c59x 26.960 1

e modprobe: tries the loading of a module and its dependencies.

e insmod: loads a specific module.

e depmod: analyses dependencies between modules and creates a file of de-
pendencies.

e rmmod: removes a module from the kernel.

e Other commands can be used for debugging or analysing modules, like mod-
info, which lists some information associated to the module or ksyms, which
(only in versions 2.4.x) allows examination of the symbols exported by the
modules (also in /proc/ksyms).

In order to load the module the name of the module is usually specified, either
by the kernel itself or manually by the user using insmod and specific param-
eters optionally. For example, in the case of devices, it is usual to specify the
addresses of the I/O ports or IRQ or DMA resources. For example:

insmod soundx io = 0x320 irg = 5

© FUOC » PID_00148468 34 The kernel

6. Future of the Kernel and alternatives

At certain moments, advances in the Linux kernel were released at very short
intervals, but now with a fairly stable situation regarding the kernels of the
2.6.x series, more and more time elapses between kernel versions, which in
some ways is very positive. It allows time for correcting errors, seeing what
ideas did not work well, and trying new ideas, which, if they work, are includ-
ed.

In this section, we'll discuss some of the ideas of the latest kernels and some Note

of those planned for the near future in the development of the kernel.
The kernel continues to evolve,
incorporating the latest in

The previous series, series 2.4.x [DBo], included in most current distributions, hardware support and im-
proved features.

contributions were made in:

e Fulfilling IEEE POSIX standards, this means that many existing UNIX pro-

grams can be recompiled and executed in Linux.

e Improved devices support: PnP, USB, Parallel Port, SCSI...

e Support for new file systems, like UDF (CD-ROM rewritable like a disc).
Other journaled systems, like Reiser from IBM or the ext3, these allow
having a log (journal) of the file system modifications and thus they are

able to recover from errors or incorrect handling of files.

e Memory support up to 4 GB, in its day some problems arose (with the 1.2x
kernels) which would not support more memory than 128 MB (at that

time it was a lot of memory).

e The /proc interface was improved. This is a pseudo-filesystem (the direc-
tory /proc) that does not really exist on the disc, but that is simply a way
of accessing the data of the kernel and of the hardware in an organised

manner.

¢ Sound support in the kernel: Alsa controllers, which were configured sep-
arately beforehand, were partially added,.

e Preliminary support for RAID software and the dynamic volumes manager
LVM1 was included.

In the current series, kernel branch 2.6.x [Pra] has made important advances in
relation to the previous one (with the different.x revisions of the 2.6 branch):

© FUOC » PID_00148468 35

e Improved SMP features, important for the multi-core processors widely
used in business and scientific environments.

e Improvements in the CPU scheduler.

e Improvements in the multithread support for user applications. New mod-
els of threads NGPT (IBM) and NPTL (Red Hat) are incorporated (over time
NPTL was finally consolidated).

e Support for USB 2.0.

e Alsa sound controllers incorporated in the kernel.

e New architectures for 64-bit CPUs, supporting AMD x86_64 (also known
as amd64) and PowerPC 64 and I1A64 (Intel Itanium architecture).

e Support for journaled file systems: JFS, JFS2 (IBM), and XFS (Silicon Graph-
ics).

e Improved I/O features, and new models of unified controllers.

e Improvements in implementing TCP/IP, and the NFSv4 system (sharing
of the file system with other systems via the network).

e Significant improvements for a preemptive kernel: allowing the kernel to
manage internally various tasks that can interrupt each other, essential for
the efficient implementation of real time systems.

e System suspension and restoration after rebooting (by kernel).

e UML, User Mode Linux, a sort of virtual Linux machine on Linux that
allows us to see a Linux (in user mode) running on a virtual machine.
This is ideal for debugging now that a version of Linux can be developed
and tested on another system, which is useful for the development of the
kernel itself and for analysing its security.

e Virtualisation techniques included in the kernel: the distributions have
gradually been incorporating different virtualisation techniques, which
require extensions to the kernel; we should emphasise, for example, ker-
nels modified for Xen, or Virtual Server (Vserver).

e New version of the volumes support LVM2.

e New pseudo file system /sys, designed to include the system information
and devices that will be migrating from the /proc system, leaving the latter

The kernel

© FUOC » PID_00148468 36

with information regarding the processes and their development during

execution.

e FUSE module for implementing file systems on user space (above all the
NTES case).

In the future, improvement of the following aspects is planned:

e Increasing the virtualisation technology in the kernel, for supporting dif-
ferent operating system configurations and different virtualisation tech-
nologies, in addition to better hardware support for virtualisation includ-
ed in the processors that arise with new architectures.

e The SMP support (multi-processor machines) of 64-bit CPUs (Intel's Itani-
um, and AMD's Opteron), the support of multi-core CPUs.

e Improved file systems for clustering and distributed systems.

e Improvement for kernels optimised for mobile devices (PDA, teléfonos...).

e Improved fulfilment of the POSIX standard etc.

e Improved CPU scheduling; although in the initial series of the 2.6.x
branch many advances were made in this aspect, there is still low perfor-
mance in some situations, in particular in the use of interactive desktop
applications, different alternatives are being studied to improve this and

other aspects.

Also, although it is separate from the Linux systems, the FSF (Free Software
Foundation) and its GNU project continue working on the project to finish
a complete operating system. It is important to remember that the main ob-
jective of the GNU project was to obtain a free software UNIX clone and the
GNU utilities are just the necessary software for the system. In 1991, when
Linux managed to combine its kernel with some GNU utilities, the first step
was taken towards the culmination in today's GNU/Linux systems. But the
GNU project continues working on its idea to finish the complete system.
Right now, they already have a core that can run its GNU utilities. This core
is known as Hurd; and a system built with it known as GNU/Hurd. There are
already some test distributions, specifically, a Debian GNU/Hurd.

Hurd was designed as a core for the GNU system around 1990 when its devel-
opment started, since most of the GNU software had already been developed
at the time, and the only thing that was missing was the kernel. It was in 1991
when Linus combined GNU with his Linux kernel that the history of GNU/

The kernel

Web site

POSIX specifications
www.UNIX-systems.org/

Web site

The GNU project:
http://www.gnu.org/gnu/
thegnuproject.html

Reference

GNU and Linux, by
RichardStallman: http://
www.gnu.org/gnu/linux-and-
gnu.html

© FUOC » PID_00148468 37

Linux systems began. But Hurd continues to develop. The development ideas
for Hurd are more complex, since Linux could be considered a conservative
design, based on already known and implemented ideas.

Specifically, Hurd was conceived as a collection of servers implemented on a
Mach microkernel [Vah96], which is a kernel design of the microkernel type
(unlike Linux, which is of the monolithic type) developed by the University
of Carnegie Mellon and subsequently by that of Utah. The basic idea was to
model the functionalities of the UNIX kernel as servers that would be imple-
mented on a basic Mach kernel. The development of Hurd was delayed while
the design of the Mach was being finished and this was finally published as
free software, which would allow its use for developing Hurd. At this point,
we should mention the importance of Mach, since many operating systems
are now based on ideas extracted from it; the most outstanding example is
Apple's MacOS X.

The development of Hurd was further delayed due to its internal complexi-
ty, because it had several servers with different tasks of the multithread type
(execution of multiple threads), and debugging was extremely difficult. But
nowadays, the first production versions of GNU/Hurd are already available, as
well as test versions of a GNU/Hurd distribution.

It could be that in the not too distant future GNU/Linux systems will coexist
with GNU/Hurd, or even that the Linux kernel will be replaced with the Hurd
kernel, if some lawsuits against Linux prosper (read the case of SCO against
IBM), since it would represent a solution for avoiding later problems. In all
events, both systems have a promising future ahead of them. Time will tell
how the balance will tip.

The kernel

© FUOC » PID_00148468 38 The kernel

7. Tutorial: configuring de Kernel to the
requirements of the user

In this section we will have a look at a small interactive workshop for the
process of updating and configuring the kernel in the two distributions used:
Debian and Fedora.

The first essential thing, before starting, is to know the current version of the
kernel we have with uname -r, in order to determine which is the the next
version that we want to update to or personalise. And the other is to have the
means to boot our system in case of errors: the set of installation CDs, the flop-
py disc (or CD) for recovery (currently the distribution's first CD is normally
used) or some Live CD distribution that allows us to access the machine's file
system, in order to redo any configurations that may have caused problems.
It is also essential to back up our data or important configurations.

We will look at the following possibilities:

1) Updating the distribution's kernel. Automatic case of Debian.

2) Automatic update in Fedora.

3) Adapting a generic kernel (Debian or Fedora). In this last case, the steps are
basically the same as those presented in the section on configuration, but we
will make a few more comments:

7.1. Configuring the Kernel in Debian

In the case of the Debian distribution, the installation can also be done au-
tomatically, using the APT packages system. It can be done either from the
command line or with graphic APT managers (synaptic, gnome-apt...).

We are going to carry out the installation using the command line with apt-
get, assuming that the access to the apt sources (above all to the Debian orig-
inals) is properly configured in the /etc/apt/sources.list file. Let's look at the
steps:

1) To update the list of packages.

apt—-get update

2) To list the packages associated with images of the kernel:

© FUOC » PID_00148468 39

apt—-cache search linux—image

3) To select a version suitable for our architecture (generic, 386/486/686 for
Intel, k6 or k7 for amd or in particular for 64Bits versions amdé64, intel and
amd or ia64, for Intel Itanium). The version is accompanied by kernel version,
Debian revision of the kernel and architecture. For example: 2.6.21-4-k7, ker-
nel for AMD Athlon, Debian revision 4 of the kernel 2.6.21.

4) Check for the selected version that the extra accessory modules are available
(with the same version number) With apt-cache we will search for whether
there are other dynamic modules that could be interesting for our hardware,
depending on the version of the kernel to be installed. Remember that, as
we saw in the Debian way, there is also the module-assistant utility, which
allows us to automate this process after compiling the kernel. If the necessary
modules are not supported, this could prevent us from updating the kernel
if we consider that the functioning of the problematic hardware is vital for
the system.

5) Search, if we also want to have the source code of the kernel, the Lin-
ux-source-version (only 2.6.21, that is, the principal numbers) and the corre-
sponding kernel headers, in case we later want to make a personalised kernel:
in this case, the corresponding generic kernel patched by Debian.

6) Install what we have decided: if we want to compile from the sources or
simply to have the code:

apt—-get install linux—-image-version
apt—-get install xxxx-modules-version (if some modules are

necessary)

and

apt—-get install linux-source-version-generic

apt—-get install linux-headers-version

7) Install the new kernel, for example in the lilo bootloader (check the boot
utility used, some recent Debian versions use grubas boot loader), this is done
automatically. If we are asked if the initrd is active, we will have to verify the
lilo file (/etc/lilo.conf) and, in the lilo configuration of the new image, include
the new line:

initrd = /initrd.img-version (or /boot/initrd.img-version)
once this is configured, we would have to have a a lilo of the mode (fragment),

supposing that initrd.img and vmlinuz are links to the position of the files of

the new kernel:

The kernel

© FUOC » PID_00148468 40

default = Linux

image = /vmlinuz
label = Linux
initrd = /initrd.img
restricted
alias =1
image = /vmlinuz.old
label = LinuxOLD
initrd = /initrd.img.old
restricted

alias = 2

We have the first image by default, the other is the former kernel. Thus, from
the lilo menu we can ask for one or the other or, simply by changing the
default, we can recover the former. Whenever we make any changes in /etc/
lilo.conf we should not forget to rewrite in the corresponding sector with the
command /sbin/lilo or /sbin/lilo -v.

7.2. Configuring the kernel in Fedora/Red Hat

Updating the kernel in the Fedora/Red Hat distribution is totally automatic
by means of its package management service or else by means of the graphic
programs that the distribution includes for updating; for example, in business
versions of Red Hat there is one called up2date. Normally, we will find it in
the task bar or in the Fedora/Red Hat system tools menu (check the available
utilities in tools/Administration menus, the currently available graphic tools
are highly distribution version dependent).

This updating program basically checks the packages of the current distribu-
tion against a Fedora/Red Hat database and offers the possibility of download-
ing the updated packages, including those of the kernel. This Red Hat service
for businesses works via a service account and Red Hat offers it for payment.
With this type of utilities the kernel is updated automatically.

For example, in figure 10, we can see that once running, a new available ver-
sion of the kernel has been detected, which we can select for downloading:

The kernel

© FUOC » PID_00148468 41

v Agente de Actualizacion RedHat . S— L=

Paquetes no seleccionados -~

[] Seleccione todos los paquetes

| lPackage Name |Version IReI. IArch |Size |Reason Skipped |
[kernel 2.4.20 209 athlon 13535 ki Pkg name/pattern

[kernel-source 2.4.20 20.9 i386 38046 ki Pkg name/pattern

Informacién del paquete Aviso de la visualizacion

Ha escogido actualizar los paquetes de forma no automatica
Si desea anular su configuracion e incluir uno de los paquetes de la
lista. selecciénelo en la casilla de verificacion.

® gancelar| ’ < Atras | | [> Adelante

Figure 3. The Red Hat updating service (Red Hat Network up2date) shows the available kernel update and its sources.

In Fedora we can either use the equivalent graphic tools or simply use yum
directly, if we know that new kernels are available:

yum install kernel kernel-source

Once downloaded, we proceed to install it, normally also as an automatic
process, whether with grub or lilo as boot managers. In the case of grub, it is
usually automatic and leaves a pair of options on the menu, one for the newest
version and the other for the old one. For example, in this grub configuration
(the file is in /boot/grub/grub.conf or else /boot/grub/menu.lst), we have two
different kernels, with their respective version numbers.

#file grub.conf
default 1

timeout = 10

splashimage = (hd0,1) /boot/grub/splash.xpm.gz

title Linux (2.6.20-2945)
root (hdO,1)

kernel /boot/vmlinuz—-2.6.20-2945 ro root = LABEL = /
initrd /boot/initrd-2.6.20-18.9.img

title LinuxOLD (2.6.20-2933)

root (hdO,1)

kernel /boot/vmlinuz—-2.4.20-2933 ro root = LABEL = /

initrd /boot/initrd-2.4.20-2933.img

The kernel

© FUOC » PID_00148468 42

Each configuration includes a title that appears during start up. The root or
partition of the disc from where it boots, the directory where the file corre-
sponding to the kernel is found and the corresponding initrd file.

In the case of having lilo (by default grub is used) in the Fedora/Red Hat as
manager, the system will also update it (file /etc/lilo.conf), but then we will
have to rewrite the boot manually with the command /sbin/lilo.

It is also important to mention that with the previous installation we had the
possibility of downloading the sources of the kernel; these, once installed, are
in/usr/src/linux-version and can be compiled and configured following the
usual procedure as if it was a generic kernel. We should mention that the Red
Hat company carries out a lot of work on the patches and corrections for the
kernel (used after Fedora) and that its kernels are modifications to the generic
standard with a fair number of additions, which means that it could be better
to use Red Hat's own sources, unless we want a newer or more experimental

kernel than the one supplied.

7.3. Configuring a generic kernel

Let's look at the general case of installing a kernel starting from its sources.
Let's suppose that we have some sources already installed in /usr/src (or the
corresponding prefix). Normally, we would have a Linux directory or linux-
version or simply the version number. This will be the tree of the sources of
the kernel.

These sources can come from the distribution itself (or we may have down-
loaded them during a previous udpate), first it will be interesting to check
whether they are the latest available, as we have already done before with Fe-
dora or Debian. Or if we want to have the latest and generic versions, we can
go to kernel.org and download the latest available version (better the stable
one than the experimental ones), unless we are interested in the kernel's de-
velopment. We download the file and in /usr/src (or another selected directory,
even better) decompress the kernel sources. We can also search to see if there
are patches for the kernel and apply them (as we have seen in section 4.4).

Next, we will comment on the steps that will have to be carried out: we will
do it briefly, as many of them have been mentioned before when working on
the configuration and tailoring.

1) Cleaning the directory of previous tests (where applicable):

make clean mrproper

2) Configuring the kernel with, for example: make menuconfig (or xconfig, gcon-
fig or oldconfig). We saw this in section 4.3.

The kernel

See also

It would be advisable to reread
section 3.4.3.

© FUOC » PID_00148468 43

root@® kaos:/usr/src/linux-2.4
Archivo Editar Ver Terminal Ira Ayuda
Linux Kernel v2.4.20-18.9custom Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help.
Legend: [*] built-in [] excluded <M> module < > module capable

: e maturity level options ———

oadable module support --->

rocessor type and features --->

eneral setup --->
M mory Technology Devices (MID) -——->
arallel port support --->

lug and Play configuration --->

lock devices --->
M lti-device support (RAID and LVM) --->
ryptography support (CryptoAPI) --->

< Exit > < Help >

Figure 4. Configuring the kernel using text menus

4) Dependencies and cleaning of previous compilations:

make dep

5) Compiling and creating an image of the kernel: make bzImage. zImage
would also be possible if the image was smaller, but bzlmage is more normal,
as it optimises the loading process and compression of larger kernels. On some
ancient hardware it may not work and zlmage may be necessary. The process
can last from a few minutes to an hour on modern hardware and hours on
older hardware. When it finishes, the image is found in: /usr/src/directory-
sources/arch/i386/boot.

6) Now we can compile the modules with make modules. Until now we have
not changed anything in our system. Now we have to proceed to the instal-

lation.

7) In the case of the modules, if we try an older version of the kernel (branch
2.2 or the first ones of 2.4), we will have to be careful, since some used to
overwrite the old ones (in the last 2.4.x or 2.6.x it is no longer like this).

But we will also need to be careful if we are compiling a version that is the
same (exact numbering) as the one we have (the modules are overwritten), it

is better to back up the modules:

cd /lib/modules

tar —-cvzf old_modules.tgz versionkernel-old/

The kernel

© FUOC » PID_00148468 44 The kernel

This way we have a version in .tgz that we can recover later if there is any

problem And, finally, we can install the modules with:
make modules install
8) Now we can move on to installing the kernel, for example with:
cd /usr/src/directory-sources/arch/i386/boot
cp bzImage /boot/vmlinuz-versionkernel

cp System.map /boot/System.map-versionkernel

1n —-s /boot/vmlinuz-versionkernel /boot/vmlinuz

R

1n -s /boot/System.map-versionkernel /boot/System.map

This way we store the symbols file of the kernel (System.map) and the image
of the kernel.

9) Now all we have to do is put the required configuration in the configura-
tion file of the boot manager, whether lilo (/etc/lilo.conf) or grub (/boot/grub/
grub.conf) depending on the configurations we already saw with Fedora or
Debian. And rememeber, in the case of lilo, that we will need to update the
configuration again with /sbin/lilo or /sbin/lilo -v.

10) Restart the machine and observe the results (if all has gone well).

© FUOC » PID_00148468 45

Activities

1) Determine the current version of the Linux kernel incorporated into our distribution.
Check the available updates automatically, whether in Debian (apt) or in Fedora/Red Hat
(via yum).

2) Carry out an automatic update of our distribution. Check possible dependencies with
other modules used (whether pcmcia or others) and with the bootloader (lilo or grub) used.
A backup of important system data (account users and modified configuration files) is rec-
ommended if we do not have another sytem that is available for tests.

3) For our branch of the kernel, to determine the latest available version (consult http://
www.kernel.org) and carry out a manual installation following the steps described in the
unit. The final installation can be left optional, or else make an entry in the bootloader for
testing the new kernel.

4) In the case of the Debian distribution, in addition to the manual steps, we saw how there
is a special way (recommended) of installing the kernel from its sources using the kernel-
package.

The kernel

© FUOC « PID_00148468 46
Bibliography
Other sources of reference and information

[Kerb] Site that provides a repository of the different versions of the Linux kernel and its
patches.

[Kera] [Ikm] Web sites that refer to a part of the Linux kernel community. It offers various
documentary resources and mailing lists of the kernel's evolution, its stability and the new
features that develop.

[DBo] Book about the Linux 2.4 kernel, which details the different components, their im-
plementation and design. There is a first edition about the 2.2 kernel and a new update to

the 2.6 kernel.

[Pra] An article that describes some of the main innovations of the new 2.6 series of the
Linux kernel.

[Ker] [Mur] Documentation projects of the kernel, incomplete but with useful material.

[Bac86] [Vah96] [Tan87] Some texts about the concepts, design and implementation of the
kernels of different UNIX versions.

[Skoa][ZanO1][Kan][Pro] For further information on lilo and grub loaders.

The kernel

[.ocal
administration

000000000000

© FUOC » PID_00148465 Local administration

© FUOC » PID_00148465 Local administration

Index
INtroduction...............ccoooooiiii s 5
1. Distributions: special features..............ccco.oooiiiiiiiiiiiiiiiiiinieneee. 7
2. Bootand rumn levels ... 9
3. Monitoring system state...............ccoiiiiiiiiiiiiiiiiiiiiii e 12
3.1, SyStem DOOT ..covuuiiiiiiiiiiiiiiiiiiicc e 12
3.2. kernel: /proc directory 13
3.3. REIMCL: /SYS ittt e e e e e e 14
3.4, PIOCESSES ..ccevuiiiiiiiiiiiiii it 14
3.5, System LOZS ...oovuiiiniiiiiiiiiiiii e 15
IS TG TS Y (<5 0 6 Lo) o 200N 17
3.7. Disks and file systems 17
4. File Systems..........ccccoooiiiiiiiiiiiiiiii 21
4.1, MOUNt POINT eneiiiiiiii e e e e e e e 22
4.2, PermiSSionscccoiiiiiiiiiiiiiiiiiii i 25
5. Users and rouPsS.........cccooiiiiiiiiiiiiiiiiiiii e 27
6. Printing SErviCes............cccociiiiiiiiiiiiiiiiiiiiiii e 32
6.1. BSD LPD 36
6.2. 37
6.3. 39
7. Disk management....................ooooiii 42
7.1, RAID SOftWAT€ccooiimmiiiiiiiiiiiiiee et 44
7.2. Logical Volume Manager (LVM) 50
8. Updating Software.................c..ccooooiiiii 54
9. BatChl JODS....cooooiiiiiiii ettt 56
10. Tutorial: combined practices of the different sections........... 58
AcCtivities...........ooooooii 67

Bibliographiy.. ... e 68

© FUOC « PID_00148465 5 Local administration

Introduction

One of the administrator's first tasks will be to manage the machine's local
resources. Some of these aspects were basically covered in the GNU/Linux
course. In this course, we will cover these management tasks in more depth
as well as some of the customisation and resource efficiency aspects.

We will start by analysing the process for starting up a GNU/Linux system, Note

which will help us to understand the initial structure of the system and its

Local administration covers
many varied tasks, which are
possibly the ones that the ad-
ministrator will most use dur-
We will now learn how to obtain a general overview of the current state of ing their daily routines.

relationship with the various services that it provides.

the system, using different procedures and commands that are available for
evaluating the various parts of the system; this will allow us to make admin-
istrative decisions if we detect any faults or deficiencies in the performance or
if we find that we are missing any of the resources.

One of the administrator's main tasks is managing the user accounts, as any
configuration of the machine will be designed for the users; we will see how
we can define new user accounts and control the levels to which they may
access the resources.

With regard to the system's peripherals, such as disks and printers, there are
different management possibilities available, either through different servers
(for printing) or different filing systems that we can treat, as well as some
techniques for optimising the disks' performance.

We will also examine the need to update the system and how best to keep it
updated; likewise, we will examine how to install new applications and soft-
ware and how to make these programs available to the users. At the same time,
we will analyse the problems involved in executing predetermined timed tasks
in the system.

In the last tutorial, we will learn how to evaluate the state of a machine, fol-
lowing the points that we have seen in this module, and we will carry out
some of the basic administrative tasks we have described. In this module, we
will discuss some of the commands and subsequently, in the tutorial, we will
examine some of these in more detail, with regard to how they work and the
options available.

© FUOC « PID_00148465 7 Local administration

1. Distributions: special features

We will now try to outline some minor technical differences (which are con-
stantly being reduced) in the distributions (Fedora/Red Hat and Debian) used
[Mor03], which we will examine in more detail throughout the modules as
they appear.

Modifications to or particularities of Fedora/Red Hat:

e Using the grub boot loader (a GNU utility); unlike previous versions of Note

most distributions, which tend to use lilo, Fedora uses grub. GRUB (grand

It is important to know the de-

unified bootloader) has a text-mode configuration (usually in /boot/grub/ tails of a distribution, as they

grub.conf) that is quite simple and that can be modified when booting. It are essential for performing
a task or resolving an issue
is possibly more flexible than lilo. Lately, distributions tend to use grub; (for example, if there are extra

. . . . tools available).
Debian also includes it as an option.)

e Management of alternatives. If there is more than one equivalent program
present for a specific task, the alternative that will be used must be indi-
cated through a directory (/etc/alternatives). This system was borrowed
from Debian, which uses it a lot in its distribution.

e TCP/IP portscanning program based on xinetd; in /etc/xinetd.d we will
find the modular configuration files for some of the TCP/IP services, along
with the /etc/xinetd.conf. configuration file. In classic UNIX systems, the
program used for this was inetd, which had a single configuration file in
/etc/inetd.conf, which was the case, for example, in the Debian distribu-
tion, which uses inetd, leaving xinetd as an option.

e Some special configuration directories: /etc/profile.d, files that are execut-
ed when a user opens a shell; /etc/xinetd.d, configuration of some net ser-
vices; /etc/sysconfig, configuration data for various aspects of the system;
/etc/cron., various directories where the tasks that have to be performed
regularly are specified (through crontab); /etc/pam.d, where the authenti-
cation modules are known as PAM: the permissions for the particular ser-
vice or program are configured in each of the PAM files; /etc/logrotate.d,
rotation configuration (when it is necessary to clean, compress etc.) of
some of the log files for different services.

e There is a software library called kudzu, which examines the hardware
at start-up to detect any possible changes (in some previous versions of
Fedora) in the configuration and to create the appropriate elements or
configurations. Although there is currently a progressive migration to API
Hal that controls precisely this aspect.

© FUOC e PID_00148465 8

In Debian's case:

In-house packaging system based on DEB packages, with tools at various
levels for working with packages such as: dpkg, apt-get, dselect, tasksel.

Debian follows FHS, over the directories structure, adding some particu-
lars in /etc, such as: /etc/default, configuration files and default values for
some programs; /etc/network, data and network interfaces configuration
scripts; /etc/dpkg y /etc/apt, information on the configuration of the pack-
age management tools; /etc/alternatives, links to the default programs, in
which there are (or may be) various available alternatives.

Configuration system for many software packages using the dpkg-recon-
figure tool. For example:

dpkg-reconfigure gdm

makes it possible to select the incoming manager for X, or:
dpkg-reconfigure X-Window-system

allows us to configure the different elements of X.

Uses the TCP/IP services configuration through inetd; the configuration
isin file /etc/inetd.conf; there is an update-inetd tool for disabling or cre-
ating services entries.

Some special configuration directories: /etc/cron., several directories

where the tasks that have to be performed regularly are specified (though
crontab); /etc/pam.d, where PAM are authentication modules.

Local administration

© FUOC e PID_00148465

2.Boot and run levels

9 Local administration

A first important point in the analysis of a system's local performance is how it

works on the runlevels, which determine the current work mode of the system

and the services provided (on the level) [WmO02].

A service is a functionality provided by the machine, normally based on dae-

mons (or background execution processes that control network requests, hard-

ware activity or other programs that provide any task).

The services can be activated or halted using scripts. Most standard processes,

which are usually configured in the /etc directory, tend to be controlled with

the scripts in /etc/init.d/. Scripts with names similar to those of the service to

which they correspond usually appear in this directory and starting or stop-

ping parameters are usually accepted. The following actions are taken:

/etc/init.d/service start

start the service.

/etc/init.d/service stop

stop the service.

/etc/init.d/service restart

stop and subsequent

restart of the service.

When a GNU/Linux system starts up, first the system's kernel is loaded, then

the first process begins; this process is called init and it has to execute and

activate the rest of the system, through the management of different runlevels.

A runlevel is basically a configuration of programs and services that will

be executed in order to carry out determined tasks.

The typical levels, although there may be differences in the order, especially

at levels 2-5 (in the configuration table in Fedora and that recommended in

the LSB standard), are usually:

Runlevel Function Description

0 Halt Halts or shuts down the active services and programs, and umounts ac-
tive file systems for CPU.

1 Single-user mode Halts or shuts down most services, only permitting the (root) administra-
tor to login. Used for maintenance tasks and correcting critical errors.

2 Multi-user mode without networking No networking services are started and only local logins are allowed.

3 Multi-user Starts up all the services except the graphics associated to X Window.

© FUOC e PID_00148465 10

Local administration

Runlevel Function Description

4 Multi-user Not usually used; normally the same as 3.

5 Multi-user X As with 3, but with X support for user logins (graphic login).
6 Reboot For all programs and services. Reboots the system.

On the other hand, it should be noted that Debian uses a model in which
practically no distinction is made between runlevels 2-5 and performs exactly
the same task (although this may change in a future version, so that these
levels correspond with the LSB).

These runlevels are usually configured in GNU/Linux systems (and UNIX) by
two different systems: BSD or System V (sometimes abbreviated to sysV). In
the cases of Fedora and Debian, System V is used, which is the one that we
will examine, but other UNIX and some GNU/Linux distributions (such as
Slackware) use the BSD model.

In the case of the runlevel model of System V, when the init process begins, it
uses a configuration file called /etc/inittab to decide on the execution mode
it will enter. This file defines the runlevel by default (initdefault) at start-up
(by installation, 5 in Fedora and 2 in Debian), and a series of terminal services
that must be activated so that users may log in.

Afterwards, the system, according to the selected runlevel, will consult the
files contained in /etc/rcn.d, where 7 is the number associated to the runlevel
(the selected level), which contains a list of services that should be started or
halted if we boot up in the runlevel or abandon it. Within the directory, we
will find a series of scripts or links to the scripts that control the service.

Each script has a number related to the service, an S or K initial that indicates
whether it is the script for starting (S) or killing (K) the service, and a number
that shows the order in which the services will be executed.

A series of system commands help us to handle the runlevels; we must men-
tion:

e The scripts, which we have already seen, in /etc/init.d/ allow us to start-up,
halt or reboot individual services.

e telinit, allows us to change the runlevel; we simply have to indicate the
number. For example, we have to perform a critical task in root; with no
users working, we can perform a telinit 1 (S may also be used) to pass to
the single-user runlevel and then, after the task, a telinit 3 to return to
multi-user mode. The init command may also be used for the same task,
although telinit does provide a few extra parameters. For example, the
typical reboot of a UNIX system would be performed with sync; init 6, the

© FUOC e PID_00148465 11

sync command forces the buffers of the files system to empty, and then
we reboot at runlevel 6.

e shutdown allows us to halt ("h") or reboot the system ("r"). This may be
performed in a given period of time or immediately. There are also the
halt and reboot commands for these tasks.

e wall allows us to send warning messages to the system users. Specifically,
the administrator may warn users that the machine is going to stop at
a determined moment. Commands such as shutdown usually use them
automatically.

e pidof permits us to find out the process ID associated to a process. With ps
we obtain the lists of the processes, and if we wish to eliminate a service
or process through a kill, we will need its PID.

There are some small changes in the distributions, with regard to the start-up
model:

e Fedora/Red Hat: runlevel 4 has no declared use. The /etc/rcn.d directories
exist as links to /etc/rc.d subdirectories, where the start-up scripts are cen-
tralised. The directories are as follows: /etc/rc.d/rcn.d; but as the links ex-
ist, it is transparent to the user. The default runlevel is 5 when starting
up with X.

The commands and files associated to the system's start-up are in the
sysvinit and initscripts software packages.

Regarding the changes to files and scripts in Fedora, we must point out
that in /etc/sysconfig we can find files that specify the default values for
the configuration of devices or services. The /etc/rc.d/rc.sysinit script is
invoked once when the system starts-up; The /etc/rc.d/rc.local script is
invoked at the end of the process and serves to indicate the machine's
specific boots.

The real start-up of the services is carried out through the scripts stored
in /etc/rc.d/init.d. There is also a link from /etc/init.d. In addition, Fedora
provides some useful scripts for handling the services: /sbin/service to halt
or start-up a service by the name; and /sbin/chkconfig, to add links to the
S and K files that are necessary for a service or to obtain information on
the services.

e Debian has management commands for the runlevels such as update-rc.d,
that allows us to install or delete services by booting them or halting them
in one or more runlevels; invoke-rc.d, allows the classic operations for
starting-up, halting or rebooting the service.

The default runlevel in Debian is 2, the X Window System is not managed
from /etc/inittab; instead there is a manager (for example, gdm or kdm)
that works as if it were another of the services of runlevel 2.

Local administration

© FUOC e PID_00148465 12 Local administration

3. Monitoring system state

One of the main daily tasks of the (root) administrator will be to verify that
the system works properly and check for any possible errors or saturation of
the machine's resources (memory, disks etc.). In the following subsections,
we will study the basic methods for examining the state of the system at a
determined point in time and how to perform the operations required to avoid
any subsequent problems.

In this module's final tutorial, we will carry out a full examination of a sample
system, so that we may see some of these techniques.

3.1. System boot

When booting a GNU/Linux system, there is a large extraction of interesting
information; when the system starts-up, the screen usually shows the data
from the processes detecting the machine's characteristics, the devices, system
services boots etc., and any problems that appear are mentioned.

In most distributions, this can be seen directly in the system's console during
the booting process. However, either the speed of the messages or some of
the modern distributions that hide the messages behind graphics can stop us
from seeing the messages properly, which means that we need a series of tools
for this process.

Basically, we can use:

e dmesg command: shows the messages from the last kernel boot.

e /var/log/messages file: general system log that contains the messages gen-
erated by the kernel and other daemons (there may be many different log
files, normally in /var/log, and depending on the configuration of the sys-
log service).

e uptime command: indicates how long the system has been active.

e /proc system: pseudo file system (procfs) that uses the kernel to store the
processes and system information.

e /sys system: pseudo file system (sysfs) that appeared in the kernel 2.6.x
branch to provide a more coherent method of accessing the information
on the devices and their drivers.

© FUOC e PID_00148465 13

3.2. Kernel: /proc directory

When booting up, the kernel starts up a pseudo-file system called /proc, in
which it dumps the information compiled on the machine, as well as many
other internal data, during the execution. The /proc directory is implemented
on memory and not saved to disk. The contained data are both static and
dynamic (they vary during execution).

It should be remembered that, as /proc heavily depends on the kernel, the
structure tends to depend on the system's kernel and the included structure
and files can change.

One of the interesting points is that we can find the images of the processes
that are being executed in the /proc directory, along with the information that
the kernel handles on the processes. Each of the system's processes can be
found in the /proc/<process_pid, directory, where there is a directory with files
that represent its state. This information is basic for debugging programs or
for the system's own commands such as ps or top, which can use it for seeing
the state of the processes. In general, many of the system's utilities consult
the system's dynamic information from /proc (especially some of the utilities
provided in the procps package).

On another note, we can find other files on the global state of the system in

/proc. We will look at some of the files that we can examine to obtain important
information briefly:

File Description

Local administration

Note

The /proc directory is an ex-
traordinary resource for ob-
taining low-level information
on the system's working and
many system commands rely
on it for their tasks.

/proc/bus Directory with information on the PCl and USB buses.

/proc/cmdline Kernel startup line

/proc/cpuinfo

CPU data

/proc/devices

List of system character devices or block devices

/proc/drive

Information on some hardware kernel modules

/proc/filesystems

Systems of enabled files in the kernel

/proc/ide

Directory of information on the IDE bus, disks characteristics

/proc/interrups

Map of the hardware interrupt requests (IRQ) used

/proc/ioports

1/O ports used

/proc/meminfo

Data on memory usage

/proc/modules

Modules of the kernel

/proc/mounts

File systems currently mounted

© FUOC e PID_00148465 14

Local administration

File Description

/proc/net Directory with all the network information

/proc/scsi Directory of SCSI devices or IDEs emulated by SCSI

/proc/sys Access to the dynamically configurable parameters of the kernel
/proc/version Version and date of the kernel

As of kernel version 2.6, a progressive transition of procfs (/proc) to sysfs (/sys)
has begun, in order to migrate all the information that is not related to the
processes, especially the devices and their drivers (modules of the kernel) to

the /sys system.
3.3. Kernel: /sys

The sys system is in charge of making the information on devices and drivers,
which is in the kernel, available to the user space so that other APIs or appli-
cations can access the information on the devices (or their drivers) in a more
flexible manner. It is usually used by layers such as HAL and the udev service

for monitoring and dynamically configuring the devices.

Within the sys concept there is a tree data structure of the devices and drivers
(let us say the fixed conceptual model) and how it can subsequently be ac-
cessed through the sysfs file system (the structure of which may change be-

tween different versions).

When an added object is detected or appears in the system, a directory is cre-
ated in sysfs in the driver model tree (drivers, devices including their different
classes). The parent/child node relationship is reflected with subdirectories
under /sys/devices/ (reflecting the physical layer and its identifiers). Symbolic
links are placed in the /sys/bus subdirectory reflecting the manner in which
the devices belong to the different physical buses of the system. And the de-
vices are shown in /sys/class, grouped according to their class, for example
network, whereas /sys/block/ contains the block devices.

Some of the information provided by /sys can also be found in /proc, but it
was decided that this method involved mixing different elements (devices,
processes, data, hardware, kernel parameters) in a manner that was not very
coherent and this was one of the reasons that /sys was created. It is expected
that the information will migrate from /proc to /sys to centralise the device
data.

3.4. Processes

The processes that are executing at a given moment will be of a different na-

ture, generally. We may find:

© FUOC e PID_00148465 15

System processes, whether they are processes associated to the machine's
local workings, kernel, or processes (known as daemons) associated to the
control of different services. On another note, they may be local or net-
worked, depending on whether the service is being offered (we are acting
as a server) or we are receiving the results of the service (we are acting as
clients). Most of these processes will appear associated to the root user,
even if we are not present at that moment as users. There may be some
services associated to other system users (Ip, bin, www, mail etc.), which
are virtual non-interactive users that the system uses to execute certain

processes.

Processes of the administering user: when acting as the root user, our
interactive processes or the launched applications will also appear as pro-
cesses associated to the root user.

System users processes: associated to the execution of their applications,
whether they are interactive tasks in text mode or in graphic mode.

can use the following as faster and more useful:

ps: the standard command, list of processes with the user data, time, pro-
cess identifier and the command line used. One of the most commonly
used options is ps -ef (or -ax), but there are many options available (see
man).

top: one version that provides us with an updated list by intervals, dynam-
ically monitoring the changes. And it allows us to order the list of process-
es sorted by different categories, such as memory usage, CPU usage, so as
to obtain a ranking of the processes that are taking up all the resources. It is
very useful for providing information on the possible source of the prob-
lem, in situations in which the system's resources are all being used up.

kill: this allows us to eliminate the system's processes by sending com-
mands to the process such as kill -9 pid_of_process (9 corresponding to
SIGKILL), where we set the process identifier. It is useful for processes with
unstable behaviour or interactive programs that have stopped responding.
We can see a list of the valid signals in the system with man 7 signal

3.5. System Logs

Both the kernel and many of the service daemons, as well as the different

GNU/Linux applications or subsystems, can generate messages that are sent

to log files, either to obtain the trace of the system's functioning or to detect

Local administration

© FUOC e PID_00148465 16 Local administration

errors or fault warnings or critical situations. These types of logs are essential
in many cases for administrative tasks and much of the administrator's time
is spent processing and analysing their contents.

Most of the logs are created in the /var/log directory, although some
applications may modify this behaviour; most of the logs of the system
itself are located in this directory.

A particular daemon of the system (important) is daemon Syslogd. This dae- Note

mon is in charge of receiving the messages sent by the kernel and other ser-

The Syslogd daemon is the

vice daemons and sends them to a log file that is located in /var/log/messages. most important service for ob-

This is the default file, but Syslogd is also configurable (in the /etc/syslog.conf taining dynamic information
on the machine. The process
file), so as to make it possible to create other files depending on the source, of analysing the logs helps us
. . . to understand how they work,
according to the daemon that sends the message, thereby sending it to the log the potential errors and the
or to another location (classified by source), and/or classify the messages by performance of the system.

importance (priority level): alarm, warning, error, critical etc.

Depending on the distribution, it can be configured in different modes by de-
fault; in /var/log in Debian it is possible to create (for example) files such as:
kern.log, mail.err, mail.info... which are the logs of different services. We can
examine the configuration to determine where the messages come from and
in which files they are saved. An option that is usually useful is the possibil-
ity of sending the messages to a virtual text console (in /etc/syslog.conf the
destination console, such as /dev/tty8 or /dev/xconsole, is specified for the type
or types of message), so that we can see the messages as they appear. This is
usually useful for monitoring the execution of the system without having to
constantly check the log files at each time. One simple modification to this
method could be to enter, from a terminal, the following instruction (for the
general log):

tail -f /var/log/messages

This sentence allows us to leave the terminal or terminal window so that the

changes that occur in the file will progressively appear.

Other related commands:

e uptime: time that the system has been active. Useful for checking that no
unexpected system reboot has occurred.

e Jast: analyses the in/out log of the system (/var/log/wtmp) of the users,
and the system reboots. Or last log control of the last time that the users
were seen in the system (information in /var/log/lastlog).

© FUOC e PID_00148465 17 Local administration

e Various utilities for combined processing of logs, that issue summaries (or
alarms) of what has happened in the system, such as: logwatch, logcheck
(Debian), log_analysis (Debian)...

3.6. Memory

Where the system's memory is concerned, we must remember that we have:
a) the physical memory of the machine itself, b) virtual memory that can by
addressed by the processes. Normally (unless we are dealing with corporate
servers), we will not have very large amounts, so the physical memory will be
less than the necessary virtual memory (4GB in 32bit systems). This will force
us to use a swap zone on the disk, to implement the processes associated to
the virtual memory.

This swap zone may be implemented as a file in the file system, but it is more
usual to find it as a swap partition, created during the installation of the sys-
tem. When partitioning the disk, it is declared as a Linux Swap type.

To examine the information on the memory, we have various useful com-

mands and methods:

e /Jetc/fstab file: the swap partition appears (if it exists). With an fdisk com-
mand, we can find out its size (or check /proc/swaps).

e ps command: allows us to establish the processes that we have, with the

options on the percentage and memory used.
e tfop command: is a dynamic ps version that is updatable by periods of time.
It can classify the processes according to the memory that they use or CPU

time.

e free command: reports on the global state of the memory. Also provides
the size of the virtual memory.

e vmstat command: reports on the state of the virtual memory and the use
to which it is assigned.

e Some packages, like dstat, allow us to collate data on the different param-

eters (memory, swap and others) by intervals of time (similar to top).

3.7. Disks and file systems

We will examine which disks are available, how they are organised and which
partitions and file systems we have.

© FUOC e PID_00148465 18

When we have a partition and we have a determined accessible file system, we
will have to perform a mounting process, so as to integrate it in the system,
whether explicitly or as programmed at startup/boot. During the mounting
process, we connect the file system associated to the partition to a point in
the directory tree.

In order to find out about the disks (or storage devices) present in the system,
we can use the system boot information (dmesg), when those available are
detected, such as the /dev/hdx for IDE devices or /dev/sdx for SCSI devices.
Other devices, such as hard disks connected by USB, flash disks (pen drive
types), removable units, external CD-ROMs etc., may be devices with some

form of SCSI emulation, so they will appear as devices as this type.

Any storage device will present a series of space partitions. Typically,
an IDE disk supports a maximum of four physical partitions or more if
they are logical (they permit the placement of various partitions of this
type on one physical partition). Each partition may contain different
file system types, whether they are of one same operative or different
operatives.

To examine the structure of a known device or to change its structure by par-
titioning the disk, we can use the fdisk command or any of its more or less in-
teractive variants (cfdisk, sfdisk). For example, when examining a sample disk
ide /dev/hda, we are given the following information:

Local administration

fdisk -3j /dev/hda

Disk /dev/hda: 20.5 GB, 20520493056 bytes 255 heads, 63
sectors/track, 2494 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdal * 1 1305 10482381 7 HPFS/NTFS
/dev/hda2 * 1306 2429 9028530 83 Linux
/dev/hda3 2430 2494 522112+ 82 Linux swap

20 GB disk with three partitions (they are identified by the number added to
the device name), where we observe two NTFS and Linux-type boot partitions
(Boot column with *), which indicates the existence of a Windows NT/2000/
XP/Vista along with a GNU/Linux distribution and a last partition that is used
as a swap for Linux. In addition, we have information on the structure of the
disk and the sizes of each partition.

© FUOC e PID_00148465 19

Some of the disks and partitions that we have, some will be mounted in our
file system, or will be ready for set up upon demand, or they may be set up
when the resource becomes available (in the case of removable devices).

We can obtain this information in different ways (we will see this in more

detail in the final workshop):

e The /etc/fstab file indicates the devices that are ready to be mounted on
booting or the removable devices that may be mounted. Not all of the sys-
tem devices will appear necessarily; only the ones that we want to appear
when booting. We can mount the others upon demand using the mount

command or remove them with umount.

e mount command. This informs us of the file systems mounted at that mo-
ment (whether they are real devices or virtual file systems such as /proc).
We may also obtain this information from the /etc/mtab file.

e df -k command. This informs us of the storage file systems and allows
us to verify the used space and available space. It's a basic command for
controlling the available disk space.

With regard to this last df -k command, one of our basic tasks as an adminis-
trator of the machine is to control the machine's resources and, in this case,
the space available in the file systems used. These sizes have to be monitored
fairly frequently to avoid a system crash; a file system must never be left at less
than 10 or 15% (especially if it is the /), as there are many process daemons
that are normally writing temporary information or logs, that may generate
a large amount of information; a particular case is that of the core files that
we have already mentioned and which can involve very large files (depending
on the process). Normally, some precautions should be taken with regard to
system hygiene if any situations of file system saturation are detected:

e FEliminate old temporary files. The /tmp and /var/tmp directories tend to
accumulate many files created by different users or applications. Some sys-
tems or distributions take automatic hygiene measures, such as clearing
/tmp every time the system boots up.

e Logs: avoiding excessive growth, according to the system configuration
(for example, Syslogd), as the information generated by the messages can
be very large. Normally, the system will have to be cleared regularly, when
certain amounts of space are taken up and, in any case, if we need the
information for subsequent analyses, backups can be made in removable
devices. This process can be automated using cron scripts or using spe-
cialised tools such as logrotate.

e There are other parts of the system that tend to grow a lot, such as: a) user
core files: we can delete these periodically or eliminate their generation;

Local administration

© FUOC e PID_00148465 20 Local administration

b) the email system: stores all of the emails sent and received; we can ask
the users to clean them out regularly or implement a quota system; c) the
caches of the browsers or other applications: other elements that usually
occupy a lot of space, which require regular clearing, are: d) the accounts
of the users themselves: they may have quotas so that pre-established al-
located spaces are not exceeded etc.

© FUOC e PID_00148465 21

4. File Systems

In each machine with a GNU/Linux system, we will find different types of file
systems [Hin].

To start with, it is typical to find the actual Linux file systems created
in various partitions of the disks [Koe]. The typical configuration is to
have two partitions: that corresponding to "/" (root file system) and that
corresponding to the swap file. Although, in more professional config-
urations, it is usual to separate partitions with "differentiated" parts of
the system, a typical technique is, for example (we will examine other
options later), to create different partitions so:

/ /boot /home /opt /tmp /usr /var swap

That will certainly be found mounted from different sources (different
disks, or even the network in some cases). The idea is to clearly separate
the static and dynamic parts of the system, so as to make it easier to
extend the partitions when any overload problems arise. Or more easily
isolate the parts to perform backups (for example, the user accounts in
the /home partition).

The swap partitions are Linux swap type partitions and that corresponding to
/ tends to be one of the standard file systems, either ext2 (the default type up
to kernels 2.4), or the new ones ext3, ext4, which is an upgrade of ext2 with
journaling, which makes it possible to have a log of what goes on in the file
system, for faster recoveries in the event of an error. Other file system types,
such as Reiser or XFS are also typical.

Another typical configuration may be that of having three partitions: /, swap,
/home, in which the /home will be used for the user accounts. This makes
it possible to separate the system's user accounts, isolating two separate parti-
tions and allocating the necessary space for the accounts in another partition.

Another configuration that is widely used is that of separating the static parts
of the system from the dynamic ones, in different partitions; for example one
partition is used for placing / with the static part (/bin /sbin and /usr in some
cases), which is not expected to grow or, if it does, not by much, and another
or various partitions with the dynamic part (/var /tmp /opt), supposing that
/opt, for example, is the installation point for new software. This makes it
possible to better adjust the disk space and to leave more space for the parts
of the system that need it.

Local administration

© FUOC e PID_00148465 22

Where the supported file systems are concerned, we must point out the variety
of these; we can currently find (among others):

e Systems associated to GNU/Linux, such as the ext2, ext3 and ext4 stan-
dards, developed from the previous concept of journaling (support log for
operations performed in the file system that allows us to recover it in the
event of any disaster that renders it inconsistent).

e Compatibility with non- GNU/Linux environments: MSDOS, VFAT, NTES,
access to the different systems of FAT16, FAT32 and NTFS. In particular, we
must point out that the kernel support, in the case of the kernel, is read-
only. But, as we have mentioned, there are user space solutions (through
FUSE, a kernel module that allows us to write file systems in the user
space), that make read/write possible, such as the abovementioned NTFS-
3g. There is also compatibility with other environments such as Mac with
HEFS and HFSplus.

e Systems associated to physical supports, such as CD/DVDs, for example
ISO9660 and UDFE

e Systems used in different Unix, which generally provide better perfor-
mance (sometimes at the cost of a greater consumption of resources, in
CPU for example), such as JFES2 (IBM), XFES (SGI), or ReiserFS.

e Network file systems (more traditional): NFS, Samba (smbfs, cifs), permit
us to access the file systems available in other machines transparently us-
ing the network.

e Systems distributed in the network: such as GFS, Coda.

e DPseudo file systems, such as procfs (/proc) or sysfs (/sys).

In most of these file systems (except in some special cases), GNU/Linux will
allow us to create partitions of these types, build the file systems of the re-
quired type and mount them as an integrating part of the directory tree, either
temporarily or permanently.

4.1. Mount point

Apart from the /root file system and its possible extra partitions (/usr /var /tmp
/home), it should be remembered that it is possible to leave mount points
prepared for mounting other file systems, whether they are disk partitions or
other storage devices.

In the machines in which GNU/Linux shares the partition with other oper-
ating systems, through some bootloader (lilo or grub), there may be various
partitions assigned to the different operating systems. It is often good to share

Local administration

Note

The file systems howto doc-
ument provides brief expla-
nations of the various file sys-
tems as well as the websites
that you may consult for each
of these.

© FUOC e PID_00148465 23

data with these systems, whether for reading or modifying their files. Unlike
other systems (that only register their own data and file systems and in some
versions of which some of the actual file systems are not supported), GNU/
Linux is able to treat, as we have seen, an enormous amount of file systems
from different operating systems and to share the information.

Example

If we have installed GNU/Linux in the PCs, we will certainly find more than one operat-
ing system, for example, another version of GNU/Linux with ext2 or 3 of the file system,
we may find an old MSDOS with its FAT file system, a Windows98/ME/XP Home with
FAT32 (or VFAT for Linux), or a Windows NT/2000/XP/Vista with NTFS systems (NTFS
for Linux) and FAT32 (VFAT) at the same time.

Our GNU/Linux system can read data (in other words, files and directories)
from all these file systems and write in most of them.

In the case of NTFS, up until certain points, there were problems with writ-
ing, which was experimental in most of the kernel drivers that appeared. Due
mainly to the different versions of the file system that progressively appeared,
as there were two main versions called NTFS and NTFS2, and some extensions
such as the so-called dynamic volumes or the encrypted file systems. And ac-
cessing with certain drivers caused certain incompatibilities, which could re-
sult in data corruption or faults in the file system.

Thanks to FUSE, a module integrated in the kernel (as of version 2.6.11), it
has been possible to develop the file systems more flexibly, directly in the user
space (in fact, FUSE acts as a "bridge" between the kernel requests, and access
from the driver).

Thanks to the features of FUSE, we have more or less complete support for
NTES, (provided Microsoft does not make any further changes to the specifi-
cations), especially since the appearance of the driver (based on FUSE) ntfs-3g
(http://www.ntfs-3g.org), and the combination with the ntfsprogs utilities.

Depending on the distribution, different ones are used, or we may also create
it ourselves. Normally, they exist either as root subdirectories, for example
/cdrom /win /floppy or subdirectories within /mnt, the standard mount point
(they appear as /mnt/cdrom /mnt/floppy...), or the /media directory, which
is lately preferred by the distributions. According to the FHS standard, /mnt
should be used for temporary mounting of file systems, whereas /media should
be used to mount removable devices.

The mounting process is performed through the mount command, with the
following format:

mount -t filesystem-type device mount-point

Local administration

© FUOC e PID_00148465 24

The type of file system may be: MSDOS (FAT), VFAT (FAT32), NTFS (NTFS
read), ISO9660 (for CD-ROM)... (of the possible ones).

The device is the in point in the /dev directory corresponding to the location
of the device, the IDEs had /dev/hdxy where x is a,b,c, or d (1 master, 1 slave,
2 master, 2 slave) e and, the partition number, the SCSI (/dev/sdx) where X is
a,b,c,d ... (according to the associated SCSI ID, 0,1,2,3,4 ...).

We will now look at some examples:

mount -t iso09660 /dev/hdc /mnt/cdrom

This would mount the CD-ROM (if it is the IDE that is in the second IDE in
master mode) at point /mnt/cdrom.

mount -t iso09660 /dev/cdrom /mnt/cdrom

This would mount the CD-ROM; /dev/cdrom is used as a synonym (it is a link)
for the device where it is connected.

mount -t vfat /dev/fd0H1440 /mnt/floppy

This would mount the diskette, /dev/fdOH1440. It would be a high-density
(1.44 MB) disk drive A; /dev/fdO can also be used.

mount -t ntfs /dev/hda2 /mnt/winXP

This would mount the second partition of the first NTFS-type IDE device (C:)
(for example, a Windows XP).

If these partitions are more or less stable in the system (in other words, they
are not changed frequently) and we wish to use them, the best thing will be
to include the mounts so that they take place during the execution period,
when booting the system, through the configuration of file /etc/fstab:

Local administration

/etc/fstab: Static information on the file system

#

#<Sys. files> <Mount points> <Type> <Options> <dump> <pass>
/dev/hda2 / ext3 errors = remountro 0 1
/dev/hdb3 none swap sw 0 0

proc /proc proc defaults 0 o]
/dev/£d0 /floppy auto user,noauto 0 0
/dev/cdrom /cdrom is09660 ro,user,noauto 0 0

© FUOC e PID_00148465 25

/dev/sdbl /mnt /usb viat user,noauto

Local administration

For example, this configuration includes some of the standard systems, such
as the root in /dev/hda2, the swap partition that is in hdb3, the proc system
(which uses the kernel to save its information). The diskette, the CD-ROM
and, in this case, a Flash-type USB disk (which is detected as a SCSI device).
In some cases, auto is specified as a type of file system. This permits the au-
todetection of the file system. If unknown, it is better to indicate it in the
configuration and, on another note, the noauto option will mean that it is
not always mounted automatically, but upon request (or access).

If we have this information in the file, the mounting process is simplified,
as it will take place either on execution, when booting up, or upon demand
(noautos). And it may now be performed by simply asking that the mount

point or device be mounted:

mount /mnt/cdrom

mount /dev/£do0

given that the system already has the rest of the information.

The reverse process, umounting, is quite simple, the umount command with
the mount point or device:

umount /mnt/cdrom

umount /dev/£d0

When using removable devices, such as CD-ROMs (or others), eject may be
used to extract the physical support:

eject /dev/cdrom

or, in this case, only:

eject

The mount and umount commands mount or umount all the available sys-
tems. The file /etc/mtab maintains a list of the mounted systems at a specific
point in time, which can be consulted, or a mount, without parameters, may
be executed to obtain this information.

4.2. Permissions

Another subject that we will have to control in the cases of files and directo-

ries is the permissions that we wish to establish for each of them, whilst re-

membering that that each file may have a series of permissions: rwxrwxrwx

© FUOC e PID_00148465 26

where they correspond with the owner rwx, the group rwx to which the user
belongs, and the rwx for other users. In each one, we may establish the access
rights for reading (r), writing (w) or executing (x). In the case of a directory,
x denotes the permission for being able to access that directory (with the cd

command, for example).

In order to modify the access rights to a directory or file, we have the
commands:

e chown: change file owner.
e chgrp: change file owner group.
e chmod: change specific permissions (rtwx) of the files.

The commands also provide the -R option, which is recursive if affecting

a directory.

Local administration

© FUOC e PID_00148465 27 Local administration

5. Users and groups

The users of a GNU/Linux system normally have an associated account (de-
fined with some of their data and preferences) along with an allocated amount
of space on the disk in which they can develop their files and directories. This
space is allocated to the user and may only be used by the user (unless the
permissions specify otherwise).

Among the accounts associated to users, we can find different types:

e The administrator account, with the root identifier, which should only
be used for administration operations. The root user is the one with most
permissions and complete access to the machine and the configuration
files. Consequently, this user is also the one that most damage can cause
due to any faults or omissions. It is better to avoid using the root account
as if it were that of just another user; it is therefore recommended that it
should only be used for administration operations.

e User accounts: the normal accounts for any of the machine's users have
the permissions restricted to the use of their account files and to some
particular zones (for example, the temporary files in /tmp), and to the use
of the particular devices that they have been authorised to use.

e Special service accounts: 1p, news, wheel, www-data... accounts that are
not used by people but by the system's internal services, which uses them
under these user names. Some of the services are also used under the root

account.

A user account is normally created by specifying a name (or user identifier), a
password and a personal associated directory (the account).

The information on the system's users is included in the following files:
/etc/passwd

/etc/shadow

/etc/group

/etc/gshadow

Example of some lines of the /etc/passwd:

juan:x:1000:1000:Juan Garcia,,, :/home/juan:/bin/bash

root:x:0:0:root:/root:/bin/bash

© FUOC e PID_00148465 28

where (if the :: appear together, the box is empty):

e juan: identifier of the user of the system.

e x: encoded user password; if there is an "x" then it is located in the /etc/
shadow file.

e 1000: user code, which the system uses as the identity code of the user.

e 1000: code of the main group to which the user belongs, the group's in-
formation is in /etc/group.

e Juan Garcia: comment, usually the user's full name.

e /home/juan: personal directory associated to his account.

e /bin/bash: interactive shell that the user uses when interacting with the
system, in text mode, or through the graphic shell. In this case, the GNU
Bash, which is the shell used by default. The /etc/passwd file used to con-
tain the user passwords in an encrypted form, but the problem was that
any user could see this file and, at the time, cracks were designed to try
and find out the passwords directly using the encrypted password as the
starting point (word encoded with the crypt system).

In order to avoid this, the passwords are no longer placed in this file; only
an "x" is, to indicate that they are located in another file, which can only be
read by the root user, /etc/shadow, the contents of which may be something
similar to the following:

juan:algNcs82ICst8CjVIS7ZFCVnuON2pBcn/:12208:0:99999:7: ::

where the user identifier is located, along with the encrypted password. In
addition, they appear as spaces separated by ":":

e Days since 1st January 1970 in which the password was changed for the
last time.

e Days left for it to be changed (O it does not have to be changed).

e Days after which the password must be changed (in other words, change
period).

e Days on which the user will be warned before the password expires.

e Days, after expiry, after which the account will be disabled.

e Days since 1st January 1970 that the account has been disabled.

e And a reserved space.

Local administration

© FUOC e PID_00148465 29

In addition, the encryption codes can be more difficult, as it is now possible
to use a system called md5 (it usually appears as an option when installing the
system) to protect the users' passwords. We will examine some more details
in the unit on security.

In /etc/group we will find the information on the user groups:

jose:x:1000:

where we have:

name-group:password-group:identifier-of-group:list-users

The list of the users in the group may or may not be present; given that this
information is already in /etc/passwd, it is not usually placed in /etc/group. If
it is placed there, it usually appears as a list of users separated by commas.
The groups may also posses an associated password (although this is not that
common), as in the case of the user, there is also a shadow file: /etc/gshadow.

Other interesting files are the ones in /etc/skel directory, which contains the
files that are included in each user account when it is created. We must re-
member that, as we saw with the interactive shells, we could have some con-
figuration scripts that execute when we enter or exit the account. The "skele-
tons", which are copied in user account when they are created, are saved in
the skel directory. The administrator is usually in charge of creating adequate
files for the users, providing the necessary execution paths, initialising the
system's variables that are needed for the software etc.

We will now see a series of useful commands for the administration of users
(we will mention their functions and perform some tests in the workshop):

e useradd: adding a user to the system.

e userdel: to delete a user from the system.

e usermod: to modify a user of the system.

e groupadd, groupdel, groupmod the same for groups.

e newusers, chpasswd: these can be very useful in large installations with
many users, as they allow us to create various accounts from the informa-
tion entered into a newusers file or change the passwords for a large num-

ber of users (chpasswd).

e chsh: to change the user login shell.

Local administration

© FUOC e PID_00148465 30

e chfn: to change the user information present in the /etc/passwd comment
file.

e passwd: to change a user's password. This may be executed as a user, and
it will then ask for the old password and the new one. When doing this,
the root account has to specify the user whose password will be changed
(otherwise, they would be changing the account's password) and the old
password is not necessary. This is perhaps the command that the root most
uses, when users forget their old password.

e su: a kind of identity change. It is used both by users and by the root to
change the current user. In the case of the administrator, it is used quite
a lot to test that the user account works properly; there are different vari-
ants: su (without parameters, it serves to switch to root user, after identifi-
cation, making it possible for us to pass, when we are in a user account, to
the root account to perform a task). The su iduser sentence (changes the
user to iduser, but leaves the environment as it is, in other words, in the
same directory...). The su - iduser mandate (which performs a complete
substitution, as if the second user had logged in the system).

With regard to the administration of users and groups, what we have men-
tioned here refers to the local administration of one sole machine. In systems
with multiple machines that the users share, a different management system
is used for the information on users. These systems, generically called net-
work information systems, such as NIS, NIS+ or LDAP, use databases for stor-
ing the information on the users and groups, effectively using servers, where
the database and other client machines are stored and where this information
can be consulted. This makes it possible to have one single copy of the user
data (or various synchronised copies) and makes it possible for them to enter
any available machine of the set administered with these systems. At the same
time, these systems incorporate additional concepts of hierarchies and/or do-
mains/machine and resource zones, that make it possible to adequately repre-
sent the resources and their use in organisations with different organisational
structures for their own personnel and internal departments.

We can check whether we are in a NIS-type environment by seeing if compat
appears in the passwd line and group configuration file, /etc/nsswitch.conf, if
we are working with local files, or nis or nisplus according to the system on
which we are working. Generally, this does not involve any modification for
the simple user, as the machines are managed transparently, more so if it is
combined with files shared by NFS that makes the account available, regardless
of the machine used. Most of the abovementioned commands can still be used
without any problem under NIS or NIS+, in which they are equivalent, except
for the command for changing the password, which, instead of passwd, we

Local administration

© FUOC e PID_00148465 31 Local administration

usually use yppasswd (NIS) or nispasswd (NIS+); although it is typical for the
administrator to rename them to passwd, (through a link), which means that
users will not notice the difference.

We will look at this and other methods for configuring the network adminis-

tration units.

© FUOC e PID_00148465 32 Local administration

6. Printing services

The GNU/Linux [Gt] [SmiO2] printing server derives from UNIX's BSD vari-
ant; this system was called LPD (line printer daemon). This is a very powerful
printing system, because it integrates the capacity to manage both local and
network printers. And it provides this service within the system for both the
client and the printing server.

LPD is a system that is quite old, as its origins date back to UNIX's BSD branch
(mid 1980s). Consequently, LPD usually lacks support for modern devices,
given that the system was not originally conceived for the type of printing
that takes place now. The LPD system was not designed as a system based on
device drivers, as it was typical to produce only printers in series or in parallel
for writing text characters.

Currently, the LPD system combines with another common software, such as Note

the Ghostscript system, which offers a postscript type output for a very wide
The UNIX systems provide,

range of printers for which it has the right drivers. At the same time, they are possibly, the most powerful

usually combined with filtering software, which, depending on the type of and complex printing systems,
which provide a lot of flexibili-
document that must be printed, selects the appropriate filters. Normally, the ty to printing environments.

procedure that should be followed is (basically):

1) The work is started by a command in the LPD system.

2) The filtering system identifies the type of job (or file) that must be used and
transforms the job into an outgoing postscript file, which is the one sent to
the printer. In GNU/Linux and UNIX, most of the applications assume that
the job will be sent to a postscript printer and many of them directly generate
a postscript output, which is why the following step needs to be taken.

3) The Ghostscript has to interpret the postscript file it receives, and, depend- Web site

ing on the driver of the printer to which the file has been sent, it performs the
Ghostscript: http://

transformation to the driver's own format. If the printer is a postscript type www.ghostscript.com/

printer, the printing process is direct; if not, it has to "translate" the job. The
job is sent to the printing queue.

Apart from the LPD printing system (that originated with UNIX's BSD), there
is also the system known as System V (originally in the other System V branch
of UNIX). Normally, for compatibility reasons, most UNIX systems integrate
both systems, so that either one or the other is used as the main one and
the other emulates the main one. In the case of GNU/Linux, a similar process
occurs, depending on the installation that we have, we can have only the LPD
commands of the printing system, but it will also be common to have the

© FUOC e PID_00148465 33

System V commands. A simple way of identifying the two systems (BSD or
System V) is using the main printing command (which sends the jobs to the
system), in BSD, it is Ipr, and it is Ip in System V.

This is the initial situation for the GNU/Linux printing systems, although over
the last few years, more systems have appeared, which provide more flexibility
and make more drivers available for the printers. The two main systems are
CUPS and, to a lesser extent, LPRng. In fact, recently, CUPS is GNU/Linux's
de facto standard, although the other systems must be supported for compat-
ibility with the existing UNIX systems.

Both (both CUPS and LPRng) are a type of higher-level system, but they are not
all that perceptibly different for average users, with regard to the standard BSD
and System V systems; for example, the same client commands (or compatible
commands in the options) are used for printing. There are perceptible differ-
ences for the administrator, because the configuration systems are different.
In one way, we can consider LPRng and CUPS as new architectures for printing
systems, which are compatible for users with regard to the old commands.

In the current GNU/Linux distributions, we can find different printing sys-
tems. If the distribution is old, it may only incorporate the BSD LPD system; in
the current distributions: both Debian and Fedora/Red Hat use CUPS. In older
versions of Red Hat, there was a tool, Print switch, which made it possible
to change the system, switching the printing system, although recently only
CUPS is available. In Debian, it is possible to install both systems, but they are
mutually exclusive: only one may be used for printing.

In the case of Fedora Core, the default printing system is CUPS (as LPRng
disappeared in Fedora Core 4), and the Print Switch tool no longer exists, as
it is no longer necessary: system-config-printer is used to configure devices.
By default, Debian uses BSD LPD, but it is common to install CUPS (and we
can expect it to continue to be the default option in future new versions) and
LPRng may also be used. In addition, we must remember that we also had
the possibility (seen in the unit on migration) of interacting with Windows
systems through the Samba protocols, which allowed you to share printers
and access to these printers.

Regarding each of the [Gt] systems:

e BSD LPD: this is one of UNIX's standards, and some applications assume
that the commands and the printing system will be available, for which
both LPRng and CUPS emulate the functions and commands of BDS LPD.
The LPD system is usable but not very configurable, especially with regard
to access control, which is why the distributions have been moved to oth-
er, more modern, systems.

Local administration

Web sites

LPRNng: http://www.lprng.org
CUPS: http://www.cups.org

© FUOC e PID_00148465 34

e LPRng: basically it was designed to replace BSD, and therefore, most of
the configuration is similar and only some of the configuration files are
different.

e CUPS: it is the biggest deviation from the original BSD and the configura-
tion is the same. Information is provided to the applications on the avail-
able printers (also in LPRng). In CUPS, both the client and the server have
to have CUPS software.

The two systems emulate the printing commands of System V.

For GNU/Linux printing, various aspects have to be taken into account:

e Printing system that is used: BSD, LPRng or CUPS.

e Printing device (printer): it may have a local connection to a machine or
be on the network. The current printers may be connected to a machine
using local connections, through interfaces in series, in parallel, USB etc.
Or they may simply be on the network, as another machine, or with spe-
cial ownership protocols. Those connected to the network can normally
act themselves as a printing server (for example, many HP laser printers
are BSD LPD servers) or they can be connected to a machine that acts as

a printing server for them.

e Communication protocols used with the printer or the printing system:
whether it is direct TCP/IP connection (for example, an HP with LPD) or
high level ones based on TCP/IP, such as IPP (CUPS), JetDirect (some HP
printers) etc. This parameter is important, as we have to know it so as to
install the printer in a system.

e Filtering systems used: each printing system supports one or more.

e Printer drivers: in GNU/Linux, there are quite a few different types; we
might mention, for example CUPS drivers, the system's or third parties'
(for example, HP and Epson provide them); Gimp, the image editing pro-
gram also has drivers optimised for printing images; Foomatic is a driver
management system that works with most systems (CUPS, LPD, LPRng
and others); Ghostscript drivers etc. In almost all printers, there are one
or more of the drivers in these sets.

With regard to the client part of the system, the basic commands are the same
for the different systems and these are the BSD system commands (each system
supports emulation of these commands):

e Ipr:ajob is sent to the default printing queue (or the one that is selected),
and the printing daemon (Ipd) then sends it to the corresponding queue
and assigns a job number, which will be used with the other commands.

Local administration

Web site

Information on the most
appropriate printers and
drivers can be found at: http:/
/www.openprinting.org/
printer_list.cgi

© FUOC e PID_00148465 35

Normally, the default printer would be indicated by the PRINTER system
variable or the first defined and existing one will be used or, in some sys-
tems, the Ip queue will be used (as the default name).

Example
Lpr example:
lpr -Pepson data.txt

This command sends the data.txt file to the print queue associated to a printer that we
have defined as "epson".

e Ipq: This allows us to examine the jobs in the queue.

Example

Example

Local administration

lpg -P epson

Rank Owner Job Files Total Size
1st juan 15 data.txt 74578 bytes
2nd marta 16 fpppp.F 12394 bytes

This command shows us the jobs in the queue, with the respective order and
sizes; the files may appear with different names, as this depends on whether
we have sent them with Ipr or with another application that might change
the names when it sends them or if any filters have had to be used when

converting them.

e [prm: eliminates jobs from the queue and we can specify a job number or
the user, to cancel these operations.

Example
lprm -Pepson 15

Delete the job with id 15 from the queue.

With regard to the administrative side (in BSD), the main command would be
Ipc; this command can be used to activate or deactivate queues, move jobs in
the queue order and activate or deactivate the printers (jobs may be received
in the queues but they are not sent to the printers).

We should also point out that, in the case of System V, the printing commands
are usually also available, normally simulated on the basis of the BSD com-
mands. In the client's case, the commands are: lp, lpstat, cancel and, for ad-
ministrative subjects, Ipadmin, accept, reject, IJpmove, enable, disable, Ipshut.

© FUOC e PID_00148465 36

In the following sections we will see that it is necessary to configure a printer
server for the three main systems. These servers may be used both for local
printing and for the network clients' prints (if they are enabled).

6.1. BSDLPD

In the case of the BSD LPD server, there are two main files that have to be
examined: on the one hand, the definition of the printers in /etc/printcap
and, on the other, the network access permissions in /etc/hosts.lpd.

With regard to the permissions, by default, BSD LPD only provides local access
to the printer and, therefore, it has to be expressly enabled in /etc/hosts.lpd.

Example
The file may be:

#file hosts.lpd
second
first.the.com
192.168.1.7
+@groupnis
-three.the.com

which would indicate that it is possible to print to a series of machines, listed
either by their DNS name or by the IP address. Machine groups that belong to
a NIS server (groupnis, as shown in the example) may be added or it is possible
to deny access to several machines by indicating this with a dash (-).

With regard to the configuration of the server in /etc/printcap, we define in-
puts, in which each represents a printing system queue that can be used to
stop the printing jobs. The queue may be associated to a local device or a re-
mote server, whether this is a printer or another server.

The following options may exist in each port:

e Ip =, indicates the device to which the printer is connected, for example,
Ip = /dev/lp0 would indicate the first parallel port. If the printer is an LPD-
type printer, for example, a network printer that accepts the LPD protocol

(such as an HP), then we can leave the box empty and fill in the following.

e rm =, address with name or IP of the remote machine that will use the
printing queue. If it is a network printer, it will be this printer's address.

e 1p =, name of the remote queue, in the machine indicated before with rm.
Let us examine an example::

Local printer input

lp|epson|Epson C62:\

Local administration

© FUOC e PID_00148465 37

:1p=/dev/1lpl:sd=/var/spool/lpd/epson:\
:sh:pw#80:pl#72:px#1440 :mx#0:\
:if = /etc/magicfilter/StylusColor@720dpi-filter:\filter
:af = /var/log/lp-acct:1f = /var/log/lp-errs:
Remote printer input
hpremote |hpr |remote hp of the department|:\
:lp = :\
:rm = server:rp = queuehp:\
:1f = /var/adm/lpd rem errs:\log file.

:sd = /var/spool/lpd/hpremote:local associated spool

6.2. LPRng

In the case of the LPRng system, as this was made to maintain BSD compatibil-
ity, and, among other improvements with regard to access, the system is com-
patible in terms of the configuration of queues and this is performed through
the same file format, /etc/printcap, with some additional intrinsic operations.

Where the configuration is different is with regard to access: in this case, we
generally obtain access through a /etc/lpd.perms file that is general for the
whole system and there may also be individual configurations for each queue
with the lpd.perms file placed in the directory corresponding to the queue,

usually /var/spool/lpd/name-queue.

These lpd.perms files have a greater capacity for configuring the access and

permit the following basic commands:

DEFAULT ACCEPT
DEFAULT REJECT
ACCEPT [key = valuel,valuel>*]*
REJECT [key = wvaluel[,valuel*]1*

where the first two allow us to establish the default value, of accepting every-
thing or rejecting everything, and the next two of accepting or rejecting a
specific configuration in the line. It is possible to accept (or reject) requests
from a specific host, user or IP port. Likewise, it is possible to configure the
type of service that will be provided to the element: X (may be connected), P
(job printing), Q (examine queue with 1pq), M (remove jobs from the queue,
Iprm), C (control printers, Ipc command Ipc), among others, as with the file:

ACCEPT SERVICE = M HOST = first USER = jose

ACCEPT SERVICE = M SERVER REMOTEUSER = root

REJECT SERVICE = M

Local administration

© FUOC e PID_00148465 38

Deleting jobs from the queue is allowed for the (first) user of the machine and
the root user from the server where the printing service is hosted (localhost)
and, in addition, whatsoever other requests for deleting jobs from the queue
that are not the already established are rejected.

With this configuration, we have to be very careful, because in some distribu-
tions, the LPRng services are open by default. The connection may be limited,

for example, with:

ACCEPT SERVICE = X SERVER

REJECT SERVICE = X NOT REMOTEIP = 100.200.0.0/255

Connection service only accessible to the server's local machine and denying
access if the machine does not belong to our subnet (in this case, we are as-
suming that it is 100.200.0.x).

For the administration of line commands, the same tools as the standard BSD
are used. With regard to the graphical administration of the system, we should
point out the Iprngtool tool (not available in all versions of the LPRng system).

Names (name|alias1]...) 1p 7
Comments 7
Spool Directory fwar fspool/lpd/ /P 7
Hostname/IP of Printer hl4 ?
Port number 9100 7
¢ IFHP User Specified Filter fusr/libexec/filters/ifhp 7

Select Printer Model and Filter Options | default 2
Job Options Select LPR Job and Filter Options | landscape %
Printcap for: 5

¢ Server and Client (BOTH) Server Only (:server) Client Only (:client)
Spool action:

Localhost (:force_localhost) Remote Queue or Device (:force_localhosti@) < Default
Printer Type: 7
Device Queue & TCPIIP Socket SMB/Novell/Apple Talk
Load Balance Dummy Unknown
OK Cancel Advanced Options

Figure 1. Iprngtool, configuration of a printer

There are various software packages related to LPRng; for example, in a Debian,
we might find:

lprng - lpr/lpd printer spooling system

lprng-doc - lpr/lpd printer spooling system (documentation)
lprngtool - GUI front-end to LPRng based /etc/printcap
printop - Graphical interface to the LPRng print system.

Local administration

© FUOC e PID_00148465 39

6.3. CUPS

CUPS is a new architecture for the printing system that is quite different; it
has a layer of compatibility with BSD LPD, which means that it can interact
with servers of this type. It also supports a new printing protocol called IPP
(based on http), but it is only available when the client and the server are
CUPS-type clients and servers. In addition, it uses a type of driver called PPD
that identifies the printer's capacities; CUPS comes with some of these drivers
and some manufacturers also offer them (HP and Epson).

CUPS has an administration system that is completely different, based on dif-
ferent files: /etc/cups/cupsd.conf centralises the configuration of the printing
system, /etc/cups/printers.conf controls the definition of printers and /etc/
cups/classes.conf the printer groups.

In /etc/cups/cupsd.conf, we can configure the system according to a series of
file sections and the directives of the different actions. The file is quite big; we
will mention some important directives:

e Allow: this permits us to specify which machines may access the server,
either in groups or individually, or segments of the network's IP.

e AuthClass: makes it possible to indicate whether the user clients will be
asked to authenticate their accounts or not.

e BrowseXXX: there is a series of directives related to the possibility of ex-
amining a network to find the served printers; this possibility is activated
by default (browsing on), which means that we will normally find that all
the printers available in the network are available. We can deactivate it,
so that we only see the printers that we have defined. Another important
option is BrowseAllow, which we use to determine who is permitted to ask
for our printers; it is activated by default, which means that anyone can
see our printer from our network.

We must point out that CUPS is, in principle, designed so that both clients
and the server work under the same system; if the clients use LPD or LPRng,
it is necessary to install a compatibility daemon called cups-lpd (normally in
packages such as cupsys-bsd). In this case, CUPS accepts the jobs that come
from an LPD or LPRng system, but it does not control the accesses (cupsd.conf
only works for the CUPS system itself and therefore, it will be necessary to
implement some strategy for controlling access, like a firewall, for example
(see unit on security).

For administering from the commands line, CUPS is somewhat peculiar, in
that it accepts both LPD and System V commands in the clients, and the
administration is usually performed with the SystemV's lpadmin command.

Local administration

© FUOC e PID_00148465 40

Where the graphic tools are concerned, we have the gnome-cups-manager,
gtklp or the web interface which comes with the same CUPS system, accessible
at http://localhost:631.

x| —1[=][=

File Edit View Go Bookmarks Tools window Help

~ OO \.) G \) [% http:slocalhost:63 1printers | [E5 search | <;5’o

. 4 Home JBookmarks % The Mozilla Org... % Latest Builds

ESP Administration Classes Help Jobs Printers Software

Printer

Default Destination: none

epson EPSON Stylus C62, CUPS+Gimp-Print v4.2.5

Description: epson C&82

Location:

Frinter State: idle, accepting jobs.
Device URI: epson:/dev/lp0

Print Test Page Stop Printer Reject Jobs Modify Printer Configure Printer

Add Printer

Copyright 1893-2003 by Easy Software Products, All Rights Reserved. The Common UNIX Printing
System, CUPS, and the CUPS logo are the trademark property of Easy Software Products. All other
trademarks are the property of their respective owners.

D=2 e B e

Figure 2. Interface for the administration of the CUPS system

With regard to the software packages listed with CUPS, in Debian, we can find
(among others):

cupsys - Common UNIX Printing System(tm) - server
cupsys-bsd - Common UNIX Printing System(tm) - BSD commands
cupsys-client - Common UNIX Printing System(tm) - client pro-
grams (SysV)

cupsys-driver-gimpprint - Gimp-Print printer drivers for CUPS
cupsys-pt - Tool for viewing/managing print jobs under CUPS
cupsomatic-ppd - linuxprinting.org printer support - transi-
tion package

foomatic-db - linuxprinting.org printer support - database
foomatic-db-engine - linuxprinting.org printer support - pro-
grams

foomatic-db-gimp-print - linuxprinting - db Gimp-Print print-
er drivers

foomatic-db-hpijs - linuxprinting - db HPIJS printers
foomatic-filters - linuxprinting.org printer support - £il-
ters

foomatic-filters-ppds - linuxprinting - prebuilt PPD files
foomatic-gui - GNOME interface for Foomatic printer filter

system

Local administration

© FUOC e PID_00148465 41

gimpprint-doc - Users' Guide for GIMP-Print and CUPS
gimpprint-locals - Local data files for gimp-print
gnome-cups-manager - CUPS printer admin tool for GNOME

gtklp - Front-end for cups written in gtk

Local administration

© FUOC e PID_00148465 42 Local administration

7. Disk management

In respect of the storage units, as we have seen, they have a series of associated
devices, depending on the type of interface:

e IDE: devices
/dev/had master disk, first IDE connector;
/dev/hdb slave disk of the first connector,
/dev/hdc master second connector,
/dev/hdd slave second connector.

e SCSI: /dev/sda, /dev/sdb devices... following the numbering of the periph-
eral devices in the SCSI Bus.

e Diskettes: /dev/fdx devices, with x diskette number (starting in 0). There
are different devices depending on the capacity of the diskette, for exam-
ple, a 1.44 MB diskette in disk drive A would be /dev/fdOH1440.

With regard to the partitions, the number that follows the device indicates
the partition index within the disk and it is treated as an independent device:
/dev/hdal first partition of the first IDE disk, or /dev/sdc2, second partition
of the third SCSI device. In the case of the IDE disks, these allow four parti-
tions, known as primary partitions, and a higher number of logical partitions.
Therefore, if /dev/hdan, n is less than or equal to 4, then it will be a primary
partition; if not, it will be a logical partition with n being higher than or equal
to S.

With the disks and the associated file systems, the basic processes that we can
carry out are included in:

e Creation of partitions or modification of partitions. Through commands
such as fdisk or similar (cfdisk, sfdisk).

e Formatting diskettes: different tools may be used for diskettes: fdformat
(low-level formatting), superformat (formatting at different capacities in
MSDOS format), mformat (specific formatting creating standard MSDOS
file systems).

e Creation of Linux file systems, in partitions, using the mkfs com-
mand. There are specific versions for creating diverse file systems,
mkfs.ext2, mkfs.ext3 and also non-Linux file systems: mkfs.ntfs,
mkfs.vfat, mkfs.msdos, mkfs.minix, or others. For CD-ROMs, commands
such as mkisofs for creating the ISO9660s (with joliet or rock ridge exten-
sions), which may be an image that might subsequently be recorded on

© FUOC e PID_00148465 43 Local administration

a CD/DVD, which along with commands such as cdrecord will finally al-
low us to create/save the CD/DVDs. Another particular case is the mkswap
order, which allows us to create swap areas in the partitions, which will
subsequently be activated or deactivated with swapon and swapoff.

e Setting up file systems: mount, umount. commands

e Status verification: the main tool for verifying Linux file systems is the fsck
command. This command checks the different areas of the file system to
verify the consistency and check for possible errors and to correct these
errors where possible. The actual system automatically activates the com-
mand on booting when it detects situations where the system was not
switched off properly (due to a cut in the electricity supply or an acciden-
tal shutting down of the machine) or when the system has been booted
a certain number of times; this check usually takes a certain amount of
time, usually a few minutes (depending on the size of the data). There are
also particular versions for other file systems: fsck.ext2, fsck.ext3, fsck.vfat,
fsck.msdos etc. The fsck process is normally performed with the device in
read only mode with the partitions mounted; it is advisable to unmount
the partitions for performing the process if errors are detected and it is
necessary to correct the errors. In certain cases, for example, if the system
that has to be checked is the root system (/) and a critical error is detect-
ed, we will be asked to change the system's runlevel execution mode to
the root execution mode and to perform the verification process there. In
general, if it is necessary to verify the system; this should be performed in
superuser mode (we can switch between the runlevel mode with the init

or telinit commands).

e Backup processes: whether in the disk, blocks of the disk, partitions, file
systems, files... There are various useful tools for this: tar allows us to copy
files towards file or tape units; cpio, likewise, can perform backups of files
towards a file; both cpio and tar maintain information on the permissions
and file owners; ddmakes it possible to make copies, whether they are files,
devices, partitions or disks to files; it is slightly complex and we have to
have some low-level information, on the type, size, block or sector, and
it can also be sent to tapes.

e Various utilities: some individual commands, some of which are used by
preceding processes to carry out various treatments: badblocks for find-
ing defective blocks in the device; dumpe2fs for obtaining information on
Linux file systems; tune2fs makes it possible to carry out Linux file sys-
tem tuning of the ext2 or ext3 type and to adjust different performance
parameters.

© FUOC e PID_00148465 44 Local administration

We will now mention two subjects related to the concept of storage space,
which are used in various environments for the basic creation of storage space.
The use of RAID software and the creation of dynamic volumes.

7.1. RAID software

The configuration of disks using RAID levels is currently one of the most wide-
ly-used high-availability storage schemes, when we have various disks for im-
plementing our file systems.

The main focus on the different existing techniques is based on a fault-tol-
erance that is provided from the level of the device and the set of disks, to
different potential errors, both physical or in the system, to avoid the loss of
data or the lack of coherence in the system. As well as in some schemes that
are designed to increase the performance of the disk system, increasing the
bandwidth of these available for the system and applications.

Today we can find RAID in hardware mainly in corporate servers (although it
is beginning to appear in desktops), where there are different hardware solu-
tions available that fulfil these requirements. In particular, for disk-intensive
applications, such as audio and/or video streaming, or in large databases.

In general, this hardware is in the form of cards (or integrated with the ma-
chine) of RAID-type disk drivers, which implement the management of one
or more levels (of the RAID specification) over a set of disks administered with
this driver.

In RAID a series of levels (or possible configurations) are distinguished, which
can be provided (each manufacturer of specific hardware or software may sup-
port one or more of these levels). Each RAID level is applied over a set of disks,
sometimes called RAID array (or RAID disk matrix), which are usually disks
with equal sizes (or equal to group sizes). For example, in the case of an array,
four 100 GB disks could be used or, in another case, 2 groups (at 100 GB) of 2
disks, one 30 GB disk and one 70 GB disk. In some cases of hardware drivers,
the disks (or groups) cannot have different sizes; in others, they can, but the
array is defined by the size of the smallest disk (or group).

We will describe some basic concepts on some levels in the following list (it
should be remembered that, in some cases, the terminology has not been fully
accepted, and it may depend on each manufacturer):

e RAID O: The data are distributed equally between one or more disks with-
out information on parity or redundancy, without offering fault-tolerance.
Only data are being distributed; if the disk fails physically, the informa-
tion will be lost and we will have to recover it from the backup copies.
What does increase is the performance, depending on the RAID O imple-

© FUOC e PID_00148465 45 Local administration

mentation, given that the read and write options will be divided among
the different disks.

RAID O

CAZD

"
M

A6

N

A8

Disk 0 Disk 1

Figure 3

e RAID 1: An exact (mirror) copy is created in a set of two or more disks
(known as a RAID array). In this case, it is useful for the reading perfor-
mance (which can increase lineally with the number of disks) and espe-
cially for having a tolerance to faults in one of the disks, given that (for
example, with two disks) the same information is available. RAID 1 is usu-
ally adequate for high-availability, such as 24x7 environments, where we
critically need the resources. This configuration also makes it possible (if
the hardware supports this) to hot swap disks. If we detect a fault in any
of the disks, we can replace the disk in question without switching off the
system with another disk.

© FUOC e PID_00148465 46 Local administration

RAID 1

'
"
"

A3

N

A4

Disk O Disk 1

Figure 4

e RAID 2: In the preceding systems, the data would be divided in blocks for
subsequent distribution; here, the data are divided into bits and redun-
dant codes are used to correct the data. It is not widely used, despite the
high performance levels that it could provide, as it ideally requires a high
number of disks, one per data bit, and various for calculating the redun-
dancy (for example, in a 32 bit system, up to 39 disks would be used).

e RAID 3: It uses byte divisions with a disk dedicated to the parity of blocks.
This is not very widely used either, as depending on the size of the data
and the positions, it does not provide simultaneous accesses. RAID 4 is
similar, but it stripes the data at the block level, instead of byte level, which
means that it is possible to service simultaneous requests when only a
single block is requested.

e RAID 5: Block-level striping is used, distributing the parity among the
disks. It is widely used, due to the simple parity scheme and due to the fact
that this calculation is implemented simply by the hardware, with good

performance levels.

© FUOC e PID_00148465 47 Local administration

RAID 5

Disk O Disk 1 Disk 2 Disk 3

Figure 5

e RAID 0+1 (or 01): A mirror stripe is a nested RAID level; for example, we
implement two groups of RAID O, which are used in RAID 1 to create a
mirror between them. An advantage is that, in the event of an error, the
RAID O level used may be rebuilt thanks to the other copy, but if more disks
need to be added, they have to be added to all the RAID 0 groups equally.

e RAID 10 (1+0): striping of mirrors, groups of RAID 1 under RAID O. In this
way, in each RAID 1 group, a disk may fail without ensuing loss of data. Of
course, this means that they have to be replaced, otherwise the disk that is
left in the group becomes another possible error point within the system.
This configuration is usually used for high-performance databases (due to
the fault tolerance and the speed, as it is not based on parity calculations).

© FUOC e PID_00148465 48 Local administration

RAID 10
RAID 0

RAID 1 RAID 1

Figure 6

Some points that should be taken into account with regard to RAID in general:

e RAID improves the system's uptime, as some of the levels make it possible
for the system to carry on working consistently when disks fail and, de-
pending on the hardware, it is even possible to hot swap the problematic
hardware without having to stop the system, which is especially impor-
tant in critical systems.

e RAID can improve the performance of the applications, especially in sys-
tems with mirror implementations, where data striping permits the lineal
read operations to increase significantly, as the disks can provide simulta-
neous read capability, increasing the data transfer rate.

e RAID does not protect data; evidently, it does not protect data from other
possible malfunctions (virus, general errors or natural disasters). We must
rely on backup copy schemes.

e Datarecovery is not simplified. If a disk belongs to a RAID array, its recov-
ery should be attempted within that environment. Software that is specif-
ic to the hardware drivers is necessary to access the data.

© FUOC e PID_00148465 49

e On the other hand, it does not usually improve the performance of typi-
cal user applications, even if they are desktop applications, because these
applications have components that access RAM and small sets of data,
which means they will not benefit from lineal reading or sustained data
transfers. In these environments, it is possible that the improvement in

performance and efficiency is hardly even noticed.

e Information transfer is not improved or facilitated in any way; without
RAID, it is quite easy to transfer data, by simply moving the disk from one
system to another. In RAID's case, it is almost impossible (unless we have
the same hardware) to move one array of disks to another system.

In GNU/Linux, RAID hardware is supported through various kernel modules,
associated to different sets of manufacturers or chipsets of these RAID drivers.
This permits the system to abstract itself from the hardware mechanisms and
to make them transparent to the system and the end user. In any case, these
kernel modules allow us to access the details of these drivers and to configure
their parameters at a very low level, which in some cases (especially in servers
that support a high I/O load) may be beneficial for tuning the disks system

that the server uses in order to maximise the system's performance.

The other option that we will analyse is that of carrying out these processes
through software components, specifically GNU/Linux's RAID software com-
ponent.

GNU/Linux has a kernel of the so-called Multiple Device (md) kind, which we
can consider as a support through the driver of the kernel for RAID. Through
this driver we can generally implement RAID levels 0,1,4,5 and nested RAID
levels (such as RAID 10) on different block devices such as IDE or SCSI disks.
There is also the linear level, where there is a lineal combination of the avail-
able disks (it doesn't matter if they have different sizes), which means that
disks are written on consecutively.

In order to use RAID software in Linux, we must have RAID support in the
kernel, and, if applicable, the md modules activated (as well as some specific
drivers, depending on the case (see available drivers associated to RAID, such
as in Debian with modconf). The preferred method for implementing arrays
of RAID disks through the RAID software offered by Linux is either during the
installation or through the mdadm utility. This utility allows us to create and
manage the arrays.

Let's look at some examples (we will assume we are working with some SCSI
/dev/sda, /dev/sdb disks... in which we have various partitions available for

implementing RAID):

Creation of a linear array:

Local administration

© FUOC e PID_00148465 50

mdadm -create -verbose /dev/md0 -level=linear -raid-de-

vices=2 /dev/sdal /dev/sdbl

where we create a linear array based on the first partitions of /dev/sda and
/dev/sdb, creating the new device /dev/mdO, which can already be used as a
new disk (supposing that the mount point /media/diskRAID exists):

mkfs.ext2fs /dev/mdo
mount /dev/md0 /media/diskRAID

For a RAID O or RAID 1, we can simply change the level (-level) to raidO or
raidl. With mdadm —detail /dev/mdO, we can check the parameters of the newly
created array.

We can also consult the mdstat entry in /proc to determine the active arrays
and their parameters. Especially in the cases with mirrors (for example, in
levels 1, 5...) we can examine the initial backup reconstruction in the created
file; in /proc/mdstat we will see the reconstruction level (and the approximate
completion time).

The mdadm utility provides many options that allow us to examine and man-
age the different RAID software arrays created (we can see a description and

examples in man mdadm).

Another important consideration are the optimisations that should be made
to the RAID arrays so as to improve the performance, through both the mon-
itoring of its behaviour to optimise the file system parameters, as well as to
use the RAID levels and their characteristics more effectively.

7.2. Logical Volume Manager (LVM)

There is a need to abstract from the physical disk system and its configuration
and number of devices, so that the (operating) system can take care of this
work and we do not have to worry about these parameters directly. In this
sense, the logical volume management system can be seen as a layer of storage
virtualisation that provides a simpler view, making it simpler and smoother
to use.

In the Linux kernel, there is an LVM (logical volume manager), which is based
on ideas developed from the storage volume managers used in HP-UX (HP's
proprietary implementation of UNIX). There are currently two versions and
LVM?2 is the most widely used due to a series of added features.

The architecture of an LVM typically consists of the (main) components:

Local administration

Note

The optimisation of the RAID
arrays, may be an important
resource for system tuning and
some questions should be ex-
amined in:

Software-RAID-Howto, or in
the actual mdadm man.

© FUOC e PID_00148465 51

e Physical volumes (PV): PVs are hard disks or partitions or any other el-
ement that appears as a hard disk in the system (for example, RAID soft-
ware or hardware).

e Logical volumes (LV): These are equivalent to a partition on the physi-
cal disk. The LV is visible in the system as a raw block device (completely
equivalent to a physical partition) and it may contain a file system (such
as the users' /home). Normally, the volumes make more sense for the ad-
ministrators, as names can be used to identify them (for example, we can

use a logical device, named stock or marketing instead of hda6 or sdc3).

e Volume groups (VG): This is the element on the upper layer. The admin-
istrative unit that includes our resources, whether they are logical volumes
(LV) or physical volumes (PV). The data on the available PVs and how the
LVs are formed using the PVs are saved in this unit. Evidently, in order
to use a Volume Group, we have to have physical PV supports, which are
organised in different logical LV units.

For example, in the following figure, we can see volume groups where we have
7 PVs (in the form of disk partitions, which are grouped to form two logical
volumes (which have been completed using /usr and /home to form the file

systems):
/usr Logical partition 1
/dev/hdal /dev/hdal
/dev/hda2 /dev/hda2
/dev/hda3
/dev/hda4 @ /dev/hda3

/home Logical partition 2

Figure 7. Scheme of an example of LVM

Local administration

© FUOC e PID_00148465 52

By using logical volumes, we can treat the storage space available (which may
have a large number of different disks and partitions) more flexibly, according
to the needs that arise, and we can manage the space by the more appropriate
identifiers and by operations that permit us to adapt the space to the needs

that arise at any given moment.

Logical Volume Management allows us to:

e Resize logical groups and volumes, using new PVs or extracting some of
those initially available.

e Snapshots of the file system (reading in LVM1, and reading and/or writing
in LVM2). This makes it possible to create a new device that is a snapshot
of the situation of an LV. Likewise, we can create the snapshot, mount it,
try various operations or configure new software or other elements and, if
these do not work as we were expecting, we can return the original volume

to the state it was in before performing the tests.

e RAID O of logical volumes.

RAID levels 1 or 5 are not implemented in LVM; if they are necessary (in other
words, redundancy and fault tolerance are required), then either we use RAID
software or RAID hardware drivers that will implement it and we place LVM
as the upper layer.

We will provide a brief, typical example (in many cases, the distributor in-
staller carries out a similar process if we set an LVM as the initial storage sys-
tem). Basically, we must: 1) create physical volumes (PV). 2) create the logical
group (VG) and 3) create the logical volume and finally use the following to
create and mount a file system:

1) example: we have three partitions on different disks, we have created three
PVs and started-up the contents:

dd if=/dev/zero of=/dev/hdal bs=1k count=1

dd if=/dev/zero of=/dev/hda2 bs=1k count=1

dd if=/dev/zero of=/dev/hdbl bs=1k count=1

pvcreate /dev/hdal

Physical volume "/dev/sdal" successfully created
pvcreate /dev/hda2

Physical volume "/dev/hda2" successfully created
pvcreate /dev/hdbl

Physical volume "/dev/hdbl" successfully created

2) placement of a VG created from the different PVs:

vgcreate group disks /dev/hdal /dev/hda2 /dev/hdbl

Local administration

© FUOC e PID_00148465 53

Volume group "group disks" successfully created

3) we create the LV (in this case, with a size of 1 GB) based on the elements

that we have in group VG group (-n indicates the name of the volume):

lvcreate -L1G -n logical_ volume group disks

lvcreate -- doing automatic backup of "group disks"
lvcreate -- logical volume "/dev/group disks/ logical volume"
successfully created

And finally, we create a file system (a ReiserFS in this case):

mkfs.reiserfs /dev/group disks/logical volume

Which we could, for example, place as backup space

mkdir /mnt/backup

mount -t reiserfs /dev/group disks/logical volume /mnt/

backup

Finally, we will have a device as a logical volume that implements a file system
in our machine.

Local administration

© FUOC e PID_00148465 54 Local administration

8. Updating Software

In order to administer the installation or to update the software in our system,
we will, in the first instance, depend on the type of software packages used

by our system:

e RPM: packages that use the Fedora/Red Hat distribution (and derivatives).
They are usually handled through the rpm command. Contains informa-
tion on the dependencies that the software has on other software. At a
high level, through Yum (or up2date in some distributions derived from
Red Hat).

e DEB: Debian packages that are usually handled with a set of tools that
work on different levels with individual packages or groups. Among these,
we must mention: dselect, tasksel, dpkg, and apt-get.

e Tar or the tgz (also tar.gz): these are simply package files that have been
joined and compressed using standard commands such as tar, and gzip
(these are used for decompressing). The packages do not contain informa-
tion on any dependencies and can normally be installed in different places
if they do not carry any absolute root (path) information.

There are various graphical tools for handling these packages, such as RPM:
Kpackage; DEB: Synaptic, Gnome-apt; Tgz: Kpackage,or from the actual graph-
ic file manager itself (in Gnome or KDE). There are also usually package con-
version utilities. For example, in Debian we have the alien command, with
which we can change RPM packages to DEB packages. Although it is neces-
sary to take the appropriate precautions, so that the package does not unex-
pectedly modify any behaviour or file system, as it has a different destination
distribution.

Depending on the use of the types of packages or tools: it will be possible to
update or install the software in our system in different ways:

1) From the actual system installation CDs; normally, all the distributions
search for the software on the CDs. But the software should be checked
to ensure that it is not old and does not, therefore, include some patches
like updates or new versions with more features; consequently, if a CD is
used for installation, it is standard practice to check that it is the latest
version and that no more recent version exists.

© FUOC e PID_00148465 55 Local administration

2) Through updating or software search services, whether they are free,
as is the case with Debian's apt-get tool or yum in Fedora, or through
subscription services (paid services or services with basic facilities), such
as the Red Hat Network of the commercial Red Hat versions.

3) Through software repositories that offer pre-built software packages for
a determined distribution.

4) From the actual creator or distributor of the software, who may offer a
series of software installation packages. We may find that we are unable

to locate the type of packages that we need for our distribution.

5) Unpackaged software or with compression only, without any type of
dependencies.

6) Only source code, in the form of a package or compressed file.

© FUOC e PID_00148465 56 Local administration

9. Batch jobs

In administration tasks, it is usually necessary to execute certain tasks at reg-
ular intervals, either because it is necessary to program the tasks so that they
take place when the machine is least being used or due to the periodic nature
of the tasks that have to be performed.

There are various systems that allow us to set up a task schedule (planning
task execution) for performing these tasks out-of-hours, such as periodic or
programmed services:

e nohup is perhaps the simplest command used by users, as it permits the
execution of a non-interactive task once they have logged out from their
account. Normally, when users log out, they lose their processes; nohup
allows them to leave the processes executing even though the user has
logged out.

e gt permits us to launch a task for later, programming the determined point
in time at which we wish for it to start, specifying the time (hh:mm) and
date, or specifying whether it will be today or tomorrow. Examples:
at 10pm task
to perform the task at ten o'clock at night.
at 2am tomorrow task

to perform the task at two o'clock in the morning.

e cron: it permits us to establish a list of tasks that will be performed with the
corresponding programming; this configuration is saved in /etc/crontab;
specifically, in each entry in this file, we have: hour and minutes at which
the task will be performed, which day of the month, which month, which
day of the week, along with which element (which might be a task or a
directory where the tasks that are to be executed are located). For example,
the standard content is similar to:

25 6 * * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.daily
47 6 * * 7 root test -e /usr/sbin/anacron || run-parts --report /etc/cron.weekly
52 6 1 * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.monthl

where a series of tasks are programmed to execute: each day ("*" indicates
'whichever'), weekly (7th day of the week) or monthly (the 1st day of each
month). Normally, the tasks will be executed with the crontab command, but
the cron system assumes that the machine is always switched on, and if this
is not the case, it is better to use anacron, which checks whether the task was
performed when it was supposed to be or not, and if not, it executes the task.

© FUOC e PID_00148465 57

Each line in the preceding file is checked to ensure that the anacron command
is there and the scripts associated to each action are executed; in this case,
they are saved in directories assigned for this.

There may also be cron.allow or cron.deny files to limit who can (or cannot)
put tasks in cron. Through the crontab command, a user may define tasks in
the same format as we have seen before, which are usually saved in /var/spool/
cron/crontabs. In some cases, there is also a /etc/cron.d directory where we
can place the tasks and they are treated as through they were an extension to
the /etc/crontab file.

Local administration

© FUOC e PID_00148465 58 Local administration

10. Tutorial: combined practices of the different
sections

We will begin by examining the general state of our system. We will carry
out different steps in a Debian system. It is an unstable Debian system (the
unstable version, but more updated); however, the procedures are, mostly,
transferable to other distributions such as Fedora/Red Hat (we will mention
some of the most important changes). The hardware consists of a Pentium 4
at 2.66 Ghz with 768 MB RAM and various disks, DVD and CD-writer, as well
as other peripherals, on which we will obtain information as we proceed step
by step.

First we will see how our system booted up the last time:

uptime
17:38:22 up 2:46, 5 users, load average: 0.05, 0.03, 0.04

This command tells us the time that the system has been up since it last boot-
ed, 2 hours and 47 minutes and, in this case, we have 5 users. These will not
necessarily correspond to five different users, but they will usually be opened
user sessions (for example, through one terminal). The who command pro-
vides a list of these users. The load average is the system's average load over
the last 1, 5 and 15 minutes.

Let's look at system's boot log (dmesg command), and the lines that were gen-
erated when the system booted up (we have removed some lines for the pur-
pose of clarity):

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org)

(gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr
15 21:03:57 UTC 2007

BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009f800 (usable)
BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)
BIOS-e820: 00000000000ce000 - 0000000000040000 (reserved)
BIOS-e820: 00000000000dc000 - 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 - 000000002f6e0000 (usable)
BIOS-e820: 000000002f6e0000 - 000000002f6£0000 (ACPI data)
BIOS-e820: 000000002f6f0000 - 000000002£700000 (ACPI NVS)
BIOS-e820: 000000002£700000 - 000000002f780000 (usable)
BIOS-e820: 000000002£780000 - 0000000030000000 (reserved)
BIOS-e820: 00000000f££800000 - 00000000f£c00000 (reserved)
BIOS-e820: 00000000fffffc00 - 0000000100000000 (reserved)

OMB HIGHMEM available.

© FUOC e PID_00148465 59

759MB LOWMEM available.

These first lines already indicate some interesting data: the Linux kernel is
version 2.6.20-1-686, one version 2.6 revision 20 at revision 1 of Debian and
for 686 machines (Intel x86 32 bits architecture). They also indicate that we
are booting a Debian system, with this kernel which was compiled with a GNU
gcc compiler, version 4.1.2 and the date. There is then a map of the memory
zones used (reserved) by the BIOS and then the total memory detected in the
machine: 759 MB, to which we would have to add the first 1 MB, making a
total of 760 MB.

Kernel command line: BOOT_IMAGE=LinuxNEW ro root=302 lang=es acpi=force
Initializing CPU#0

Console: colour dummy device 80x25

Memory: 766132Kk/777728k available (1641k kernel code, 10968k reserved, 619k da-
ta, 208k init, Ok highmem)

Calibrating delay using timer specific routine.. 5320.63 BogoMIPS (1pj=10641275)

Here, we are told how the machine booted up and which command line has
been passed to the kernel (different options may be passed, such as lilo or
grub). And we are booting in console mode with 80 x 25 characters (this can
be changed). The BogoMIPS are internal measurements of the kernel of the
CPU speed. There are architectures in which it is difficult to detect how many
MHz the CPU works with and this is why this speed measurement is used.
Subsequently, we are given more data on the main memory and what it is
being used for at this booting stage.

CPU: Trace cache: 12K uops, L1 D cache: 8K

CPU: L2 cache: 512K

CPU: Hyper-Threading is disabled

Intel machine check architecture supported.

Intel machine check reporting enabled on CPU#O0.
CPUO: Intel P4/Xeon Extended MCE MSRs (12) available
CPUO: Intel(R) Pentium(R) 4 CPU 2.66GHz stepping 09

Likewise, we are given various data on the CPU: the size of the first-level cache,
the internal CPU cache, L1 divided in a TraceCache of the Pentium 4 (or cache
instruction), and the data cache and the unified second-level cache (L2), the
type of CPU, its speed and the system's bus.

Local administration

© FUOC e PID_00148465 60

PCI: PCI BIOS revision 2.10 entry at 0xfd994, last bus=3
Setting up standard PCI resources

NET: Registered protocol

IP route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP: Hash tables configured (established 131072 bind 65536)

checking if image is initramfs... it is

Freeing initrd memory: 1270k freed

fbO: VESA VGA frame buffer device

Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing enabled
serial8250: ttySO at I/O 0x3f8 (irq = 4) is a 16550A

00:09: ttySO at I/O 0x3£8 (irq = 4) is a 16550A

RAMDISK driver initialized: 16 RAM disks of 8192K size 1024 blocksize
PNP: PS/2 Controller [PNP0303:KBCO,PNPOf13:MSEOQ] at 0x60,0x64 irq 1,12
i8042.c: Detected active multiplexing controller, rev 1.1.

serial: i8042 KBD port at 0x60,0x64 irq 1

serial: 8042 AUXO port at 0x60,0x64 irq 12

serial: i8042 AUX1 port at 0x60,0x64 irq 12

serial: i8042 AUX2 port at 0x60,0x64 irq 12

serial: i8042 AUX3 port at 0x60,0x64 irq 12

mice: PS/2 mouse device common for all mice

The kernel and devices continue to boot, mentioning the initiation of the net-
work protocols. The terminals, the serial ports ttySO (which would be com1)
and ttySO1 (com?2). It provides information on the RAM disks that are being
used, the detection of PS2 devices, keyboard and mouse.

ICH4: IDE controller at PCI slot 0000:00:1f.1

ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio
idel: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:pio
Probing IDE interface ideO...

hda: FUJITSU MHT2030AT, ATA DISK drive

ideO at 0x1f0-0x1f7,0x3f6 on irq 14

Probing IDE interface idel...

hdc: SAMSUNG CDRW/DVD SN-324F, ATAPI CD/DVD-ROM drive
idel at 0x170-0x177,0x376 on irq 15

SCSI subsystem initialized

libata version 2.00 loaded.

hda: max request size: 128KiB

hda: 58605120 sectors (30005 MB) w/2048KiB Cache, CHS=58140/16/63<6>hda:
hw_config=600b

, UDMA(100)

hda: cache flushes supported

hda: hdal hda2 hda3

kjournald starting. Commit interval 5 seconds

EXT3-fs: mounted file system with ordered data mode.

hdc: ATAPI 24X DVD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)
Uniform CD-ROM driver Revision: 3.20

Addinf 618492 swap on /dev/hda3.

Detection of IDE devices, detecting the IDE chip in the PCI bus and reporting
what is driving the devices: hda, and hdc, which are, respectively: a hard disk
(Fujitsu), a second hard disk, a Samsung DVD Samsung, and a CD-writer (giv-
en that in this case, we have a combo unit). It indicates active partitions. Sub-
sequently, the machine detects the main Linux file system, a journaled ext3,
that activates and adds the swap space available in a partition.

Local administration

© FUOC e PID_00148465 61

usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb

input: PC Speaker as /class/input/inputl

USB Universal Host Controller Interface driver v3.0
hub 1-0:1.0: USB hub found

hub 1-0:1.0: 2 ports detected

uhci_hcd 0000:00:1d.1: UHCI Host Controller
uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 2
uhci_hcd 0000:00:1d.1: irq 11, io base 0x00001820
usb usb2: configuration #1 chosen from 1 choice
hub 2-0:1.0: USB hub found

hub 2-0:1.0: 2 ports detected

hub 4-0:1.0: USB hub found

hub 4-0:1.0: 6 ports detected

More detection of devices, USB (and the corresponding modules); in this case,
two hub devices (with a total of 8 USB ports) have been detected.

parport: PnPBIOS parport detected.

parportO: PC-style at 0x378 (0x778), irq 7, dma 1
[PCSPP, TRISTATE, COMPAT,EPP,ECP,DMA|

input: ImPS/2 Logitech Wheel Mouse as /class/input/input2

ieee1394: Initialized config rom entry 'ip1394'

eepro100.c:v1.09j-t 9/29/99 Donald Becker

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2e6eb1, caps: 0x944713/0xc0000
input: SynPS/2 Synaptics TouchPad as /class/input/input3

agpgart: Detected an Intel 845G Chipset

agpgart: Detected 8060K stolen Memory

agpgart: AGP aperture is 128M

ethO: OEM i82557/i82558 10/100 Ethernet, 00:00:F0:84:D3:A9, IRQ 11.
Board assembly 000000-000, Physical connectors present: RJ45

e100: Intel(R) PRO/100 Network Driver, 3.5.17-k2-NAPI

usbcore: registered new interface driver usbkbd

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

1pO: using parportO (interrupt-driven).
ppdev: user-space parallel port driver

And the final detection of the rest of the devices: Parallel port, mouse model,
FireWire port (IEEE1394) network card (Intel), a touchscreen, the AGP video
card (i845). More data on the network card, an intel pro 100, registry of usb as
mass storage (indicates a USB storage device as an external disk) and detection
of parallel port.

We can also see all this information, which we accessed through the dmesg
command, dumped in the system's main log, /var/log/messages. In this log,
we will find the kernel messages, among others, the messages of the daemons
and network or device errors, which communicate their messages to a special
daemon called syslogd, which is in charge of writing the messages in this file.
If we have recently booted the machine, we will observe that the last lines
contain exactly the same information as the dmesg command,

Local administration

© FUOC e PID_00148465 62

for example, if we look at the final part of the file (which is usually very large):

tail 200 /var/log/messages

We observe the same lines as before and some more information such as:

shutdown[13325]: shutting down for system reboot
kernel: usb 4-1: USB disconnect, address 3

kernel: nfsd: last server has exited

kernel: nfsd: unexporting all file systems

kernel: Kernel logging (proc) stopped.

kernel: Kernel log daemon terminating.

exiting on signal 15
syslogd 1.4.1#20: restart.

kernel: klogd 1.4.1#20, log source = /proc/kmsg started.

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org) (gcc version 4.1.2
20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr 15 21:03:57 UTC 2007
kernel: BIOS-provided physical RAM map:

The first part corresponds to the preceding shutdown of the system, informing
us that the kernel has stopped placing information in /proc, that the system is
shutting down... At the beginning of the new boot, the Syslogd daemon that
generates the log is activated, and the system begins to load, which tells us
that the kernel will begin to write information in its system, /proc; we look at
the first lines of the dmesg mentioning the version of the kernel that is being
loaded and we then find what we have seen with dmesg.

At this point, another useful command for finding out how the load process
has taken place is Ismod, which will tell us which modules have been loaded
in the kernel (summarised version):

lsmod

Module Size Used by

nfs 219468 (o]

nfsd 202192 17

exportfs 5632 1 nfsd
lockd 58216 3 nfs,nfsd
nfs_acl 3616 2 nfs,nfsd
sunrpc 148380 13 nfs,nfsd, lockd,nfs_acl
ppdev 8740 0

1p 11044 0

button 7856 (o]

ac 5220 0

battery 9924 0

md_mod 71860 1
dm_snapshot 16580 0
dm_mirror 20340 0

dm_mod 52812 2 dm_snapshot,dm mirror

Local administration

© FUOC » PID_00148465 Local administration

© FUOC e PID_00148465 64

We see that we basically have the drivers for the hardware that we have de-
tected and other related elements or those necessary by dependencies.

This gives us, then, an idea of how the kernel and its modules have been load-
ed. In this process, we may already have observed an error, if the hardware
is not properly configured or there are kernel modules that are not properly
compiled (they were not compiled for the appropriate kernel version), inex-
istent etc.

The next step for examining the processes in the system, such as the ps (for
process status) command, for example (only the system processes are shown,
not the user ones):

ps -ef
UID PID PPID C STIME TTY TIME CMD

Processes information, UID user that has launched the process (or the identi-
fier with which it has been launched), PID and process code assigned by the
system are consecutively shown, as the processes launch; the first is always O,
which corresponds to the init process. PPID is the id of the current parent pro-
cess. STIME, time in which the process was booted, TTY, terminal assigned to
the process (if there is one), CMD, command line with which it was launched.

root 1 0 0 14:52 ? 00:00:00 init [2]

root 3 1 0 14:52 ? 00:00:00 [ksoftirqd/0]

root 143 6 0 14:52 ? 00:00:00 [bdflush]

root 145 6 0 14:52 ? 00:00:00 [kswapdO]

root 357 6 0 14:52 ? 00:00:01 [kjournald]

root 477 1 0 14:52 ? 00:00:00 udevd --daemon
root 719 6 0 14:52 ? 00:00:00 [khubd]

Various system daemons, such as the kswapd daemon, which controls the
virtual memory swaps. Handling of system buffers (bdflush). Handling of file
system journal (kjournald), USB handling (khubd). Or the udev daemon that
controls the hot device connection. In general, the daemons are not always
identified by a d at the end, and if they have a k at the beginning, they are
normally internal threads of the kernel.

root 1567 1 0 14:52 ? 00:00:00 dhclient -e -pf ...
root 1653 1 0 14:52 ? 00:00:00 /sbin/portmap
root 1829 1 0 14:52 ? 00:00:00 /sbin/syslogd
root 1839 1 0 14:52 ? 00:00:00 /sbin/klogd -x
root 1983 1 0 14:52 ? 00:00:09 /usr/sbin/cupsd
root 2178 1 0 14:53 ? 00:00:00 /usr/sbin/inetd

Local administration

© FUOC e PID_00148465 65 Local administration

We have dhclient, which indicates that the machine is the client of a DHCP
server, for obtaining its IP. Syslogd, a daemon that sends messages to the log.
The cups daemon, which, as we have discussed, is related to the printing sys-
tem. And inetd, which, as we shall see in the section on networks, is a type of
"superserver" or intermediary of other daemons related to network services.

root 215410 14:537? 00:00:00 /usr/sbin/rpc.mountd
root 224110 14:537? 00:00:00 /usr/sbin/sshd

root 2257 10 14:537? 00:00:00 /usr/bin/xfs -daemon
root 257310 14:537? 00:00:00 /usr/sbin/atd
root 258010 14:537? 00:00:00 /usr/sbin/cron

root 267510 14:537? 00:00:00 /usr/sbin/apache

www-data 2684 2675 0 14:53 ? 00:00:00 /usr/sbin/apache
www-data 2685 2675 0 14:53 ? 00:00:00 /usr/sbin/apache

There is also sshd, a safe remote access server (an improved version that per-
mits services compatible with telnet and FTP). xfs is the fonts server (character
types) of X Window. The atd and cron commands can be used for handling
programmed tasks at a determined moment. Apache is a web server, which
may have various active threads for attending to different requests.

root 2499 2493 0 14:53 ? 00:00:00 /usr/sbin/gdm

root 2502 2499 4 14:53 tty7 00:09:18 /usr/bin/X :0 -dpi 96 ...
root 2848 1 0 14:53 tty2 00:00:00 /sbin/getty 38400 tty2
root 2849 1 0 14:53 tty3 00:00:00 /sbin/getty 38400 tty3
root 3941 2847 0 14:57 ttyl 00:00:00 -bash

root 16453 12970 0 18:10 pts/2 00:00:00 ps -ef

gdm is the graphical login of the Gnome desktop system (the entry point
where we are asked for the login name and password) and the getty process-
es are the ones that manage the virtual text terminals (which we can see by
pressing Alt+Fx (or Ctrl+Alt+Fx if we are in graphic mode). X is the process of
the X Window System graphic server and is essential for executing any desk-
top environment above this. An open shell (bash), and finally, the process that
we have generated when requesting this ps from the command line.

The ps command provides various command line options for adjusting the
information that we want on each process, whether it is the time that it has
been executing, the percentage of CPU used, memory used etc. (see man of
ps). Another very interesting command is top, which does the same as ps but
dynamically; in other words, it updates every certain period of time, we can
classify the processes by use of CPU or memory and it also provides informa-
tion on the state of the overall memory.

Other useful commands for resources management are free and vmstat, which Note

provide information on the memory used and the virtual memory system:

See man of the commands to
interpret outputs.

free total used free shared buffers cached

Mem: 767736 745232 22504 0 89564 457612

-/+ buffers/cache: 198056 569680

© FUOC e PID_00148465 66

Swap: 618492 1732 616760

vmstat

ProCs ----------- MEemory---------- --- swap-- ----- io-- --system-- ---- cpu----
r b swpd free buff cache si so bi bo in c¢s us sy id wa

101732 22444 89584 45764000 68 137 29141871857

The free command also shows the swap size, approximately 600 MB, which
are not currently used intensely as there is sufficient physical memory space;
there are still 22 MB free (which indicates a high use of the physical memory
and the need to use swap soon). The memory space and swap (as of kernels
2.4) add to each other to comprise the total memory in the system, which in
this case, means that there is a total of 1.4 GB available. This may seem a lot,
but it will depend on the applications that are being executed.

Local administration

© FUOC e PID_00148465 67

Activities

1) The swap space makes it possible to add to the physical memory so that there is more
virtual memory. Depending on the amounts to add extra space to the physical memory and
swap space, can all the memory get used up? Can we resolve this in any other way that does
not involve adding more physical memory?

2) Suppose that we have a system with two Linux partitions: one / and one swap partition.
How do we solve the situation if the user accounts use up all the disk space? And if we have
an isolated /home partition, which was also being used up, how would we solve this?

3) Install the CUPS printing system, define our printer so that it works with CUPS and try
administering through the web interface. As the system is now, would it be advisable to
modify, in any way, CUPS' default settings? Why?

4) Examine the default setting that comes with the GNU/Linux system for non-interactive
work using cron. Which jobs are there and when are they being performed? Any ideas for
new jobs that have to be added?

5) Reproduce the workshop analysis (plus the other sections of the unit) on the machine
that is available. Can we see any errors or irregular situations in the examined system? If so,
how do we solve them?

Local administration

© FUOC « PID_00148465 68
Bibliography
Other sources of reference and information

[WmO2] [Fri02] [SmiO2] GNU/Linux and UNIX administration manuals, which explain in
detail the aspects on local administration and printing systems management.

[Gt] Updated information on the printing systems and their settings, as well as the details
of some of the printers, can be found here. For specific details on the printer models and
drivers, we can go to http://www.linuxprinting.org/.

[Hin][Koe] We can find information on the different file systems available and the schemes
for creating partitions for the installation of the system.

Local administration

