Linux Foundation Certified System Administrator (LFCS)

Exam preparation notes

Diarmuid Ó Briain, diarmuid@obriain.com
12 December 2014
Version 1.4.3
Throughout this document I am ably assisted by Luigi Menabrea, Ada Lovelace and Charles Babbage. All of these individuals were key to the development of the famous analytical engine of 1830s and 40s fame from which modern computing can trace its origins.

Babbage developed the analytical engine after a number of attempts to build a difference engine, made to compute values of polynomial functions. The Analytical Engine is the transition to general purpose computation from mechanised calculators.

Luigi went on to serve as the 7th Prime Minister of Italy from 1867 to 1869. His sketch of "The Analytical Engine" Invented by Charles Babbage, Esq while a military engineer was translated by Ada Augusta, Countess of Lovelace in 1842. These notes included additional detail that Lovelace is now widely recognised as the world's first computer program and therefore Ada is credited as being the first computer programmer.
Table of Contents

1. Local system administration
 1.1. Creating backups ... 7
 1.2. Managing local user accounts .. 7
 1.3. Managing user accounts .. 8
 1.4. Managing user account attributes 8
 1.4.2. Password expiry management 8
 1.5. Creating local user groups .. 10
 1.6. Managing file permissions .. 10
 1.6.1. Change file attributes ... 11
 1.6.2. Access Control Lists ... 13
 1.7. Managing fstab entries .. 14
 1.8. Restoring backed up data .. 15
 1.9. Setting file permissions and ownership 15
 1.10. Managing user processes ... 16
 1.10.1. top/htop .. 16
 1.10.2. Process Snapshot (ps) 17
 1.10.3. kill processes ... 17
 1.10.4. nice/renice .. 18
 1.11. Managing the startup process and related services 19
 1.11.1. Boot process .. 19
 1.11.2. Runlevels ... 20
 1.11.3. System and service managers 21
 2. Command-line ... 27
 2.1. Editing text files on the command line 27
 2.1.1. VI .. 27
 2.1.2. VIm .. 28
 2.2.2. nano .. 29
 2.2. Manipulating text files from the command line 29
 2.2.1. tac .. 30
 2.2.2. Stream Editor (sed) 30
 2.2.3. grep ... 32
 2.2.4. cut ... 35
 2.2.5. sort ... 35
 2.2.6. tr ... 35
 2.2.7. nl ... 36
 2.2.8. Join ... 36
 2.2.9. uniq ... 36
 2.2.10. awk .. 37
 3. File-system & Storage .. 39
 3.1. Archiving and compressing files and directories 39
 3.2. Logical Volume Manager (LVM) 41
 3.2.1. LVM Configuration .. 42
 3.2.2. Adjusting the size of a logical volume 48
 3.2.3. Extend the volume group 49
 3.2.4. Extend the logical volume 49
 3.2.5. Create a Snapshot of the Logical volumes 51
 3.2.6. Removing Logical volumes 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Software management</td>
<td>97</td>
</tr>
<tr>
<td>6.1</td>
<td>Installing software packages</td>
<td>97</td>
</tr>
<tr>
<td>6.1.1</td>
<td>apt-get commands</td>
<td>97</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Example</td>
<td>97</td>
</tr>
<tr>
<td>7.</td>
<td>Additional handy tools for exam</td>
<td>99</td>
</tr>
<tr>
<td>7.1</td>
<td>Using tmux</td>
<td>99</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Session Management</td>
<td>99</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Session commands</td>
<td>99</td>
</tr>
<tr>
<td>7.2</td>
<td>Calculator</td>
<td>100</td>
</tr>
</tbody>
</table>

GNU Free Documentation License

Diarmuid Ó Briain
The Linux Foundation Certified System Administrator (LFCS) examination is a practical test based on the command line. Familiarity with the GNU/Linux command line is essential in order to pass. Establish a Virtual Machine (VM) that you do not mind “breaking” and work with it. KVM or Oracle VirtualBox are good candidates for this.
1. Local system administration

1.1. Creating backups

This is the process for creating backups using the `gzip` or `bz2` utilities. This are explained in detail in section 3.

Backup the `/home` directory using `gzip`.

```
$ sudo tar -czvf /home.tgz /home
$ file /home.tgz
home.tgz: gzip compressed data, from Unix, last modified: Tue Oct 21 10:38:46 2014
```

Backup the `/home` directory using `bz2`.

```
$ sudo tar -cjvf /home.tbz2 /home
$ file /home.tbz2
home.tbz2: bzip2 compressed data, block size = 900k
```

1.2. Managing local users accounts

Main users account options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c, --comment COMMENT</td>
<td></td>
</tr>
<tr>
<td>-m, --create-home</td>
<td>Create the user's home directory.</td>
</tr>
<tr>
<td>-s, --shell SHELL</td>
<td>Login shell of the new account.</td>
</tr>
<tr>
<td>-U, --user-group</td>
<td>Create a group with the same name as the user.</td>
</tr>
</tbody>
</table>

Add a user Ada Lovelace to the system.

```
$ sudo useradd -c "Ada Lovelace" -s /bin/bash -m alovelace
$ cat /etc/passwd | grep alovelace
alovelace:x:1002:1002:Ada Lovelace:/home/alovelace:/bin/bash
```

Change the password for Ada Lovelace.

```
$ sudo passwd alovelace
Enter new UNIX password: maths
Retype new UNIX password: maths
passwd: password updated successfully
```

Test the login for Ada Lovelace.

```
$ su alovelace
Password: maths
$ id
uid=1002(alovelace) gid=1002(alovelace) groups=1002(alovelace)
```
1.3. Managing user accounts

Add Ada Lovelace to the `babbage` group.

```bash
$ sudo usermod -g babbage alovelace
```

1.4. Managing user account attributes

Change the shell of Ada Lovelace to `tcsh`.

```bash
$ sudo usermod -s /bin/tcsh alovelace
$ cat /etc/passwd | grep alovelace
alovelace:x:1002:1002:Ada Lovelace:/home/alovelace:/bin/tcsh
```

Add Ada Lovelace to the `babbage` group as well as the `alovelace` group.

```bash
$ cat /etc/group | grep babbage
babbage:x:1003:
$ sudo usermod -a -G alovelace,babbage alovelace
$ cat /etc/group | grep babbage
babbage:x:1003:alovelace
```

1.4.2. Password expiry management

The `chage` command is used to change the number of days between password changes and the date of the last password change.

```bash
$ sudo passwd alovelace
Enter new UNIX password: maths
Retype new UNIX password: maths
passwd: password updated successfully
$ sudo chage -l alovelace
Last password change : Nov 19, 2014
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
```

Set Ada Lovelace’s account expiration date to 1st December 2014, the minimum number of days before password change to ten and the maximum number of days before password change to twenty.

```bash
$ sudo chage -E 2014-12-01 -m 10 -M 20 alovelace
```
Setting the date of last password change to zero forces a password change at the next login.

```
$ sudo chage -d 0 alovelace
$ sudo chage -l alovelace
Last password change : password must be changed
Password expires : password must be changed
Password inactive : password must be changed
Account expires : Dec 01, 2014
Minimum number of days between password change : 10
Maximum number of days between password change : 20
Number of days of warning before password expires : 7
```

The following sequence of attempts to change the password gives some idea of the general restrictions.

```
$ su - alovelace
Password:
You are required to change your password immediately (root enforced)
Changing password for alovelace.
(current) UNIX password:
maths
Enter new UNIX password:
maths
Password unchanged
Reenter new UNIX password:
maths
You must choose a longer password
Enter new UNIX password:
multiply
Password must be changed
Changing password for alovelace.
(current) UNIX password:
multiply
Enter new UNIX password:
multiply
Password unchanged
You are required to change your password immediately (root enforced)
Changing password for alovelace.
[current] UNIX password:
multiply
Enter new UNIX password:
multiply
Password unchanged
Reenter new UNIX password:
multiply
You must choose a longer password
Enter new UNIX password:
ada
Password must be changed
Changing password for alovelace.
[current] UNIX password:
ada
Enter new UNIX password:
ada123
Password must be changed
Changing password for alovelace.
[current] UNIX password:
ada123
Enter new UNIX password:
ada123
Bad: new password is too simple
su: Authentication token manipulation error
```

```
$ su - alovelace
Password:
You are required to change your password immediately (root enforced)
Changing password for alovelace.
[current] UNIX password:
multiply
Enter new UNIX password:
multiply
Password unchanged
Reenter new UNIX password:
multiply
```

```
alovelace~$ id
uid=1001(alovelace) gid=1001(alovelace) groups=1001(alovelace)
```

```
$ sudo chage -l alovelace
Last password change : Nov 19, 2014
Password expires : Dec 09, 2014
Password inactive : never
Account expires : Dec 01, 2014
Minimum number of days between password change : 10
Maximum number of days between password change : 20
Number of days of warning before password expires : 7
```
1.5. Creating local user groups

Create a user group called **babbage**.

```
$ sudo groupadd babbage
```

```
$ cat /etc/group | grep babbage
babbage:x:1003:
```

Add a group password for the new group **babbage**.

```
$ sudo gpasswd babbage
Changing the password for group babbage
New Password: engine
Re-enter new password: engine
```

In practice the group password is not that useful. It was conceived to allow a user who does not have access to a particular group could use the **newgrp** command to award such a group access. In this case the group password would be used in response to the system challenge.

1.6. Managing file permissions

Every file and directory on a GNU/Linux system has an owner and a group associated with it. Taking a directory **sandbox** owned by user **lmenabrea** and group **lmenabrea**, change the group to **babbage**.

```
$ ls -la | grep sandbox
drwxr-xr-x  2 lmenabrea lmenabrea    4096 Oct 21 15:48 sandbox
```

```
$ sudo chgrp babbage ./sandbox
```

```
$ ls -la | grep sandbox
drwxr-xr-x  2 lmenabrea babbage     4096 Oct 21 15:39 sandbox
```

Change the permissions on the directory to give the group Read, Write and eXecute (RWX) permissions.

```
$ chmod g+w sandbox  or  $ chmod 775 sandbox
```

```
$ ls -la | grep sandbox
drwxrwxr-x  2 lmenabrea babbage     4096 Oct 21 15:39 sandbox
```

Create two files, one owned by Luigi Menabrea and the other by Ata Lovelace in the **sandbox** directory.

```
$ echo "This is a Luigi Menabrea file." > file1.txt
$ su alovelace
Password: maths
sandbox> echo "This is an Ata Lovelace file." > file2.txt
sandbox> exit
```
Review the file in the sandbox directory.

```
$ ls -la
total 16
drwxrwxr-x 2 lmenabrea babbage 4096 Oct 21 15:55 .
drwxr-xr-x 6 lmenabrea lmenabrea 4096 Oct 21 15:50 ..
-rw-r--r-- 1 lmenabrea lmenabrea 34 Oct 21 15:54 file1.txt
-rw-rw-r-- 1 alovelace alovelace 30 Oct 21 15:55 file2.txt
```

```
$ cat file1.txt
This is a Luigi Menabrea file.
```

```
$ cat file2.txt
This is an Ata Lovelace file.
```

Why can Ata Lovelace write in the directory? Well she is part of the babbage group and as the directory has RW permissions for the babbage group she has rights to Read and Write files.

1.6.1. Change file attributes

The chattr command permits the changing of extended attributes to files on filesystems that support them like ext2, ext3, ext4, XFS and JFS. The corresponding lsattr command displays the extended attributes for files.

chattr [+=AaCcDdeijSsTu] files

Operators
- '+' - Adds selected attributes
- '-' - Removes selected attributes
- '=' - Specifies that there are the only attributes

Adjustable attributes
- A - no atime updates
- a - append only
- C - no copy on write
- c - compressed
- D - synchronous directory updates
- d - no dump
- e - extent format
- i - immutable (Superuser only)
- j - data journalling
- S - synchronous updates
- s - secure deletion
- T - top of directory hierarchy
- t - no tail-merging
- u - undeletable

Read only attributes
- E - compression error
- h - huge file
- I - indexed directory
- X - compression raw access
- Z - compressed dirty file (Z)
To demonstrate create a directory and a file and review the associated extended attributes. Only e is set which indicates that the file is using extents for mapping the blocks on disk. Remove it and replace it again from the *adafile*.

```
$ mkdir adadirectory
$ touch adafile
$ lsattr
-------------e-- ./adadirectory
-------------e-- ./adafile
$ chattr -e adafile
$ lsattr adafile
------------- e-- adafile
$ chattr +e adafile
$ lsattr adafile
-------------e-- adafile
```

Now set the immutable attribute on the file. This will prevent deletion or renaming of the file. It will also prevent all but the superuser from writing date to the file. It can only be set with superuser privileges.

```
$ echo "Ada Lovelace file" > adafile
$ cat adafile
Ada Lovelace file
$ sudo chattr +i adafile
[sudo] password for lmenabrea:
$ lsattr adafile
-----i--------e-- adafile
$ echo "Change Ada Lovelace" >> adafile
bash: adafile: Permission denied
$ rm adafile
rm: remove write-protected regular file ‘adafile’? yes
rm: cannot remove ‘adafile’: Operation not permitted
$ mv adafile ADAfile
mv: cannot move ‘adafile’ to ‘ADAfile’: Operation not permitted
```

To securely delete a file where its blocks are zeroed and written back to the disk set the s attribute.

```
$ sudo chattr =es adafile
$ lsattr adafile
s------------e-- adafile
```

Another interesting attribute is the A which tells the filesystem to NOT update the file's *atime*. This cuts down on disk access which is good for extending the life of an Solid State Drive (SSD) or extending the life of a laptop battery. While this can be done with this extended attribute the more typical method is to mount the filesystem with the noatime option. Note in the example that once the A is set the Access time remains constant.

```
```
1.6.2. Access Control Lists

GNU/Linux has the facility to apply Access Control Lists (ACL) to give more granularity to file and directory management.

Here is a directory sandbox that is owned by lmenabrea and has a group of babbage.

```bash
$ sudo groupadd babbage
$ mkdir sandbox
$ sudo chgrp babbage sandbox
$ ls -la |grep sandbox
drwxrwxr-x  2 lmenabrea babbage  4096 Nov 19 21:05 sandbox
```

The setfacl utility is used to set ACLs for files and directories. ACLs can be added or modified using the `-m` switch option. Here are a number of examples. First get the ACL details for the sandbox directory using the getfacl sister utility.

```bash
$ getfacl sandbox
# file: sandbox
# owner: lmenabrea
# group: babbage
user::rwx
group::rwx
other::r-x
```
Giving Ada Lovelace read/write privileges to the directory.

```bash
$ sudo setfacl -m u:alovelace:rw sandbox
$ sudo getfacl sandbox
# file: sandbox
# owner: lmenabrea
# group: babbage
user::rwx
user:alovelace:rw-
group::rwx
mask::rwx
other::r-x
```

Add the lmenabrea group with read/write privileges.

```bash
$ sudo setfacl -m g:lmenabrea:rw sandbox
$ sudo getfacl sandbox
# file: sandbox
# owner: lmenabrea
# group: babbage
user::rwx
user:alovelace:rw-
group::rwx
group:lmenabrea:rw-
mask::rwx
other::r-x
```

Remove the lmenabrea group rights with the -x switch option.

```bash
$ setfacl -x g:lmenabrea sandbox
$ sudo getfacl sandbox
# file: sandbox
# owner: lmenabrea
# group: babbage
user::rwx
user:alovelace:rw-
group::rwx
mask::rwx
other::r-x
```

1.7. Managing fstab entries

The file `/etc/fstab` contains descriptive information about the various file systems.

```bash
$ cat /etc/fstab
#/etc/fstab: static file system information.
#
# Use 'blkid' to print the universally unique identifier for a
# device; this may be used with UUID= as a more robust way to name devices
# that works even if disks are added and removed. See fstab(5).
#
# <file system>       <mount point>  <type>  <options>    <dump>  <pass>
/dev/mapper/mint--vg-root  /       ext4  errors=remount-ro 0 1
# /boot was on /dev/sda1 during installation
UUID=3b0a7ce9-55c7-43b1-8c54-96510bbda441  /boot  ext2  defaults 0 2
/dev/mapper/mint--vg-swap_1  none  swap  sw 0 0
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device name</td>
<td>Use <code>dmesg</code> or <code>lsblk</code> to find the device name.</td>
</tr>
<tr>
<td>2</td>
<td>Mount point</td>
<td>A directory that exists.</td>
</tr>
<tr>
<td>3</td>
<td>File system type</td>
<td>ext2, ext3, ext4, reiserfs, swap, vfat, ntfs, ISP 9660, auto</td>
</tr>
<tr>
<td>4</td>
<td>Mount options</td>
<td>auto, noauto, exec, noexec, user, nouser, ro, rw, sync, async, suid, nosuid</td>
</tr>
<tr>
<td>5</td>
<td>Dump</td>
<td>0 - exclude from backup, nonzero value - device will be backed up.</td>
</tr>
<tr>
<td>6</td>
<td>fsck option</td>
<td>0 - exclude from fsck check, nonzero value - fsck check in order of value.</td>
</tr>
</tbody>
</table>

Default options are: rw, suid, dev, exec, auto, nouser, async

1.8. Restoring backed up data

Restore the `/home` directory using a gzip backup.

```bash
$ cd /
$ sudo tar -xzvf /home.tgz
```

Restore the `/home` directory using a bz2 backup.

```bash
$ cd /
$ sudo tar -xjvf /home.tbz2
```

1.9. Setting file permissions and ownership

Create a simple script in the sandbox.

```bash
$ cat << SCRIPT > hello.sh
#!/bin/bash
echo "Hello World"
SCRIPT
```

Make the script eXecutable and execute.

```bash
$ ls -la | grep hello.sh
-rw-r--r-- 1 lmenabrea lmenabrea 31 Oct 21 16:05 hello.sh
$ chmod +x hello.sh
$ ls -la | grep hello.sh
-rwxr-xr-x 1 lmenabrea lmenabrea 31 Oct 21 16:05 hello.sh
$ ./hello.sh
Hello World
```

Remove the eXecute rights from the script.

```bash
$ chmod -x hello.sh
$ ls -la | grep hello.sh
-rw-r--r-- 1 lmenabrea lmenabrea 31 Oct 21 16:05 hello.sh
```
Change the group of the script to **babbage** and give it group eXecute permissions.

```bash
$ sudo chgrp babbage hello.sh
$ ls -la | grep hello.sh
--rw-r--r-- 1 lmenabrea babbage 31 Oct 21 16:05 hello.sh
$ chmod g+x hello.sh
$ ls -la | grep hello.sh
--rw-r-xr-- 1 lmenabrea babbage 31 Oct 21 16:05 hello.sh
```

Note that the owner cannot run the script however Ata Lovelace who belongs to the **babbage** group can.

```bash
$ ./hello.sh
bash: ./hello.sh: Permission denied
$ su alovelace
Password: maths
sandbox> ./hello.sh
Hello World
```

1.10. Managing user processes

Install the package **stress** and run it as Ada Lovelace.

```bash
$ sudo apt-get install stress
$ su alovelace
Password: maths
sandbox> stress --cpu 3
stress: info: [4939] dispatching hogs: 3 cpu, 0 io, 0 vm, 0 hdd
```

1.10.1. top/htop

Monitor processes using **top**.

```bash
$ top
```

```bash
PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
4940 alovela+ 20   0    7308    100      0 R  95.0  0.0   1:34.62 stress
4941 alovela+ 20   0    7308    100      0 R  95.0  0.0   1:34.56 stress
4942 alovela+ 20   0    7308    100      0 R  95.0  0.0   1:34.60 stress
2817 lmenabrea 20  0463300 116420 14880 S  6.3  1.5   0:58.97 chrome
```

Diarmuid Ó Briain
htop command is an improved top. It typically needs to be installed.

```
$ sudo apt-get install htop
$ htop
```

1.10.2. Process Snapshot (ps)

Review the processes, focusing on the stress process started by Ada Lovelace.

```
$ ps -A | grep stress
4939 pts/2    00:00:00 stress
4940 pts/2    00:07:42 stress
4941 pts/2    00:07:42 stress
4942 pts/2    00:07:42 stress

$ ps aux | grep stress
alovela+  4939  0.0  0.0   7308   432 pts/2    S+   17:00   0:00 stress --cpu 3
alovela+  4940  99.7  0.0   7308   100 pts/2    R+   17:00   8:03 stress --cpu 3
alovela+  4941  99.7  0.0   7308   100 pts/2    R+   17:00   8:03 stress --cpu 3
alovela+  4942  99.7  0.0   7308   100 pts/2    R+   17:00   8:03 stress --cpu 3
lmenabrea  5128  0.0  0.0  11744   912 pts/5    S+   17:08   0:00 grep
           --colour=auto stress

$ ps -ef | grep stress
alovela+  4939  4225  0 17:00 pts/2    00:00:00 stress --cpu 3
alovela+  4940  4939 99 17:00 pts/2    00:08:10 stress --cpu 3
alovela+  4941  4939 99 17:00 pts/2    00:08:10 stress --cpu 3
alovela+  4942  4939 99 17:00 pts/2    00:08:10 stress --cpu 3
lmenabrea  5131  4256  0 17:08 pts/5    00:00:00 grep --colour=auto stress
```

1.10.3. kill processes

Individual processes can be stopped using the kill command with the -9 switch.

```
$ pgrep stress
5224
5225
5226
5257
5258
5259
5260
```
$ sudo kill -9 5224

$ pgrep stress
5225
5226
5227
5258
5259
5260

To kill all processes any of the following options will do.

$ sudo kill $(pgrep stress)
$ sudo pkill stress
$ sudo killall stress

$ pgrep stress

1.10.4. nice/renice

nice is a utility for managing scheduling priority of processes. Nice values range from -19 (very high priority) to 19 (very low priority) with a value of 0 being the default priority. Looking at the top output, the column marked NI indicated the current nice value of each process.

$ top

top - 17:28:33 up 9:00, 3 users, load average: 2.84, 2.83, 2.63
Tasks: 280 total, 6 running, 274 sleeping, 0 stopped, 0 zombie
%CPU(s): 3.5 us, 0.6 sy, 0.1 ni, 94.9 id, 0.6 wa, 0.2 hi, 0.0 si, 0.0 st
KiB Mem: 7738224 total, 7536796 used, 201428 free, 169464 buffers
KiB Swap: 7942140 total, 648 used, 7941492 free. 3705332 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5640 alovela+ 20 0 7308 100 0 R 84.4 0.0 0:06.04 stress
5642 alovela+ 20 0 7308 100 0 R 84.4 0.0 0:06.03 stress
5641 alovela+ 20 0 7308 100 0 R 79.1 0.0 0:06.04 stress
5643 alovela+ 20 0 7308 100 0 R 79.1 0.0 0:06.04 stress
2817 lmenabrea 20 0 846300 113908 13676 S 5.3 1.5 1:33.87 chrome
3533 lmenabrea 20 0 1086508 395052 39320 S 5.3 5.1 1:42.02 chrome

Change the nice value of the stress processes by lowering it to 15.

$ sudo renice 15 5640
5640 (process ID) old priority 0, new priority 15

$ top

top - 17:29:31 up 9:01, 3 users, load average: 3.83, 3.12, 2.75
Tasks: 280 total, 7 running, 273 sleeping, 0 stopped, 0 zombie
%CPU(s): 3.6 us, 0.6 sy, 0.2 ni, 94.9 id, 0.6 wa, 0.2 hi, 0.0 si, 0.0 st
KiB Mem: 7738224 total, 7561620 used, 176604 free, 173632 buffers
KiB Swap: 7942140 total, 648 used, 7941492 free. 3718144 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5640 alovela+ 35 15 7308 100 0 R 99.7 0.0 1:03.97 stress
5641 alovela+ 20 0 7308 100 0 R 99.7 0.0 1:03.96 stress
5642 alovela+ 20 0 7308 100 0 R 99.7 0.0 1:03.92 stress
5643 alovela+ 20 0 7308 100 0 R 99.7 0.0 1:03.97 stress
3533 lmenabrea 20 0 1094700 402600 39320 S 6.2 5.2 1:45.17 chrome
Change all Ada Lovelaces processes to a nice value of -5.

$ sudo renice -5 -u alovelace
1002 (user ID) old priority 0, new priority -5

top - 17:30:58 up 9:02, 3 users, load average: 4.35, 3.46, 2.90
Tasks: 281 total, 5 running, 276 sleeping, 0 stopped, 0 zombie
%Cpu(s): 3.7 us, 0.6 sy, 0.2 ni, 94.7 id, 0.6 wa, 0.2 hi, 0.0 si, 0.0 st
KiB Mem: 7738224 total, 7518100 used, 220124 free, 156512 buffers
KiB Swap: 7942140 total, 648 used, 7941492 free. 3691376 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5641 alovela+ 15 -5 7308 100 0 R 100.0 0.0 2:30.70 stress
5642 alovela+ 15 -5 7308 100 0 R 100.0 0.0 2:30.64 stress
5640 alovela+ 15 -5 7308 100 0 R 96.2 0.0 2:30.63 stress
5643 alovela+ 15 -5 7308 100 0 R 96.2 0.0 2:30.71 stress
1 root 20 0 34024 3328 1496 S 0.0 0.0 0:02.25 init
2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd

1.11. Managing the startup process and related services

1.11.1. Boot process

- The Basic Input/Output System (BIOS) is the lowest level interface between the computer and peripherals. On boot it performs integrity checks on memory and seeks instructions on the Master Boor Record (MBR) on the first drive.
- The MBR points to the GRand Unified Bootloader (GRUB).
- GRUB lists the Operating System (OS) labels and the user will select, or the default is selected to identify which kernel to run and which partition, on which drive it is located.
- GRUB then loads the GNU/Linux OS.
- The GNU/Kernel loads the kernel which executes the init program. init is the root/parent of all processes executing on Linux.
- The first processes that init starts is:
 - SysV - /etc/inittab.
 - upstart - /sbin/init.
 - As part of the upstart initialisation it runs /etc/init/rc.conf to start the legacy SysV init system.
 - Systemd - /lib/systemd/system/default.target plus the files in /etc/systemd/system/ and /lib/systemd/system/.

Based on the appropriate run-level, scripts are executed to start various processes to run the system and make it functional.

The init process is the last step in the boot procedure and identified by process id "1". init is responsible for starting system processes.
1.11.2. Runlevels

Runlevels are sets of system configurations. Runlevels for Debian and Ubuntu systems are:

The default runlevel is 2.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>System halt.</td>
</tr>
<tr>
<td>1</td>
<td>Single-User mode.</td>
</tr>
<tr>
<td>2</td>
<td>Graphical multi-user plus networking.</td>
</tr>
<tr>
<td>3</td>
<td>Same as "2", but not used.</td>
</tr>
<tr>
<td>4</td>
<td>Same as "2", but not used.</td>
</tr>
<tr>
<td>5</td>
<td>Same as "2", but not used.</td>
</tr>
<tr>
<td>6</td>
<td>System reboot.</td>
</tr>
</tbody>
</table>

Display the current runlevel.

$$
\text{runlevel}
\nN 2
$$

To change runlevel immediately, use one of the commands below:

$$
\text{sudo \ reboot}
$$

$$
\text{sudo \ shutdown} \ -h \ \text{now} \quad \# \ \text{Halt now}
$$

$$
\text{sudo \ shutdown} \ +3 \ \text{"The \ system \ will \ shutdown \ in \ 3 \ minutes"} \quad \# \ \text{Halt in 3 minutes}
$$

Broadcast message from alovelace@linuxSys
(/dev/pts/3) at 9:11 ...

The system is going down for maintenance in 3 minutes!
The system will shutdown in 3 minutes

$$
\text{sudo \ telinit} \ 0 \quad \# \ \text{change the system runlevel to 0 will halt system}
$$
1.11.3. System and service managers

Process are managed using the GNU/Linux using an initialisation init system.

- **SysV init** is the first process started during boot and is assigned PID 1.
 - Init is started by the kernel using a hard-coded filename, and if the kernel is unable to start it, a kernel panic will result.
 - This system is in the process of being replaced in GNU/Linux distributions by **systemd**.
- **Upstart** is an event-based replacement for the /sbin/init daemon which handles starting of tasks and services during boot, stopping them during shutdown and supervising them while the system is running.
 - It was developed and used by Ubuntu.
 - When Debian GNU/Linux decided to use systemd as its replacement for /sbin/init, Ubuntu announced that it would follow.
- **systemd** is a system and service manager for Linux which:
 - provides aggressive parallelisation capabilities.
 - uses socket and D-Bus activation for starting services.
 - offers on-demand starting of daemons.
 - keeps track of processes using Linux control groups.
 - supports snapshotting and restoring of the system state.
 - maintains mount and automount points.
 - implements an elaborate transactional dependency-based service control logic.
1.11.3.1. SysV

SystemV (SysV) is the traditional UNIX/Linux init system. It is essentially a number of process management scripts grouped into runlevels.

- `/etc/init.d` contains the actual scripts for each process (service).
- `rc0.d` - The symbolic links in this directory are executed once when entering runlevel 0 (Halt).
- `rc1.d` - The symbolic links in this directory are executed once when entering runlevel 1 (Single-User mode).
- `rc2.d` - The symbolic links in this directory are executed once when entering runlevel 2 (Graphical multi-user plus networking).
- `rc3.d` - The symbolic links in this directory are executed once when entering runlevel 3 (Same as 2 - Not used).
- `rc4.d` - The symbolic links in this directory are executed once when entering runlevel 4 (Same as 2 - Not used).
- `rc5.d` - The symbolic links in this directory are executed once when entering runlevel 5 (Same as 2 - Not used).
- `rc6.d` - The symbolic links in this directory are executed once when entering runlevel 6 (Same as 2 - Not used).
- `rcS.d` - The symbolic links in this directory whose names begin with an 'S' are executed once when booting the system.

The actual scripts are all contained in the `/etc/init.d` directory. Each of the other `rcX.d` directories contain Start and Stop symbolic links to the scripts in `/etc/init.d`. These scripts are named either `SXX<name>` or `KXX<name>` where:

- S - Start
- K - Stop
- XX - Order number
- <name> - name of script in `/etc/init.d`

```bash
$ file /etc/rc1.d/K20hddtemp
/etc/rc1.d/K20hddtemp: symbolic link to `../init.d/hddtemp'
```

If a new script is added to `/etc/init.d`, manual symbolic links can be created in the various `rcX.d` directories or a script called `update-rc.d` can be used to make links to start the service in runlevels 2345 and to stop the service in runlevels 016.

```bash
$ sudo update-rc.d hddtemp defaults
System start/stop links for /etc/init.d/hddtemp already exist.
```
Individual scripts can be ran directly from /etc/init.d (or with the service utility described below). Here is an example stopping the Apache2 Server.

```
/etc/init.d $ ./apache2
Usage: apache2 {start|stop|graceful-stop|restart|reload|force-reload|start-htcacheclean|stop-htcacheclean}
```

```
/etc/init.d $ ./apache2 stop
* Stopping web server apache2
```

```
/etc/init.d $ ./apache2 status
* apache2 is not running
```

Determine the runlevels for processes

Install `sysv-rc-conf`, a Run-level configuration for SysV like init script links.

```
$ sudo apt-get install sysv-rc-conf
```

```
Terminal

SysV Runlevel Config --: stop service =/+: start service h: help q: quit

+-------------------+-------+-------+-------+-------+-------+-------+
| service           | 1     | 2     | 3     | 4     | 5     | 6     |
+-------------------+-------+-------+-------+-------+-------+-------+
| acpid             |       |       |       |       |       |       |
| anacron           |       |       |       |       |       |       |
| apache2           |       |       |       |       |       |       |
| atd               |       | [X]   | [X]   | [X]   | [X]   | [X]   |
| atop              |       | [X]   |       |       |       |       |
| avahi-dae$        |       |       |       |       |       |       |
| biff@-su$         |       |       |       |       |       |       |
| bluetooth         |       |       |       |       |       |       |
| britty            |       |       |       |       |       |       |
| bsync             |       |       |       |       | [X]   | [X]   |
| casper            |       |       |       |       |       |       |
| console-s$        |       |       |       |       |       |       |
| cpufreq           |       |       |       |       |       |       |
| cron              |       |       |       |       |       |       |
| cryptdisks        |       |       |       |       |       |       |
| cryptdisks$       |       |       |       |       |       |       |
| dpkg-failed-run$  |       |       |       |       |       |       |
| tenda-rdp-service |       |       |       |       |       |       |
| NFSv4               |       |       |       |       |       |       |
| ndmp               |       |       |       |       |       |       |
+-------------------+-------+-------+-------+-------+-------+-------+

Use the arrow keys or mouse to move around. ^n: next pg ^p: prev pg space: toggle service on / off
```
service

Use of the `service` utility with command options. Typical options in the scripts are:

- `start`
- `stop`
- `restart`
- `reload`
- `status`
- `list`
- `show`

```bash
$ service --status-all
[ + ] acpid
[ - ] anacron
[ + ] apache2
[ + ] atd
[ + ] atop
[ + ] avahi-daemon
[ ? ] binfoo-support
[ + ] bluetooth
[ - ] brltty
[ + ] btsync
[ - ] casper
[ ? ] console-setup
[ ? ] cpufrequtils
```

Review a specific process.

```bash
$ service networking status
networking start/running
```

Start a particular process.

```bash
$ service apache2
Usage: apache2 {start|stop|graceful-stop|restart|reload|force-reload|start-htcacheclean|stop-htcacheclean}

/etc/init.d $ service apache2 start
* Starting web server apache2

$ service apache2 status
* apache2 is running
```
1.11.3.2. Upstart

`initctl` command has a number of command options.

- start
- stop
- restart
- reload
- status
- list

```bash
$ initctl list
avahi-cups-reload stop/waiting
avahi-daemon start/running, process 1127
mountall-net stop/waiting
mountnfs-bootclean.sh start/running
nmbd start/running, process 1954
passwd stop/waiting
rc stop/waiting
rsyslog start/running, process 919
startpar-bridge stop/waiting
tty4 start/running, process 1537
udev start/running, process 569
upstart-udev-bridge start/running, process 556
```

Review a specific process.

```bash
$ initctl list | grep ^networking
networking start/running

$ initctl status networking
networking start/running
```

1.11.3.3. systemd

Use of the `systemctl` utility with command options. Typical options in the scripts are:

- start
- stop
- restart
- reload
- status
- list
- show

```bash
$ systemctl status networking
networking start/running
```
2. Command-line

2.1. Editing text files on the command line

2.1.1. VI

vim is the Vi IMproved, a programmers text editor.

Save and Exit

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:q!</td>
<td>Quit Vim. This fails when changes have been made.</td>
</tr>
<tr>
<td>:wq!</td>
<td>Write the current file and exit always.</td>
</tr>
</tbody>
</table>

Inserting Text

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Append text after the cursor [count] times.</td>
</tr>
<tr>
<td>A</td>
<td>Append text at the end of the line [count] times.</td>
</tr>
<tr>
<td>i</td>
<td>Insert text before the cursor [count] times.</td>
</tr>
<tr>
<td>I</td>
<td>Insert text before the first non-blank in the line [count] times.</td>
</tr>
<tr>
<td>gI</td>
<td>Insert text in column 1 [count] times.</td>
</tr>
<tr>
<td>o</td>
<td>Begin a new line below the cursor and insert text, repeat [count] times.</td>
</tr>
<tr>
<td>O</td>
<td>Begin a new line above the cursor and insert text, repeat [count] times.</td>
</tr>
<tr>
<td><ESC></td>
<td>Escape from edit mode.</td>
</tr>
</tbody>
</table>

Deleting text

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delete [count] characters under and after the cursor.</td>
</tr>
<tr>
<td>x</td>
<td>Delete [count] characters under and after the cursor.</td>
</tr>
<tr>
<td>X</td>
<td>Delete [count] characters before the cursor.</td>
</tr>
<tr>
<td>d{motion}</td>
<td>Delete text that {motion} moves over.</td>
</tr>
<tr>
<td>dd</td>
<td>Delete [count] lines.</td>
</tr>
<tr>
<td>D</td>
<td>Delete the characters under the cursor until the end of the line.</td>
</tr>
</tbody>
</table>

Undo/Redo /Repeat

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Undo [count] changes.</td>
</tr>
<tr>
<td>:undo</td>
<td>Undo one change.</td>
</tr>
<tr>
<td>CTRL-R</td>
<td>Redo [count] changes which were undone.</td>
</tr>
<tr>
<td>:redo</td>
<td>Redo one change which was undone.</td>
</tr>
<tr>
<td>U</td>
<td>Undo all latest changes on one line. {Vi: while not moved off of it}.</td>
</tr>
<tr>
<td>.</td>
<td>Repeat last change, with count replaced with [count].</td>
</tr>
</tbody>
</table>
Searching

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/{pattern}/[1]</td>
<td>Search forward for the [count]'th occurrence of {pattern}.</td>
</tr>
<tr>
<td></CR></td>
<td>Search forward for the [count]'th latest used pattern.</td>
</tr>
<tr>
<td>?<CR></td>
<td>Search backward for the [count]'th latest used pattern.</td>
</tr>
<tr>
<td>n</td>
<td>Repeat the latest "/" or "?" [count] times.</td>
</tr>
<tr>
<td>N</td>
<td>Repeat the latest "?" or "?" [count] times in opposite direction.</td>
</tr>
</tbody>
</table>

Moving Around

Basic motion commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Move left one character (or left arrow).</td>
</tr>
<tr>
<td>l</td>
<td>Move right one character (or right arrow).</td>
</tr>
<tr>
<td>k</td>
<td>Move up one line (or up arrow).</td>
</tr>
<tr>
<td>j</td>
<td>Move down one line (or down arrow).</td>
</tr>
<tr>
<td>0</td>
<td>To the first character of the line.</td>
</tr>
<tr>
<td><Home></td>
<td>To the first character of the line.</td>
</tr>
<tr>
<td>^</td>
<td>To the first non-blank character of the line.</td>
</tr>
<tr>
<td>$</td>
<td>To the end of the line.</td>
</tr>
<tr>
<td><End></td>
<td>To the end of the line.</td>
</tr>
</tbody>
</table>

2.1.2. Vim

Follow the sequence below to practice creating and editing a file using vim.

```
$ vi file3.txt
[Press i] The quick brown fox jumps over the lazy dog. [Press ESC :wq]

$ cat file3.txt
The quick brown fox jumps over the lazy dog.

$ vi file3.txt
The quick brown fox jumps over the lazy dog. [Press o]
[Press CR] He is then shot by the farmer. [Press ESC :wq]

$ vi file3.txt
The quick brown fox jumps over the lazy dog. [Press j twice (or scroll down to last line)]
He is then shot by the farmer. [Press 1 or scroll right until curser is on f]
[Press i][type angry ]
[Press ESC :wq]

$ cat file3.txt
The quick brown fox jumps over the lazy dog.
He is then shot by the angry farmer.
```
2.2.2. nano

Alternatively use GNU nano. Nano is ANOther editor, an enhanced free Pico clone

$ nano file3.txt

- Press Control - X.
- Press Y.
- Confirm filename, Press CR.

2.2. Manipulating text files from the command line

Using the following file as the basis for demonstration.

$ cat printer.txt
My printer will drive me insane,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!
2.2.1. tac

The `tac` command is the inverse of `cat`. It prints files in reverse.

```
$ cat users.txt
lmenabrea
cbabbage
alovelace
$ tac users.txt
alovelace
cbabbage
lmenabrea
```

2.2.2. Stream Editor (sed)

`sed` is a stream editor for filtering and transforming text.

In this example the first instance of the string `insane` is replaced by the string `to drink`. Note that the original file is not overwritten so to save the output it must be redirected into another file.

```
$ sed 's/insane/to drink/' printer.txt
My printer will drive me to drink,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!

$ cat printer.txt
My printer will drive me insane,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!

$ sed 's/insane/to drink/' printer.txt > printer2.txt

$ cat printer2.txt
My printer will drive me to drink,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!
```

So what is the difference between the following outputs and why?

```
$ sed 's/a/A/' printer2.txt
My printer will drive me to drink,
I'm Always refilling its paper,
it empties my wAllet,
to mAke mAtters worse,
it's usuAlly broken!

$ sed 's/a/A/g' printer2.txt
My printer will drive me to drink,
I'm Always refilling its pAper,
it empties my wAllet,
to mAke mAtters worse,
it's usuAlly broken!
```
Well in the first output the first lowercase a instance on each line is replaced by an uppercase A. In the second example the addition of the g or global flag changes every instance of a to A.

What about special characters? Let's replace ' with ".

```
$ sed 's/'/"/g' printer2.txt
```

A problem, so each special character must be escaped with a backslash.

```
$ sed -e "s/'/\\"/g" printer2.txt
My printer will drive me to drink,
I'm always refilling its paper,
it empties my wallet,
to make matters worse,
it's usually broken!
```

To print put lines in a file found by a pattern and suppress the other lines use the -n quiet option. The p flag indicates print the lines found.

```
$ sed -n '/er/p' printer2.txt
My printer will drive me to drink,
I'm always refilling its paper,
to make matters worse,
```

To overwrite (edit) a file sed must be used with the -i option which creates a backup of the file being edited first. A file extension is provided, in this case .bak.

```
$ cat printer.txt
My printer will drive me insane,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!
```

```
$ sed -i.bak 's/printer/scanner/g' printer.txt
```

```
$ cat printer.txt
My scanner will drive me insane,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!
```

```
$ cat printer.txt.bak
My printer will drive me insane,
I'm always refilling its ink,
it empties my purse,
to make matters worse,
it's usually on the blink!
```
Extract the **Bluetooth** messages from `dmesg`.

```bash
$ dmesg | sed -n '/Bluetooth/p'
[ 35.427264] Bluetooth: Core ver 2.17
[ 35.427284] Bluetooth: HCI device and connection manager initialized
[ 35.427291] Bluetooth: HCI socket layer initialized
[ 35.427293] Bluetooth: L2CAP socket layer initialized
[ 35.427297] Bluetooth: SCO socket layer initialized
[ 35.474045] Bluetooth: can't load firmware, may not work correctly
[ 37.243507] Bluetooth: BNEP (Ethernet Emulation) ver 1.3
[ 37.243510] Bluetooth: BNEP filters: protocol multicast
[ 37.243517] Bluetooth: BNEP socket layer initialized
[ 37.244466] Bluetooth: RFCOMM TTY layer initialized
[ 37.244472] Bluetooth: RFCOMM socket layer initialized
[ 37.244476] Bluetooth: RFCOMM ver 1.11
```

Extract the comment lines from the `/etc/netconfig` file.

```bash
$ sed -n '/^#/p' /etc/netconfig
#
# The network configuration file. This file is currently only used in
# conjunction with the TI-RPC code in the libtirpc library.
# Entries consist of:
#    <network_id> <semantics> <flags> <protofamily> <protoname> \
#    <device> <nametoaddr_libs>
# The <device> and <nametoaddr_libs> fields are always empty in this
# implementation.
#
```

2.2.3. grep

The `grep` utility is a powerful pattern search tool. There are numerous options so only some common ones are listed here.

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Count instead of presenting results</td>
</tr>
<tr>
<td>-E</td>
<td>Extended regular expression</td>
</tr>
<tr>
<td>-H</td>
<td>Print the file name for each match</td>
</tr>
<tr>
<td>-h</td>
<td>Suppress the prefixing of file names on output</td>
</tr>
<tr>
<td>-i</td>
<td>Ignore case</td>
</tr>
<tr>
<td>-l</td>
<td>List only filenames that contain matches</td>
</tr>
<tr>
<td>-n</td>
<td>Prefix output with line number</td>
</tr>
<tr>
<td>-r</td>
<td>Recursive</td>
</tr>
<tr>
<td>-v</td>
<td>Invert match</td>
</tr>
</tbody>
</table>
$ grep lmenabrea /etc/passwd
alovelace:x:1002:1003:Ada Lovelace:/home/alovelace:/usr/bin/tcsh

$ sudo grep -n alovelace /etc/passwd
41:alovelace:x:1002:1003:Ada Lovelace:/home/alovelace:/usr/bin/tcsh

$ ls /home
alovelace cbabbage lmenabrea

$ ls /home | grep alovelace
alovelace

$ ls /home | grep -v alovelace
lmenabrea
cbabbage

Recursively search all files from a point.

$ sudo grep -r alovelace /etc/
/etc/gshadow-:alovelace:!::alovelace
/etc/gshadow-:babbage:
6Lo92oBZTUm/H$qw5oIp55D.uy3E5xnzZpHKl03R5sjJwxayizt1vqbFmLzkcnVdD3RJUhC6WbwGyaLsh
Rv6EtcfDPDLAbdrp7X/::alovelace
/etc/gshadow:babbage:
6Lo92oBZTUm/H$qw5oIp55D.uy3E5xnzZpHKl03R5sjJwxayizt1vqbFmLzkcnVdD3RJUhC6WbwGyaLsh
Rv6EtcfDPDLAbdrp7X/::alovelace
/etc/subuid:alovelace:231072:65536
/etc/passwd-:alovelace:x:1002:1003:Ada Lovelace:/home/alovelace:/usr/bin/tcsh
/etc/subgid-:alovelace:231072:65536
/etc/passwd-:alovelace:x:1002:27:Ada Lovelace:/home/alovelace:/usr/bin/tcsh

$ Diarmuid Ó Briain
Recursively search but suppress the filename at the beginning of the line.

```
$ sudo grep -rh alovelace /etc/
alovelace:!/::alovelace
babbage:

$6$Lo92oBZTUm/H$qw5oIp55d.Uy3E5xnzZpHK103R5sjJxwxyiizt1vqBfMzlkcnVdD3RUUhC6WbwGyaLsh
Rv6EtodfDLAbdrp7X/::alovelace
sudo:*::lmenabrea,alovelace
alovelace:!/::alovelace
babbage:

$6$Lo92oBZTUm/H$qw5oIp55d.Uy3E5xnzZpHK103R5sjJxwxyiizt1vqBfMzlkcnVdD3RUUhC6WbwGyaLsh
Rv6EtodfDLAbdrp7X/::alovelace
alovelace:x:1002:1003:Ada Lovelace:/home/alovelace:/usr/bin/tcsh
alovelace:231072:65536
alovelace:x:1002:27:Ada Lovelace:/home/alovelace:/usr/bin/tcsh
alovelace:

$6$DnyWC4UQ88bs26d/yiIrndnj8PTDD8rKQpc.bWrDfMCqDcC1FE6XoUDMMD6tyn/2bghwIiUL57kAvcPp
Dd2CoP5bWJ12wa:/0:0:99999:7:::
alovelace:231072:65536
alovelace:

$6$DnyWC4UQ88bs26d/yiIrndnj8PTDD8rKQpc.bWrDfMCqDcC1FE6XoUDMMD6tyn/2bghwIiUL57kAvcPp
Dd2CoP5bWJ12wa:/16369:0:99999:7:::
aldoelace:x:27:lmenabrea,alovelace
aldoelace:x:1002:aloelace
babbage:x:1003:aloelace
aldoelace:231072:65536
aldoelace:x:1002:aloelace
babbage:x:1003:aloelace
```

Recursively search files and output only the files that contain matches.

```
$ sudo grep -rl alovelace /etc/
/etc/gshadow-
/etc/gshadow
/etc/subuid
/etc/passwd
/etc/subgid-
/etc/passwd-
/etc/shadow
/etc/subuid-
/etc/shadow-
/etc/group
/etc/subgid
/etc/group-
```

Use a regular expression to extract groups where Ada Lovelace is the first listed member.

```
$ sudo grep '[0-9]*:alovelace' /etc/group
aldoelace:x:1002:aloelace
babbage:x:1003:aloelace
```
2.2.4. cut

The **cut** command filters out fields or columns. Typical options are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Define field delimiter (default is tab)</td>
</tr>
<tr>
<td>-c list</td>
<td>Cut by column position</td>
</tr>
<tr>
<td>-f list</td>
<td>Cut by field number</td>
</tr>
</tbody>
</table>

$ id
uid=1000(lmenabrea) gid=1000(lmenabrea) groups=1000(lmenabrea),4(adm),6(disk), 24(cdrum),27(sudo),30(dip),46(plugdev),108(lpadmin),110(sambashare)

$ id | cut -d ' ' -f1,2
uid=1000(lmenabrea) gid=1000(lmenabrea)

2.2.5. sort

The **sort** command is used to sort lines of text files. There are a number of options so here are just some of the most used.

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>Ignore leading blanks</td>
</tr>
<tr>
<td>-f</td>
<td>Ignore case</td>
</tr>
<tr>
<td>-r</td>
<td>Reverse order</td>
</tr>
<tr>
<td>-R</td>
<td>Random sort</td>
</tr>
</tbody>
</table>

$ ls /home
alovelace
cabbage
lmenabrea

$ ls /home | sort -r
lmenabrea
cabbage
alovelace

2.2.6. tr

The **tr** translate command translates characters in a file from one form to another.

$ cat printer2.txt
My printer will drive me to drink,
I’m always refilling its paper,
it empties my wallet,
to make matters worse,
it’s usually broken!

$ cat printer2.txt | tr [:upper:] [:lower:]
my printer will drive me to drink,
i’m always refilling its paper,
it empties my wallet,
to make matters worse,
it’s usually broken!
2.2.7. `nl`

To write a file to standard output with line numbers added use the `nl` command.

```
$ ls /home | nl > users.txt
```

```text
1 lmenabrea
2 cbabbage
3 alovace
```

```
$ ls /home | nl | sed 's/^[ 	]* //g' | sed 's/\t/ /g'
```

```
1 lmenabrea
2 cbabbage
3 alovace
```

```
$ ls /home | nl | sed 's/^[ 	]* //g' | sed 's/\t/ /g' > users_list.txt
```

```text
1 alovelace
2 cbabbage
3 johnny
```

2.2.8. `Join`

The `join` command is used to join lines of two files on a common field. In the example the common field is the line number, the output links these as shown.

```
$ cat roles.txt
1 mathematician
2 inventor
3 programmer
```

```
$ join users_list.txt roles.txt
```

```
1 lmenabrea mathematician
2 cbabbage inventor
3 alovace programmer
```

2.2.9. `uniq`

The `uniq` utility can be used to filter matching lines from input to output. The `-c` option prefix lines by the number of occurrences while the `-u` switch option only prints unique lines. `-w` can be used to compare no more than N characters in lines.

```
$ cat numbers.txt
1 2 5 3 3 4 8 9 7 6 5 4 3 2 5 6 7 8 9 1 2 5 3 3 4 8 9 7 6 5 4 3 2 5 6 7 8 9 1 2 5
3 3 4 8 9 7 6 5 4 3 2 5 6 7 8 9 1 2 5 3 3 4 8 9 7 6 5 4 3 2 5 6 7 8 9 1 2 5 3 3 4
8 9 7 6 5 4 3 2 5 6 7 8 9 1
```

```
$ cat numbers.txt | sed 's/ /\n/g' | sort | uniq
```

```
1
2
3
4
5
6
7
8
9
```
2.2.10. awk

awk is a pattern scanning and processing language. This is a whole language in itself so it is best analyse an example.

```
$ df -h
Filesystem                 Size  Used Avail Use% Mounted on
/dev/mapper/mint--vg-root  451G  155G  273G  37% /
none                       4.0K     0  4.0K   0% /sys/fs/cgroup
udev                       3.7G  4.0K  3.7G   1% /dev
tmpfs                      756M  1.7M  755M   1% /run
none                       5.0M     0  5.0M   0% /run/lock
none                       3.7G   27M  3.7G   1% /run/shm
none                       100M   20K  100M   1% /run/user
/dev/sda1                  236M   77M  147M  35% /boot
```

```
$ df -h | awk '/none/'
none                       4.0K     0  4.0K   0% /sys/fs/cgroup
none                       5.0M     0  5.0M   0% /run/lock
none                       3.7G   27M  3.7G   1% /run/shm
none                       100M   20K  100M   1% /run/user
```

```
$ df -h | awk '/none/ {print $6, \"\t\", $4}'
/sys/fs/cgroup                  4.0K
/run/lock                    5.0M
/run/shm                      3.7G
/run/user                     100M
```
This page is intentionally blank
3. File-system & Storage

3.1. Archiving and compressing files and directories

GNU tar is the GNU version of the tar archiving utility. Originally that was the tape archive. It is useful to tar up a directory and all the directories and file therein as a single file, the tar archive file. The GNU tar program can do this. The resultant file is generally called a tarball.

```
$ tar -cf sandbox.tar sandbox

$ file sandbox.tar
sandbox.tar: POSIX tar archive (GNU)
```

Review a tar archive with the -t or --list option to see a table of contents for the archive.

```
$ tar -tf sandbox.tar
sandbox/
sandbox/file2.txt
sandbox/file1.txt
sandbox/file3.txt
sandbox/hello.sh
```

Remove the original directory.

```
$ rm -r sandbox
```

Extract the archive and confirm the directory is recovered.

```
$ tar -xf sandbox.tar

$ ls sandbox
file1.txt  file2.txt  file3.txt  hello.sh
```

3.1.0.1. Compression

The tar archive can be compressed to reduce file size. For example gzip which reduces the size of files using Lempel-Ziv coding (LZ77) can be applied to the tarball. tar has the ability to incorporate compression functions as well as archiving and perform both functions with the same command.

```
$ tar sandbox.tar

$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea 506 Oct 24 13:49 sandbox.tar.gz
```
To reverse this process use the **gunzip** command.

```
$ gunzip sandbox.tar.gz
$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea   10240 Oct 24 13:49 sandbox.tar
```

An alternative approach is to use the **bzip2** utility which uses the Burrows-Wheeler block sorting text compression algorithm, and Huffman coding. **bzip2** compression is generally considerably better that the more conventional LZ77/LZ78-based compressors.

```
$ bzip2 sandbox.tar
$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea     507 Oct 24 13:49 sandbox.tar.bz2
```

The reverse process is similar to what has been seen for **gunzip**.

```
$ bunzip2 sandbox.tar.bz2
$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea   10240 Oct 24 13:49 sandbox.tar
```

Fortunately the **tar** utility offers the ability to both archive and compress in one operation, here is an example using **gzip**. Note the file extension for a gzipped archives is either **.tar.gz** or simply **.tgz**. The **z** switch in the command instructs that the directory be archived and gzipped.

```
$ tar -czf sandbox.tar.gz sandbox
$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea     451 Oct 24 13:56 sandbox.tar.gz
$ file sandbox.tar.gz
```

A similar process can be achieved for **bzip2**, the end extension being **.tar.bz2** or **.tbz2** by convention. The **j** switch is used to archive and **bzip2**.

```
$ tar -cjf sandbox.tar.bz2 sandbox
$ ls -l |grep sandbox.tar
-rw-r--r-- 1 lmenabrea lmenabrea     463 Oct 24 13:56 sandbox.tar.bz2
$ file sandbox.tar.bz2
sandbox.tar.bz2: bzip2 compressed data, block size = 900k
```

Comparing the relative sizes of the archive and the two compressed versions. When the requirement is very fast compression, the **gzip** is the best option, it has also very small memory footprint, making it ideal for systems with limited memory. **bzip2** creates about 15% smaller files than **gzip** on average however it compresses at a slower rate than **gzip**. For decompression a similar picture emerges with **gzip** the fastest. **bzip2** is a lot slower taking four to twelve times more time to decompress than **gzip**.
3.2. Logical Volume Manager (LVM)

In GNU/Linux RAID is often grouped with Logical Volume Manager (LVM) as they share functionality however they are not the same. LVM allows for the clustering of disks, Physical Volumes (PV) into Volume Groups (VG), these VGs are mapped to Logical Volumes (LV) that are interpreted by the OS as partitions.

Referring to the diagram, the physical volumes sdd, sde and sdf are grouped together into a logical volume vg0. Two logical volumes lv0 and lv1 are created on vg0 thereby allowing the logical volumes to be numbered and sized without recourse to the size of the individual physical volumes, save the overall size limitation of their sum.
3.2.1. LVM Configuration

Install Logical Volume Manager v2 (lvm2).

```
$ sudo apt-get install lvm2
```

To demonstrate a number of additional drives are connected to the server. To view them use the command `lsblk`.

```
$ lsblk
NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sda      8:0    0     8G  0 disk
  └─sda1  8:1    0     7G  0 part / 
  └─sda2  8:2    0     1K  0 part 
└─sda5  8:5    0  1022M  0 part [SWAP]
sdb      8:16   0   100M  0 disk
sdc      8:32   0   100M  0 disk
sdd      8:48   0   100M  0 disk
sde      8:64   0   250M  0 disk
sdf      8:80   0   150M  0 disk
sr0     11:0    1  1024M  0 rom
```

Taking the last three (sdd, sde, sdf) create partitions on each of type Linux LVM (id: 8e) using `fdisk`.

```
$ sudo fdisk /dev/sdd
[sudo] password for lmenabrea: italy

Command (m for help): n
Partition type:
  p   primary (0 primary, 0 extended, 4 free)
  e   extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-511999, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-511999, default 511999):
Using default value 511999

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)

Command (m for help): p
Disk /dev/sdd: 262 MB, 262144000 bytes
64 heads, 32 sectors/track, 250 cylinders, total 512000 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3111f8f6

Device Boot Start   End    Blocks  Id  System
/dev/sdd1   2048  511999  254976  8e  Linux LVM
```

Calling ioctl() to re-read partition table.
Syncing disks.
Perform the same action on the `sde` and `sdf` drives. When complete review all three.

```bash
$ sudo fdisk -l /dev/sdd
Disk /dev/sdd: 104 MB, 104857600 bytes
64 heads, 32 sectors/track, 100 cylinders, total 204800 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xb4faec8d

Device Boot Start End Blocks Id System
/dev/sdd1 2048 204799 101376 8e Linux LVM

$ sudo fdisk -l /dev/sde
Disk /dev/sde: 262 MB, 262144000 bytes
64 heads, 32 sectors/track, 250 cylinders, total 512000 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3111f8f6

Device Boot Start End Blocks Id System
/dev/sde1 2048 511999 254976 8e Linux LVM

$ sudo fdisk -l /dev/sdf
Disk /dev/sdf: 157 MB, 157286400 bytes
64 heads, 32 sectors/track, 150 cylinders, total 307200 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x9bd4d0f0

Device Boot Start End Blocks Id System
/dev/sdf1 2048 307199 152576 8e Linux LVM

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk
├─sda1 8:1 0 7G 0 part /
└─sda5 8:5 0 1022M 0 part [SWAP]
sdb 8:16 0 100M 0 disk
sdc 8:32 0 100M 0 disk
sdd 8:48 0 100M 0 disk
└─sdd1 8:49 0 99M 0 part
sde 8:64 0 250M 0 disk
└─sde1 8:65 0 249M 0 part
sdf 8:80 0 150M 0 disk
└─sdf1 8:81 0 149M 0 part
sr0 11:0 1 1024M 0 rom

Diarmuid Ó Briain

Initialise these disks for use by LVM with the `pvcreate` command.

```
$ sudo pvcreate /dev/sdd1
 Physical volume "/dev/sdd1" successfully created

$ sudo pvcreate /dev/sde1
 Physical volume "/dev/sde1" successfully created

$ sudo pvcreate /dev/sdf1
 Physical volume "/dev/sdf1" successfully created
```

Create as volume group into which the physical volumes are incorporated.

```
$ sudo vgcreate vg0 /dev/sdd1 /dev/sde1 /dev/sdf1
 Volume group "vg0" successfully created
```

Now create logical volumes as necessary up to the limits on size imposed by the overall volume group size. In this way the logical volumes loose the limitations of the physical volumes. Note the middle command where I attempted to create a logical volume beyond the available space remaining in the volume group.

```
$ sudo lvcreate --size 300M --name lv0 vg0
 Logical volume "lv0" created

$ sudo lvcreate --size 200M --name lv1 vg0
 Volume group "vg0" has insufficient free space (48 extents): 50 required.

$ sudo lvcreate --size 175M --name lv1 vg0
 Rounding up size to full physical extent 176.00 MiB
 Logical volume "lv1" created
```

Display the physical and logical volumes.

```
$ sudo pvdisplay
 --- Physical volume ---
 PV Name /dev/sdd1
 VG Name vg0
 PV Size 99.00 MiB / not usable 3.00 MiB
 Allocatable yes
 PE Size 4.00 MiB
 Total PE 24
 Free PE 4
 Allocated PE 20
 PV UUID rl7d2z-dmUs-8p8I-hrSW-zViM-Di3x-7Bw0gb

 --- Physical volume ---
 PV Name /dev/sde1
 VG Name vg0
 PV Size 249.00 MiB / not usable 0
 Allocatable yes (but full)
 PE Size 4.00 MiB
 Total PE 62
 Free PE 0
 Allocated PE 62
 PV UUID 03veTC-6QVv-q0A6-6wzx-ag2Q-Gm8e-seQ1Ym
```
--- Physical volume ---
PV Name               /dev/sdf1
VG Name               vg0
PV Size               149.00 MiB / not usable 0
Allocatable           yes (but full)
PE Size               4.00 MiB
Total PE              37
Free PE               0
Allocated PE          37
PV UUID               1kLr3o-o6Ff-U0uq-6404-qgKR-PtzV-0xale8

$ sudo vgdisplay
--- Volume group ---
VG Name               vg0
System ID
Format                lvm2
Metadata Areas        3
Metadata Sequence No  3
VG Access             read/write
VG Status             resizable
MAX LV                0
Cur LV                2
Open LV               0
Max PV                0
Cur PV                3
Act PV                3
VG Size               492.00 MiB
PE Size               4.00 MiB
Total PE              123
Alloc PE / Size       119 / 476.00 MiB
Free  PE / Size       4 / 16.00 MiB
VG UUID               DFYG3z-dTyu-9sQq-RMys-T8Rn-n2Vm-kacVte

$ sudo lvdisplay
--- Logical volume ---
LV Path                /dev/vg0/lv0
LV Name                lv0
VG Name                vg0
LV UUID                2cyBm2-0u7C-wBR8-DMjZ-p4lb-gJLW-CmLubL
LV Write Access        read/write
LV Creation host, time ubuntu-vm, 2014-12-03 06:57:49 +0000
LV Status             available
# open                0 # open
LV Size                300.00 MiB
Current LE             75
Segments               2
Allocation             inherit
Read ahead sectors    auto
   - currently set to 256
Block device           252:0

--- Logical volume ---
LV Path                /dev/vg0/lv1
LV Name                lv1
VG Name                vg0
LV UUID                ixcdGg-LDMy-Rtnc-kIU6-03R4-L1H1-7g1TDI
LV Write Access        read/write
LV Creation host, time ubuntu-vm, 2014-12-03 06:58:26 +0000
LV Status             available
# open                0
LV Size                176.00 MiB
Current LE             44
Segments               2
Allocation             inherit
Read ahead sectors    auto
   - currently set to 256
Block device           252:1
These logical volumes can be addressed as either:

- `/dev/vg0/lv0`
- `/dev/vg0/lv1`

or

- `/dev/mapper/vg0-lv0`
- `/dev/mapper/vg0-lv1`

Make a filesystem on the logical volumes, create mount points and mount.

```bash
$ sudo ls /dev/mapper
control vg0-lv0 vg0-lv1

$ sudo mkfs.ext4 /dev/vg0/lv0
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
Stride=0 blocks, Stripe width=0 blocks
76912 inodes, 307200 blocks
15360 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=67633152
38 block groups
8192 blocks per group, 8192 fragments per group
2024 inodes per group
Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729, 204801, 221185
Allocating group tables: done
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

$ sudo mkdir /mnt/l-vol0
$ sudo mkdir /mnt/l-vol1
$ sudo mount -t ext4 /dev/vg0/lv0 /mnt/l-vol0
$ sudo mount -t ext4 /dev/vg0/lv1 /mnt/l-vol1
```
$ df -h
Filesystem           Size  Used Avail Use% Mounted on
/dev/sda1            6.8G  1.7G  4.8G  27% /
none                 4.0K     0  4.0K   0% /sys/fs/cgroup
udev                 487M  4.0K  487M   1% /dev
tmpfs                100M  460K  99M  1% /run
none                 5.0M     0  5.0M   0% /run/lock
none                 498M     0  498M   0% /run/shm
none                 100M     0  100M   0% /run/user
/dev/mapper/vg0-lv0  283M  2.1M  262M   1% /mnt/l-vol0
/dev/mapper/vg0-lv1  167M  1.6M  153M   1% /mnt/l-vol1

$ mount | grep lv
/dev/mapper/vg0-lv0 on /mnt/l-vol0 type ext4 (rw)
/dev/mapper/vg0-lv1 on /mnt/l-vol1 type ext4 (rw)

Unmount the temporary mounts.

$ sudo umount /dev/vg0/lv0
$ sudo umount /dev/vg0/lv1

For persistence add to the `/etc/fstab` file.

$ sudo -s
# echo -e "\n#Entries for LVM Logical volumes" >> /etc/fstab
# echo "/dev/vg0/lv0 /mnt/l-vol0 ext4 defaults 0 0" >> /etc/fstab
# echo "/dev/vg0/lv1 /mnt/l-vol1 ext4 defaults 0 0" >> /etc/fstab
# exit

$ sudo tail -3 /etc/fstab
#Entries for LVM Logical volumes
/dev/vg0/lv0 /mnt/l-vol0 ext4 defaults 0 0
/dev/vg0/lv1 /mnt/l-vol1 ext4 defaults 0 0

Mount the logical volumes and confirm.

$ sudo mount /dev/vg0/lv0
$ sudo mount /dev/vg0/lv1

$ mount | grep lv
/dev/mapper/vg0-lv0 on /mnt/l-vol0 type ext4 (rw)
/dev/mapper/vg0-lv1 on /mnt/l-vol1 type ext4 (rw)

$ df -h | grep lv
/dev/mapper/vg0-lv0  283M  2.1M  262M   1% /mnt/l-vol0
/dev/mapper/vg0-lv1  167M  1.6M  153M   1% /mnt/l-vol1
3.2.2. Adjusting the size of a logical volume

What if I wanted to increase the size of a logical volume, say `lv0`.

Create a partition of type **Linux LVM (8e)** on the drive `/dev/sdc`.

```bash
$ sudo fdisk /dev/sdc

Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-204799, default 2048): Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-204799, default 204799): Using default value 204799

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)

Command (m for help): p

Disk /dev/sdc: 104 MB, 104857600 bytes
64 heads, 32 sectors/track, 100 cylinders, total 204800 sectors
Units = sectors of 1 * 512 = 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x08cafc4c

Device Boot Start End Blocks Id System
/dev/sdc1 2048 204799 101376 8e Linux LVM

Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
3.2.3. Extend the volume group

Extend the volume group by adding the new physical volume, notice the volume groups increased size.

$ sudo vgextend vg0 /dev/sdc1
No physical volume label read from /dev/sdc1
Physical volume "/dev/sdc1" successfully created
Volume group "vg0" successfully extended

$ sudo vgdisplay
--- Volume group ---
VG Name vg0
System ID
Format lvm2
Metadata Areas 4
Metadata Sequence No 4
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 2
Open LV 0
Max PV 0
Cur PV 4
Act PV 4
VG Size 588.00 MiB
PE Size 4.00 MiB
Total PE 147
Alloc PE / Size 119 / 476.00 MiB
Free PE / Size 28 / 112.00 MiB
VG UUID GFt0V6-VakN-cASe-FE5Z-0fZp-jKw0-ruhgT2

3.2.4. Extend the logical volume

Display the logical volume to be extended.

$ sudo lvdisplay /dev/vg0/lv0
--- Logical volume ---
LV Path /dev/vg0/lv0
LV Name lv0
VG Name vg0
LV UUID oAfAgg-Rhua-A457-2TCT-d1tY-J2un-CmlKt5
LV Write Access read/write
LV Creation host, time ubuntu-vm, 2014-12-08 06:14:25 +0000
LV Status available
open 0
LV Size 300.00 MiB
Current LE 75
Segments 2
Allocation inherit
Read ahead sectors auto
 - currently set to 256
Block device 252:0
Now extend the logical volume by 100 MB.

```
$ sudo lvextend --size +100M /dev/vg0/lv0
  Extending logical volume lv0 to 400.00 MiB
  Logical volume lv0 successfully resized
```

```
$ sudo lvdisplay /dev/vg0/lv0
  --- Logical volume ---
  LV Path            /dev/vg0/lv0
  LV Name            lv0
  VG Name            vg0
  LV UUID            oAfAgg-Rhua-A457-2TCT-d1tY-J2un-CmlKt5
  LV Write Access    read/write
  LV Creation host, time ubuntu-vm, 2014-12-08 06:14:25 +0000
  LV Status          available
  # open             0
  LV Size            400.00 MiB
  Current LE        100
  Segments           4
  Allocation        inherit
  Read ahead sectors auto
  - currently set to 256
  Block device      252:0
```

Alternative approach would be to use the command below. This defines the actual size the new logical volume should be.

```
$ sudo lvextend --size 400M /dev/vg0/lv0
  Extending logical volume lv0 to 400.00 MiB
  Logical volume lv0 successfully resized
```

3.2.4.1. Reduce a logical volume

In a similar mechanism a logical volume can be reduced. Here lv0 is reduced to 100MB.

```
$ sudo lvreduce --size 100M /dev/vg0/lv0
  WARNING: Reducing active logical volume to 100.00 MiB
  THIS MAY DESTROY YOUR DATA (filesystem etc.)
  Do you really want to reduce lv0? [y/n]: y
  Reducing logical volume lv0 to 100.00 MiB
  Logical volume lv0 successfully resized
```
3.2.4.2. Create a filesystem on logical volume

Create a filesystem on the lv0, mount and add a file.

```bash
$ sudo mkfs.ext4 /dev/vg0/lv0
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
Stride=0 blocks, Stripe width=0 blocks
25688 inodes, 102400 blocks
5120 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=67371008
13 block groups
8192 blocks per group, 8192 fragments per group
1976 inodes per group
Superblock backups stored on blocks:
  8193, 24577, 40961, 57345, 73729
Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
$ sudo mount /dev/vg0/lv0 /mnt/l-vol0
$ sudo -s
# echo "My file" > /mnt/l-vol0/my_file
# sudo cat /mnt/l-vol0/my_file
My file
```

3.2.5. Create a Snapshot of the Logical volumes

When resizing volumes it is useful to create a snapshot of logical volumes with the lvcreate -s or --snapshot switch to ensure that data is not lost. To do so there must be enough room on the volume group first. The following is a demonstration of a snapshot for lv0.

```bash
$ sudo lvcreate --size 100M --snapshot --name l-vol0-snapshot /dev/vg0/lv0
Logical volume "l-vol0-snapshot" created
$ sudo mkdir /mnt/l-vol0-snapshot/
$ sudo mount /dev/vg0/l-vol0-snapshot /mnt/l-vol0-snapshot/
```

Confirm the new snapshot by checking for the my_file on the mount.

```bash
$ sudo cat /mnt/l-vol0-snapshot/my_file
My file
```

Backup the snapshot.

```bash
$ sudo tar -cf /backups/l-vol0-snapshot.tar /mnt/l-vol0-snapshot/
$ sudo file /backups/l-vol0-snapshot.tar
/tmp/l-vol0-snapshot.tar: POSIX tar archive (GNU)
```
3.2.6. Removing Logical volumes

Remove volumes in the reverse order. First remove the lines from `/etc/fstab` and then umount before removing the LVM devices.

```bash
$ sudo umount /dev/vg0/lv0
$ sudo umount /dev/vg0/lv1

$ sudo lvremove /dev/vg0/lv0
Do you really want to remove and DISCARD active logical volume lv0? [y/n]: y
Logical volume "lv0" successfully removed

$ sudo lvremove /dev/vg0/lv1
Do you really want to remove and DISCARD active logical volume lv1? [y/n]: y
Logical volume "lv1" successfully removed

$ sudo vgremove /dev/vg0
Volume group "vg0" successfully removed

$ sudo pvremove /dev/sdd1
Labels on physical volume "/dev/sdd1" successfully wiped

$ sudo pvremove /dev/sde1
Labels on physical volume "/dev/sde1" successfully wiped

$ sudo pvremove /dev/sdf1
Labels on physical volume "/dev/sdf1" successfully wiped
```
3.3. Assembling partitions as Redundant Array of Independent Disks (RAID) devices

With RAID technology it is possible to achieve high levels of storage reliability from low cost and less reliable harddisk components. This is possible by arranging the devices into arrays for redundancy. RAID describes a number of methods to divide and replicate data among multiple harddisk drives. Each RAID Type offers different levels of data reliability and/or Input/Output (I/O) performance. Physical disks grouped in such configurations are termed RAID arrays. The RAID array distributes data across multiple disks, but from the OS perspective the array is seen as one single disk.

3.3.1. RAID Types

![Diagram of RAID types]
Here is a description of the basic concepts on some RAID types:

<table>
<thead>
<tr>
<th>RAID Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The data is distributed equally between one or more disks without information on parity or redundancy, without offering fault tolerance. Data is distributed across the disks to increase storage volume, if the disk fails physically, the information will be lost and will have to be recovered from backup copies. What does increase is the performance, depending on the RAID 0 implementation, given that the read and write options will be divided among the different disks. This is often confused with LVM.</td>
</tr>
<tr>
<td>1</td>
<td>This RAID type creates an exact copy, a mirror on a set of two or more disks in an array. RAID 1 is useful for the reading performance which can increase linearly with the number of disks. It also adds fault tolerance where a fault occurs to one of the disks as the same information is available on each. RAID 1 is usually adequate for High Availability (HA) where resources are needed critically. This configuration also makes it possible to hot swap disks. If a fault is detected in any of the disks, it can be replaced without switching off the system.</td>
</tr>
<tr>
<td>2</td>
<td>Unlike earlier RAID types with RAID 2 the data is divided into bits and redundant codes are used for error correction. It is not widely used as a large number of disks is required, one per system bit plus redundancy bits, so for a 32 bit system 39 disks are required.</td>
</tr>
<tr>
<td>3</td>
<td>RAID3 uses byte divisions with an additional disk dedicated to the parity of blocks. This is not very widely used type. Depending on the size of the data and the positions, it does not provide simultaneous accesses.</td>
</tr>
<tr>
<td>4</td>
<td>RAID 4 is similar to RAID 3, however it stripes the data at the block level, instead of byte level, which means that it is possible to service simultaneous requests when only a single block is requested.</td>
</tr>
<tr>
<td>5</td>
<td>Block level striping is used, distributing the parity among the disks. It is widely used, due to the simple parity scheme and due to the fact that this calculation is implemented simply by the hardware, with good performance levels.</td>
</tr>
<tr>
<td>6</td>
<td>Block level striping like in RAID 5 with the addition of another parity block, i.e. Block level striping with two parity blocks.</td>
</tr>
<tr>
<td>01</td>
<td>A mirror stripe is a nested RAID level where groups of RAID 0 arrays are used in a RAID 1 array to create a mirror between them. An advantage is that, in the event of an error, the RAID 0 level used may be rebuilt thanks to the other copy, but if more disks need to be added, they have to be added to all the RAID 0 groups equally.</td>
</tr>
<tr>
<td>10</td>
<td>Striping of mirrors where groups of RAID 1 arrays are used in a RAID 0 array. In each RAID 1 group if a disk fails there is no loss of data. RAID 10 arrays are used with high performance databases as they include both fault tolerance and the speed.</td>
</tr>
</tbody>
</table>
3.3.2. Building RAID Arrays

Looking at an example to build a RAID array across two USB Sticks. Create and format a RAID-1 partition using these two units. Configure the system to automatically mount it into a given location and so that users without administrative rights are allowed to Read and Write files in the partition.

The steps:

- Create partitions on each disk (type fd).
- Create RAID device with the mdadm.
- Format RAID device.
- Mount RAID device (add to /etc/fstab).
- Capture RAID details to ensure persistence.
- `mdadm -s` can be used to stop RAID.

3.3.2.1. Install the mdadm utility

The GNU/Linux `mdadm` utility provides GNU/Linux Software RAID. Each RAID device is a virtual device created from two or more real block devices. This allows multiple devices to be combined into a single device upon which a single file-system is installed. This example will demonstrate RAID 1 across two USB Sticks. The USB Sticks will have a file-system created across the RAID array `md0`.

```
$ sudo apt-get install mdadm
```
3.3.2.2. Prepare the disks

In the example we have four 100 MB drives, /dev/sdb, /dev/sdc, /dev/sdd, /dev/sde.

Use the `lsblk` command to see the physical layout.

```
$ lsblk
NAME    MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sda      8:0    0     8G  0 disk
  └─sda1   8:1    0     7G  0 part /
  └─sda2   8:2    0     1K  0 part
  └─sda5   8:5    0  1022M  0 part [SWAP]

sdb      8:16   0   100M  0 disk

sdc      8:32   0   100M  0 disk

sdd      8:48   0   100M  0 disk

sde      8:64   0   100M  0 disk

sdf      8:80   0   100M  0 disk

sr0     11:0    1  1024M  0 rom
```

Delete existing partitions on the USB Sticks. Here is an example for /dev/sdb, repeat for each of the disks.

```
$ sudo fdisk /dev/sdb

Command (m for help): d
Selected partition 1

Command (m for help): p

Disk /dev/sdb: 8004 MB, 8004304896 bytes
35 heads, 21 sectors/track, 21269 cylinders, total 15633408 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Command (m for help): w

The partition table has been altered!
Calling ioctl() to re-read partition table.
WARNING: Re-reading the partition table failed with error 16: Device or resource busy.
The kernel still uses the old table. The new table will be used at
the next reboot or after you run partprobe(8) or kpartx(8)
Syncing disks.
```

3.3.2.3. Create RAID Array

Create a RAID 5 Array /dev/md0 comprising block-level striping with distributed parity from the four drives /dev/sdb, /dev/sdc, /dev/sdd and /dev/sde.

```
$ sudo mdadm --create /dev/md0 --level=5 --raid-devices=4 /dev/sdb /dev/sdc /dev/sdd /dev/sde

mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
```
Confirm array is started.

```
$ cat /proc/mdstat
Personailties: [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
  305664 blocks super 1.2 level 5, 512k chunk, algorithm 2 [4/4] [UUUU]
```

```
$ sudo mdadm --detail /dev/md0
[sudo] password for alovelace:
/dev/md0:
  Version : 1.2
  Creation Time : Fri Dec 12 18:46:33 2014
  Raid Level : raid5
  Array Size : 305664 (298.55 MiB 313.00 MB)
  Used Dev Size : 101888 (99.52 MiB 104.33 MB)
  Raid Devices : 4
  Total Devices : 4
  Persistence : Superblock is persistent
  Update Time : Fri Dec 12 18:46:44 2014
  State : clean
  Active Devices : 4
  Working Devices : 4
  Failed Devices : 0
  Spare Devices : 0
  Layout : left-symmetric
  Chunk Size : 512K
  Name : ubuntu-vm:0 (local to host ubuntu-vm)
  UUID : 31c0ae28:3cc27473:5dc6bc0c:17f01003
  Events : 18

  Number   Major   Minor   RaidDevice State
  0       8       16        0      active sync   /dev/sdb
  1       8       32        1      active sync   /dev/sdc
  2       8       48        2      active sync   /dev/sdd
  4       8       64        3      active sync   /dev/sde
```

3.3.2.4. Create file-system on RAID Array

Make a file-system on the new RAID Array. In this case an GNU/Linux fourth EXTended file-system (ext4).

```
$ sudo mkfs --type ext4 /dev/md0
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
Stride=512 blocks, Stripe width=1536 blocks
76608 inodes, 305664 blocks
15283 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=67633152
38 block groups
8192 blocks per group, 8192 fragments per group
2016 inodes per group
Superblock backups stored on blocks:
  8193, 24577, 40961, 57345, 73729, 204801, 221185

Allocating group tables: done
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
```
Mount the new file-system on the OS.

```
$ sudo mkdir /mnt/raid5-md0
$ sudo chown root:disk /mnt/raid5-md0/
$ sudo chmod 775 /mnt/raid5-md0/
```

Add users that require access to the drive to the `disk` group.

```
$ sudo vi /etc/group
...
  disk:x:100:lmenabrea,alovelace
...
```

Make persistent, such that after a reboot the RAID array will reform. The `initramfs` needs to be updated so it contains the `/etc/mdadm/mdadm.conf` settings during boot.

```
$ sudo -s
#
echo -e "\n# RAID5" >> /etc/mdadm/mdadm.conf
# mdadm --detail --scan >> /etc/mdadm/mdadm.conf
# echo -e "\n# Mount for RAID 5\n/dev/md0\t/mnt/raid5-md0\ntext4\tdefaults\t0\t0"
  >> /etc/fstab
#
  mount -a
# update-initramfs -u
update-initramfs: Generating /boot/initrd.img-3.13.0-40-generic
# exit
$
```

Review the new file-system.

```
$ sudo df -h /mnt/raid5-md0/
Filesystem     Size  Used  Avail Use% Mounted on
/dev/md0       282M   2.1M  261M   1% /mnt/raid5-md0
```

Change the ownership and permissions of the new mount such that the group is `disk` and the permissions are 775.

```
$ sudo chown root:disk /mnt/raid5-md0/
$ sudo chmod 775 /mnt/raid5-md0/
```
3.3.2.6. Test file access and persistence

Test that members of the disk group can create files on the RAID array partition.

```bash
$ echo "This is a test" > /mnt/raid5-md0/testfile
$ cat /mnt/raid5-md0/testfile
This is a test
```

After a reboot check the RAID device exists.

```bash
$ sudo mdadm --detail --scan
ARRAY /dev/md0 metadata=1.2 name=ubuntu-vm:0 UUID=31c0ae28:3cc27473:5dc6bc0c:17f01003
$ sudo mdadm --detail /dev/md0
/dev/md0:
    Version : 1.2
    Creation Time : Fri Dec 12 18:46:33 2014
    Raid Level : raid5
    Array Size : 305664 (298.55 MiB 313.00 MB)
    Used Dev Size : 101888 (99.52 MiB 104.33 MB)
    Raid Devices : 4
    Total Devices : 4
    Persistence : Superblock is persistent
    Update Time : Fri Dec 12 19:14:00 2014
    State : clean
    Active Devices : 4
    Working Devices : 4
    Failed Devices : 0
    Spare Devices : 0
    Layout : left-symmetric
    Chunk Size : 512K
    Name : ubuntu-vm:0 (local to host ubuntu-vm)
    UUID : 31c0ae28:3cc27473:5dc6bc0c:17f01003
    Events : 18

Number Major Minor RaidDevice State
0   8   16     0    active sync  /dev/sdb
1   8   32     1    active sync  /dev/sdc
2   8   48     2    active sync  /dev/sdd
4   8   64     3    active sync  /dev/sde
```
3.3.2.7. Simulate disk failure

Simulate a fail of the /dev/sdc disk.

```bash
$ sudo mdadm /dev/md0 --fail /dev/sdc
```

Upon reboot review the RAID. Notice that /dev/sdc is marked as removed.

```bash
$ sudo mdadm --detail --scan /dev/md0
/dev/md0:
  Version : 1.2
  Creation Time : Fri Dec 12 18:46:33 2014
  Raid Level : raid5
  Array Size : 305664 (298.55 MiB 313.00 MB)
  Used Dev Size : 101888 (99.52 MiB 104.33 MB)
  Raid Devices : 4
  Total Devices : 4
  Persistence : Superblock is persistent
  Update Time : Fri Dec 12 19:32:45 2014
  State : clean, degraded
  Active Devices : 3
  Working Devices : 3
  Failed Devices : 1
  Spare Devices : 0
  Layout : left-symmetric
  Chunk Size : 512K

  Name : ubuntu-vm:0 (local to host ubuntu-vm)
  UUID : 31c0ae28:3cc27473:5dc6bc0c:17f01003
  Events : 20

Number   Major   Minor   RaidDevice State
0        8       16        0     active sync   /dev/sdb
1        0       0         1     removed
2        8       48        2     active sync   /dev/sdd
4        8       64        3     active sync   /dev/sde
1        8       32        -     faulty spare   /dev/sdc
```

Confirm data is intact on single disk

Existing data on the drive is intact.

```bash
$ sudo df -h /mnt/raid5-md0/
Filesystem Size Used Avail Use% Mounted on
/dev/md0 282M 2.1M 261M 1% /mnt/raid5-md0
```

```bash
$ cat /mnt/raid5-md0/testfile
This is a test
```

Check failed disk. Note that [2/1] [U_] replaces [2/2] [UU] from the earlier runs of the command.

```bash
$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
305664 blocks super 1.2 level 5, 512k chunk, algorithm 2 [4/3] [U_UU]
```
Replace the failed drive with the unused /dev/sdf drive.

```
$ lsblk
NAME   MAJ:MIN  RM  SIZE RO TYPE MOUNTPOINT
sda     8:0   0     8G  0 disk
└─sda1   8:1   0     7G  0 part /
└─sda2   8:2   0     1K  0 part
└─sda5   8:5   0 1022M  0 part [SWAP]

sdb     8:16  0   100M  0 disk
└─md0    9:0   0 298.5M  0 raid5 /mnt/raid5-md0

sdc     8:32  0 100M  0 disk

sdd     8:48  0 100M  0 disk

sde     8:64  0 100M  0 disk

sdf     8:80  0 100M  0 disk

sr0     11:0  1 1024M  0 rom
```

Add new disk to RAID array

Now add the new physical /dev/sdf disk to the RAID array. The new drive will be synchronised.

```
$ sudo mdadm --manage /dev/md0 --add /dev/sdf
mdadm: added /dev/sdf
```

Review the RAID status.

```
$ cat /proc/mdstat
        305664 blocks super 1.2 level 5, 512k chunk, algorithm 2 [4/4] [UUUU]

unused devices: <none>
```
Confirm the RAID Array is back to normal.

```
$ sudo mdadm --detail /dev/md0
/dev/md0:
  Version : 1.2
  Creation Time : Fri Dec 12 18:46:33 2014
  Raid Level : raid5
  Array Size : 305664 (298.55 MiB 313.00 MB)
  Used Dev Size : 101888 (99.52 MiB 104.33 MB)
  Raid Devices : 4
  Total Devices : 4
  Persistence : Superblock is persistent
  Update Time : Fri Dec 12 19:38:26 2014
  State : clean
  Active Devices : 4
  Working Devices : 4
  Failed Devices : 0
  Spare Devices : 0
  Layout : left-symmetric
  Chunk Size : 512K
  Name : ubuntu-vm:0 (local to host ubuntu-vm)
  UUID : 31c0ae28:3cc27473:5dc6bc0c:17f01003
  Events : 47
  Number   Major   Minor   RaidDevice State
  0       8       16        0      active sync   /dev/sdb
  5       8       80        1      active sync   /dev/sdf
  2       8       48        2      active sync   /dev/sdd
  4       8       64        3      active sync   /dev/sde
```

```
$ lsblk
NAME   MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINT
sda      8:0    0     8G  0 disk
  └─sda1   8:1    0     7G  0 part  /
  └─sda5   8:5    0 1022M  0 part  [SWAP]
  └─md0    9:0    0 298.5M  0 raid5 /mnt/raid5-md0
sdc      8:32   0   100M  0 disk
sdd      8:48   0   100M  0 disk
  └─md0    9:0    0 298.5M  0 raid5 /mnt/raid5-md0
sde      8:64   0 100M  0 disk
  └─md0    9:0    0 298.5M  0 raid5 /mnt/raid5-md0
sdf      8:80   0   100M  0 disk
  └─md0    9:0    0 298.5M  0 raid5 /mnt/raid5-md0
sr0     11:0    1 1024M  0 rom
```

The RAID array is now fully recovered and back working with four disks. Check the data on the array is intact.

```
$ cat /mnt/raid5-md0/testfile
This is a test
```
3.4. Configuring swap partitions

It may be necessary to add more SWAP space on a GNU/Linux system. After upgrading the RAM on a system you may want to increase the amount of SWAP space if the system runs memory hungry applications or performs memory intense operations. SWAP can be added as either an additional SWAP partition or a SWAP file. The preference is to add a partition but that may not always be possible.

3.4.1. Add a SWAP partition

```bash
$ sudo parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) print
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 16.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

  Number  Start   End     Size    File system  Name     Flags
  1  1049kB  8193MB  8191MB  ext4         primary
  2  8193MB  15.0GB  6807MB  fat32        primary

(parted) rm 2
Warning: Partition /dev/sdb2 is being used. Are you sure you want to continue?
Yes/No? Yes
```
Error: Partition(s) 2 on /dev/sdb have been written, but we have been unable to inform the kernel of the change, probably because it/they are in use. As a result, the old partition(s) will remain in use. You should reboot now before making further changes.
Ignore/Cancel? Ignore

(parted) print
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 16.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1049kB</td>
<td>8193MB</td>
<td>8191MB</td>
<td>ext4</td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>

(parted) mkpart primary 8193 15000
(parted) quit

Make the new partition into a SWAP partition.

$ sudo mkswap /dev/sdb2
Setting up swapspace version 1, size = 6647804 KiB
no label, UUID=63e7a71a-b0c6-4a24-a227-8c16fe54236f

Enable the new SWAP partition.

$ sudo swapon /dev/sdb2

Add an entry to /etc/fstab to enable the SWAP partition after boot.

$ sudo -s
cat << FSTAB >> /etc/fstab

Add lines to mount /dev/sdb2 as a SWAP partition on boot
/dev/sdb2 swap swap defaults 0 0

FSTAB

Confirm the new SWAP partition is operational.

$ cat /proc/swaps

Filename Type Size Used Priority
/dev/dm-2 partition 7942140 0 -1
/dev/sdb2 partition 6647804 0 -2
3.4.2. Add a SWAP file

Decide on the size of SWAP file required in MB (lets say 128 MB). Multiply the size (in MB) by 1024 to determine the block size 128 x 1024 = 131,072. Create the file.

```bash
$ sudo dd if=/dev/zero of=/swapfile bs=1024 count=131072
```

Make the new file `/swapfile` into a SWAP file.

```bash
$ sudo mkswap /swapfile
Setting up swapspace version 1, size = 131068 KiB
no label, UUID=1f5a5eb3-2ac2-48f6-8174-ed20aebfa4e2
```

Enable the new SWAP file.

```bash
$ sudo swapon /swapfile
```

Add an entry to `/etc/fstab` to enable the SWAP file after boot.

```bash
$ sudo -s
# cat << FSTAB >> /etc/fstab
# Add lines to mount /dev/sdb2 as a SWAP partition on boot
swapfile swap swap defaults 0 0
FSTAB
```

Confirm the new SWAP partition is operational.

```bash
$ cat /proc/swaps
Filename   Type            Size    Used   Priority
/dev/dm-2  partition     7942140  0     -1
/dev/sdb2  partition     6647804  0     -2
/swapfile  file          131068   0     -3
```

3.5. File attributes

3.5.1. Basic permissions

Basic permissions for files are:

<table>
<thead>
<tr>
<th>Permission</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>to be able to open and view the file.</td>
</tr>
<tr>
<td>Write</td>
<td>to overwrite or modify the file.</td>
</tr>
<tr>
<td>eXecute</td>
<td>to run the file as a binary.</td>
</tr>
</tbody>
</table>
Basic permissions for directories are:

<table>
<thead>
<tr>
<th>Permission</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>to be able to view the contents of the directory.</td>
</tr>
<tr>
<td>Write</td>
<td>to be able to create new files/directories within the directory.</td>
</tr>
<tr>
<td>eXecute</td>
<td>to be able to Change Directory (cd) into the directory.</td>
</tr>
</tbody>
</table>

View permissions in the sandbox directory.

```
$ ls -l
total 16
-rw-r--r-- 1 lmenabrea lmenabrea 34 Oct 21 15:54 file1.txt
-rw-r--r-- 1 lmenabrea lmenabrea 30 Oct 21 15:55 file2.txt
-rw-r--r-- 1 lmenabrea lmenabrea 91 Oct 24 12:36 file3.txt
-rwxr-xr-- 1 alovelace babbage  91 Oct 26 00:54 hello.sh
drwxr-xr-x 2 lmenabrea  babbage 4096 Oct 27 00:13 more_files
```

3.5.2. Default permissions

The default permissions on a GNU/Linux system are set with the `umask` command. This command takes a mask (inverse) of the permissions that will be applied to new files. The command without values will display the current mask.

```
$ umask
0022
```

In this case with a mask of **022** the default permissions will be:

<table>
<thead>
<tr>
<th>Files</th>
<th>Directories</th>
</tr>
</thead>
<tbody>
<tr>
<td>777</td>
<td>666</td>
</tr>
<tr>
<td>022</td>
<td>022</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>755</td>
<td>644</td>
</tr>
</tbody>
</table>

3.5.3. Change permissions

To change permissions of files/directories the following commands can be used:

- `chown` - change the ownership of the file/directory (need to be root to use).
- `chgrp` - change group ownership of a file or directory.
- `chmod` - change the access rights to the file or directory, such as:
 - `chmod +rx filename` - adds Read and eXecute permissions for the Owner, Group and Others.
 - `chmod g+w filename` - adds Write permissions to the group.
 - `chmod go-w filename` - removes write perms for the group as well as others.
Change the permissions on **file1.txt** to User and Group having Read and Write access and others with no access.

```bash
$ chmod u+rw,g+rw,o-rwx file1.txt
$ ls -l | grep file1.txt
```

```
total 20
-rw-rw---- 1 lmenabrea lmenabrea  34 Oct 21 15:54 file1.txt
```

Instead of letters, numeric permissions can also be used.

<table>
<thead>
<tr>
<th>Permissions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no access</td>
</tr>
<tr>
<td>1</td>
<td>eXecute</td>
</tr>
<tr>
<td>2</td>
<td>Write</td>
</tr>
<tr>
<td>4</td>
<td>Read</td>
</tr>
</tbody>
</table>

For example changing file permissions to 660 will give the user

```bash
$ chmod 660 file2.txt
$ ls -l | grep file2.txt
```

```
total 20
-rw-rw---- 1 lmenabrea lmenabrea  34 Oct 21 15:54 file2.txt
```

3.5.4. Special bits

3.5.4.1. setuid Bit

The set user ID (**setuid**) bit allows the specification of which user a certain program is executed as. This is invaluable when an application that needs to run as another user (i.e. 'root') when launched. An example:

```bash
$ sudo chown root hello.sh
$ sudo chmod +x hello.sh
$ sudo chmod +s hello.sh
$ ls -l | grep hello.sh
```

```
-rwsr-xr-x 1 root     root    91 Oct 26 00:54 hello.sh
```

```bash
$ whoami
lmenabrea
$ ./hello.sh
```

When **Luigi Menabrea** launched the **hello.sh** script, it has all of the rights of the **root** user despite **lmenabrea** being the owner of the process. Note the **s** instead of the **x** in the **user** section. This indicates that the **setuid** is set.
3.5.4.2. setgid Bit

The set group ID (setgid) allows for the enforcement of what group ownership a directory, plus all its subdirectories and files have. i.e. If the setgid bit is set to `babbage` on a directory, any directory or file created below that directory will also have the `babbage` group ownership. This allows the setup of shared network folders that are accessible by any member of the group, and any file below that directory will maintain that group ownership.

```
$ sudo chgrp babbage more_files
$ sudo chmod g+s more_files
$ ls -l | grep more_files
drwxr-sr-x 2 lmenabrea babbage 4096 Oct 27 00:13 more_files
$ whoami
lmenabrea
$ echo "New file data" > more_files/file4.txt
$ ls -l more_files/
total 4
-rw-r--r-- 1 lmenabrea babbage 14 Oct 27 00:48 file4.txt
```

Note that the new file has the group `babbage`.

3.5.4.3. Sticky Bit

The Save Text Attribute bit (sticky bit) is only set on a directory. It specifies that only the owner of a file can delete their own file within the directory regardless of other permissions. In the example where `more_files` has the group `babbage` and a file created by `lmenabrea` could only be deleted by him. So Ada Lovelace who is part of the `babbage` group cannot delete.

```
$ sudo chmod +t more_files
$ ls -l | grep ^d
drwxr-sr-t 2 lmenabrea babbage 4096 Oct 27 00:48 more_files
```

Note that the other x permission position is replaced by t, the sticky bit.

3.5.4.4. Special bits using numeric permissions

This is similar to regular permissions with the addition of another digit at the front.

<table>
<thead>
<tr>
<th>Permissions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no special bit is set.</td>
</tr>
<tr>
<td>1</td>
<td>sticky bit is set.</td>
</tr>
<tr>
<td>2</td>
<td>setgid bit is set.</td>
</tr>
<tr>
<td>4</td>
<td>setuid bit is set.</td>
</tr>
</tbody>
</table>
3.6. Finding files on the file-system

There are a number of ways to find files on a GNU/Linux system. The first is the find command that searches through the file-system from the point given in the command.

 find START-POINT -name FILE-NAME -print

Using locate is somewhat faster assuming the database it is using is up-to-date. Usually cron runs the updatedb utility daily which updates a database of filenames in the system. Searching this database is much faster than searching the actual file-system. The database can be updated manually with the updatedb command.

 $ sudo updatedb
 $ locate hello.sh
 /home/lmenabrea/Desktop/sandbox/hello.sh

Using GREP to find a string within a file, and list the files containing the string.

 grep [OPTIONS] PATTERN FILES-TO-SEARCH

- `-r` Recursively.
- `-H` Print the file name for each match.
- `-l` Print file names only.
- `-i` Ignore case.

 $ grep -rl "The quick brown fox" ~/*
 /home/lmenabrea/Desktop/sandbox/file3.txt
 /home/lmenabrea/Desktop/sandbox.tar
 $ grep -rH "The quick brown fox" ~/*
 /home/lmenabrea/Desktop/sandbox/file3.txt: The quick brown fox jumps over the lazy dog.
 Binary file /home/lmenabrea/Desktop/sandbox.tar matches

3.7. Formatting file-systems

As an example plug in a USB Stick into the USB port on the computer and format it with two partitions, one as an ext4 partition and the other as a FAT32 (vfat) partition. Plug in the USB Stick and tail the output of the system dmesg output to determine its device name.

 $ dmesg | tail
 [25817.293358] scsi 7:0:0:0: Direct-Access SanDisk Ultra 1.26
 PQ: 0 ANSI: 5
 [25817.294096] sd 7:0:0:0: Attached scsi generic sg2 type 0

 Diarmuid Ó Briain
Another method to find block devices is with the use of the `lsblk` command. This command lists information about all or the specified block devices by reading the information from the `sysfs` filesystem.

```
$ lsblk
NAME                MAJ:MIN RM  SIZE RO TYPE MountPoint
sda                  8:0    0 465.8G  0 disk
├─sda1               8:1    0   243M  0 part /boot
├─sda2               8:2    0   1K  0 part
└─sda5               8:5    0 465.5G  0 part
    └─sda5_crypt (dm-0) 252:0 0 465.5G  0 crypt
        ├─mint--vg-root (dm-1) 252:1 0 457.9G  0 lvm /
        └─mint--vg-swap_1 (dm-2) 252:2 0 7.6G  0 lvm [SWAP]
    sdb                 8:16   1 14.6G  0 disk
    ├─sdb1              8:17   1 7.3G  0 part
    └─sdb2              8:18   1 7.3G  0 part
sr0                  11:0    1  1024M  0 rom
```

Note that the USB Stick is `/dev/sdb1`. Run the `fdisk` utility to edit the partition table. If the existing drive was created with GUID Partition Table (GPT) layout of the partition table on the disk instead of Master Boot Record (MBR) then the `gparted` utility must be used.

```
$ sudo fdisk /dev/sdb
WARNING: GPT (GUID Partition Table) detected on '/dev/sdb'! The util fdisk doesn't support GPT. Use GNU Parted.
Command (m for help):
Install gparted.
$ sudo apt-get gparted
$ sudo gparted /dev/sdb
```
gparted is a graphical utility, for command-line equivalent use parted.

```
$ sudo parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

The print command shows the existing partitions on the drive.

(parted) print
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 16.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1049kB</td>
<td>16.0GB</td>
<td>16.0GB</td>
<td>ext4</td>
<td>Linux file-system</td>
<td></td>
</tr>
</tbody>
</table>

(parted) rm 1
Warning: Partition /dev/sdb1 is being used. Are you sure you want to continue?
Yes/No? Yes
Error: Partition(s) 1 on /dev/sdb have been written, but we have been unable to inform the kernel of the change, probably because it/they are in use. As a result, the old partition(s) will remain in use. You should reboot now before making further changes.
Ignore/Cancel? Ignore
(parted) quit
Information: You may need to update /etc/fstab.

Umount the partition /dev/sdb1 and reload by removing the USB drive and plugging it back in. Now print the partition table for /dev/sdb and you will see the table is empty.

$ sudo umount /dev/sdb1

$ sudo parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

Create two partitions of roughly equal size.

(parted) mkpart primary 1 8192
(parted) mkpart primary 8193 15000
(parted) print
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 16.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1049kB</td>
<td>8193MB</td>
<td>8191MB</td>
<td>ext4</td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8193MB</td>
<td>15.0GB</td>
<td>6807MB</td>
<td>ext4</td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>

(parted) exit
Check the new partitions.

```bash
$ cat /proc/partitions | grep sdb
 8 16 15633408 sdb
 8 17 7999488 sdb1
 8 18 6647808 sdb2
```

Make an **ext4** file-system on `/dev/sdb1`.

```bash
$ sudo mkfs.ext4 /dev/sdb1
mke2fs 1.42.9 (4-Feb-2014)
file-system label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
499968 inodes, 1999872 blocks
99993 blocks (5.00%) reserved for the super user
First data block=0
Maximum file-system blocks=2051014656
62 block groups
32768 blocks per group, 32768 fragments per group
8064 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and file-system accounting information:
```

Make a **FAT32** (**vfat**) file-system on `/dev/sdb2`.

```bash
$ sudo mkfs.fat /dev/sdb2
mkfs.fat 3.0.26 (2014-03-07)
```

Display new partitions.

```bash
$ sudo gparted /dev/sdb
```
$ sudo parted /dev/sdb  
GNU Parted 2.3  
Using /dev/sdb  
Welcome to GNU Parted! Type 'help' to view a list of commands.  
(parted) print  
Model: SanDisk Ultra (scsi)  
Disk /dev/sdb: 16.0GB  
Sector size (logical/physical): 512B/512B  
Partition Table: gpt  

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1049kB</td>
<td>8193MB</td>
<td>8191MB</td>
<td>ext4</td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8193MB</td>
<td>15.0GB</td>
<td>6807MB</td>
<td>fat32</td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>

3.7.1. Encrypt a partition

Starting with a standard partition of type **ext4**.

$ mkfs.ext4 /dev/sdb1

Using Linux Unified Key Setup (LUKS) as the standard for disk encryption on Linux. **luksFormat** initialises a LUKS partition and sets the initial passphrase.

$ sudo cryptsetup luksFormat /dev/sdb1  
WARNING!  
----------  
This will overwrite data on /dev/sdb1 irrevocably.  
Are you sure? (Type uppercase yes): YES  
Enter passphrase: secret  
Verify passphrase: secret  

**luksOpen** opens the LUKS device and sets up a mapping to a given name (i.e. secret-disk) after successful verification of the supplied passphrase.

$ sudo cryptsetup luksOpen /dev/sdb1 secret-disk  
Enter passphrase for /dev/sdb1: secret

The file **/etc/crypttab** contains descriptive information about encrypted filesystems. **crypttab** is only read by programs like cryptdisks_start and cryptdisks_stop.

$ sudo vi /etc/crypttab  
# <target name> <source device> <key file> <options>  
secret-disk /dev/sdb1

Note: The device can be referred to as /dev/sdb or /dev/mapper/secret-disk.
Make a filesystem on the new encrypted partition.

```bash
$ sudo mkfs.ext4 /dev/sdb1
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
488640 inodes, 1953408 blocks
97670 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2000683008
60 block groups
32768 blocks per group, 32768 fragments per group
8144 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
```

Make a mount point.

```bash
$ sudo mkdir /mnt/secret
```

Add to the `/etc/fstab` file.

```bash
$ sudo vi /etc/fstab

Secret Disk
/dev/mapper/secret-disk /mnt/secret ext4 defaults 1 2
```

Mount the filesystems in the `/etc/fstab`.

```bash
$ sudo mount -a
```

Confirm.

```bash
$ df -h | grep secret
/dev/mapper/secret-disk 7.3G 17M 6.9G 1% /mnt/secret
```
3.8. Mounting file-systems automatically at boot time

For this example the USB Stick created earlier will be mounted automatically at boot time. Clear the `dmesg` log.

```bash
$ sudo dmesg -clear
```

Plug in the USB Stick and then run `dmesg`.

```bash
$ dmesg
```

This confirms the device is `/dev/sdb`. Now check the partition table with `parted`.

```bash
$ sudo parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)
print
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 16.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
1 1049kB 8193MB 8191MB ext4 primary
2 8193MB 15.0GB 6807MB fat32 primary
```

Two partitions `/dev/sdb1`, the `ext4` partition and `/dev/sdb2` the FAT32 (`vfat`) partition exist. Create directories as points in the file system to mount the partitions to.

```bash
$ sudo mkdir /mnt/ext4fs
$ sudo mkdir /mnt/fat32fs
```
Add entries to the `/etc/fstab` file to map these mounts.

```bash
$ sudo -s
cat << FSTAB >> /etc/fstab
Add lines to mount /dev/sdb1 and /dev/sdb2 on boot
/dev/sdb1 /mnt/ext4fs ext4 defaults,users 0 0
/dev/sdb2 /mnt/fat32fs vfat defaults,users 0 0
FSTAB
```

The `users` option permits users that are part of the disk group to mount and unmount the drives.

```bash
$ sudo usermod -a -G disk lmenabrea
```

Now mount the two partitions with the `mount` command, which will read the entries in the `/etc/fstab` directory.

```bash
$ mount /dev/sdb1
$ mount /dev/sdb2
$ mount | grep sdb
/dev/sdb1 on /mnt/ext4fs type ext4 (rw, noexec, nosuid, nodev)
/dev/sdb2 on /mnt/fat32fs type vfat (rw, noexec, nosuid, nodev)
```

Create a file on the mounted partition, confirm the file was created. `umount` the partition and confirm file is gone. Remount again to see file is back.

```bash
$ echo "This is a test file on the ext4 partition." > /mnt/ext4fs/ext4-file.txt
$ ls /mnt/ext4fs/ | grep ext4-file.txt
ext4-file.txt
$ cat /mnt/ext4fs/ext4-file.txt
This is a test file on the ext4 partition.
$ umount /dev/sdb1
$ ls /mnt/ext4fs/ | grep ext4-file.txt
ext4-file.txt
$ mount /dev/sdb1
$ ls /mnt/ext4fs/ | grep ext4-file.txt
ext4-file.txt
```

Reboot to confirm the partitions will mount automatically.

```bash
$ mount | grep sdb
/dev/sdb1 on /mnt/ext4fs type ext4 (rw, noexec, nosuid, nodev)
/dev/sdb2 on /mnt/fat32fs type vfat (rw, noexec, nosuid, nodev)
$ cat /mnt/ext4fs/ext4-file.txt
This is a test file on the ext4 partition.
```

Mounts occurred automatically and the file created on the mounted partition is accessible.
3.9. Mounting networked file-systems

3.9.1. Install Network File System (NFS)

3.9.1.1. What is NFS

NFS is a Client/Server solution that offers the ability to share the resources of a server with many clients. It is also possible to have clients without hard-drives and they mount a virtual hard-drive on a remote NFS Server. In this way all files are stored on the NFS Server.

3.9.1.2. NFS Server

Create /library on the Server

```
linux1:~$ mkdir library
linux1:~$ sudo ln -s /home/lmenabrea/library /library
linux1:~$ echo "This is a test file" > /library/testfile
```

Install NFS on the Server

Install the following packages on the NFS Server.

```
linux1:~$ sudo apt-get install nfs-kernel-server nfs-common rpcbind
```

Add domain to idmapd.conf

Under the line `#Domain = localdomain` add the domain name.

```
linux1:~$ vi /etc/idmapd.conf

...
Domain = obriain.com
...
```
Confirm connectivity with the Client

$ ping -c1 linux2.obriain.com
PING linux2.obriain.com (78.143.141.205) 56(84) bytes of data.
64 bytes from 78.143.141.205: icmp_req=1 ttl=61 time=5.51 ms

--- linux2.obriain.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 5.519/5.519/5.519/0.000 ms

Configure the NFS Server

NFS exports are configured in the file /etc/exports. Each line begins with the absolute path of the directory to be exported, followed by a space separated list of allowed clients and their associated options. In this case the options are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rw</td>
<td>Allow both read and write requests on this NFS volume.</td>
</tr>
<tr>
<td>sync</td>
<td>Reply to requests only after the changes have been committed to stable storage.</td>
</tr>
<tr>
<td>no_subtree_check</td>
<td>This disables subtree checking, which has mild security implications, but can improve reliability.</td>
</tr>
</tbody>
</table>

```
linux1:~$ sudo -s
linux1:~# echo -e "\n# /library access" >> /etc/exports
linux1:~# echo "/library /library obriain.com(rw,sync,fsid=0,no_subtree_check)"
>> /etc/exports
```

```
linux1:~# service nfs-kernel-server start
[ok] Exporting directories for NFS kernel daemon....
[ok] Starting NFS kernel daemon: nfsd mountd.
```

```
linux1:~# exportfs -a
linux1:~# exit
```

3.9.1.3. NFS Client

Confirm connectivity with the NFS Server

```
linux2:~$ ping -c1 linux1.obriain.com
PING linux1.obriain.com (109.106.96.158) 56(84) bytes of data.
64 bytes from 109.106.96.158: icmp_req=1 ttl=62 time=8.12 ms

--- linux1.obriain.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 8.122/8.122/8.122/0.000 ms
```

Install NFS on the Client

Install the following packages for a Debian GNU/Linux NFS client.

```
linux2:~$ sudo apt-get install nfs-common rpcbind
```
Add domain to idmapd.conf

As on the Server add the shared Domain name.

```
linux1:~$ vi /etc/idmapd.conf
...
Domain = obriain.com
...
```
```
linux1:~$ sudo /etc/init.d/nfs-common restart
```

Setup mount in /etc/fstab file

Add an entry in the `/etc/fstab` file that mounts the remote NFS Server export to a local directory `/mnt/library`. Establish a number of options to allow user Read/Write (rw) access and the NO Set owner User ID (nosuid) option to block the operation of suid, and sgid bits being transferred from files on the NFS Server. Initially using the verbose `-v` option switch with the `mount` command highlights any potential problems that may exist.

```
linux2:~$ sudo -s
linux2:~# mkdir /mnt/library
```
```
linux2:~# echo -e "
\n# /Mount to linux1.obriain.com:/library" >> /etc/fstab
```
```
linux2:~# echo -e "linux1.obriain.com:/library	/mnt/library	nfs	user,rw,nosuid	0	0" >> /etc/fstab
```
```
linux2:~# mount -v linux1.obriain.com:/library
```

Users and Groups

It is essential that users have the same User ID (UID) and Group ID (GID) at each side as NFS uses the ID numbers to implement permissions. In the example below note that the permissions in both cases are UID=1001 and GID=1001.

NFS Server

```
linux1:~$ id
uid=1001(lmenabrea) gid=1001(lmenabrea) groups=1001(lmenabrea)
```

NFS Client

```
linux2:~$ id
uid=1001(lmenabrea) gid=1001(lmenabrea) groups=1001(lmenabrea)
```
3.9.1.4. Testing the NFS Setup

Confirm a successful mount.

```bash
linux2:~$ df -h | grep library
```

```
linux1.obriain.com:/library 29G 3.3G 24G 13% /mnt/library
```

Create a file on the NFS Share from the Client, use the user `lmenabrea`.

```bash
linux2:~$ echo "This is a client side write test" > /mnt/library/clienttestfile
linux2:~$ cat /mnt/library/clienttestfile
```

```
This is a client side write test
```

Check the file in the `/library` directory on the Server and create a server side file for test with the user `lmenabrea`.

```bash
linux1:~$ cat /library/clienttestfile
```

```
This is a client side write test
```

```bash
linux1:~$ echo "This is a Server side write test" > /library/servertestfile
linux1:~$ cat /library/servertestfile
```

```
This is a client side write test
```

3.10. Partitioning storage devices

3.11. Troubleshooting file-system issues

The `fsck` utility is used to check a file-system health and should only be run against an unmounted file-system to check for possible issues.

The exit code returned by `fsck` is the sum of the following conditions:

<table>
<thead>
<tr>
<th>Exit code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No errors</td>
</tr>
<tr>
<td>1</td>
<td>file-system errors corrected</td>
</tr>
<tr>
<td>2</td>
<td>System should be rebooted</td>
</tr>
<tr>
<td>4</td>
<td>file-system errors left uncorrected</td>
</tr>
<tr>
<td>8</td>
<td>Operational error</td>
</tr>
<tr>
<td>16</td>
<td>Usage or syntax error</td>
</tr>
<tr>
<td>32</td>
<td>Fsck canceled by user request</td>
</tr>
<tr>
<td>128</td>
<td>Shared-library error</td>
</tr>
</tbody>
</table>
Linux Foundation Certified System Administrator (LFCS)

Check the EXT4 file-system on /dev/sdb1 partition. Note the `echo $?` gives the exit status for the previous command.

```
$ fsck.ext4 /dev/sdb1
e2fsck 1.42.9 (4-Feb-2014)
/dev/sdb1: clean, 13/499968 files, 68558/1999872 blocks
$ echo $?
0
```

Check the FAT32 file-system on /dev/sdb2 partition. `echo $?` returns an exit status of 0.

```
$ fsck.vfat /dev/sdb2
fsck.fat 3.0.26 (2014-03-07)
/dev/sdb2: 1 files, 1/1658708 clusters
$ echo $?
0
```

If a file-system has not been cleanly unmounted, the system detects a dirty bit on the file-system during the next bootup and starts a check. `fsck` will detect any errors on the file-system and attempt to fix. You should not interrupt this repair process. If an empty `forcefsck` file is created in the root of the root file-system, file-systems that have > 0 specified in the sixth column of the `/etc/fstab` will be checked. 0 means do not check. In the case of the extract of `/etc/fstab` below, /dev/sdb1 would be checked, however /dev/sdb2 would not.

```
$ sudo touch /forcefsck
(Extract from /dev/fstab)
<file system> <mount point> <type> <options> <dump> <pass>
/dev/sdb1 /mnt/ext4fs ext4 defaults 0 1
/dev/sdb2 /mnt/fat32fs vfat defaults 0 0
```
This page is intentionally blank
4. Local security

4.1. Accessing the root account

Substitute User (su) is command is used to change a login session's owner. In this example the login session of lmenabrea has the ownership of the session change to Ada Lovelace alovelace.

$ whoami
lmenabrea

$ su alovelace
Password: maths
:/home> whoami
alovelace

:/home> echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

In this case Ada Lovelace will maintain the current directory and the environmental variables of the original user rather than switching to her own account directory and environment variables. To switch and change the current directory and environmental variables a - is required. To demonstrate, note the different $PATH values.

$ whoami
lmenabrea

Change to Ada Lovelace account. Trying with and without the ‘-’ or a ‘-l’ switch. Using either of these switch options provide an environment similar to what the user would expect had the user logged in directly. This can be seen by noting the $PATH assigned after login.

$ su alovelace
Password: maths

:-> whoami
alovelace

:-> echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

:-> echo $HOME
/home/alovelace

$ su - alovelace
Password: maths

:-% whoami
alovelace

:-% echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

:-% echo $HOME
/home/alovelace
To change to the root user with Super User privileges. Again note the difference when a '-' or '-l' is used.

```bash
$ su
Password: root-pass
~ # whoami
root

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

echo $HOME
/root

$ su -
Password: root-pass
~ # whoami
root

~ # echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

~ # echo $HOME
/root
```

### 4.2. Using sudo to manage access to the root account

SuperUser Do (sudo) is a program used to execute a command as another user. It allows users to run programs with the security privileges of another user (typically the superuser, or root).

Looking at a new iteration of the *hello.sh* script used earlier. Note that it is owned by *alovelace* and group rights are with the *babbage* group. Therefore any attempt by *lmenabrea* to run the script fails.

```bash
$ cat hello.sh
#!/bin/bash
echo "Hello World"
while :
do
 echo "Press [CTRL+C] to stop.."q
 sleep 1
done

$ ls -la | grep hello.sh
-rwxr-xr-- 1 alovelace babbage 91 Oct 26 00:54 hello.sh

$./hello.sh
-bash: ./hello.sh: Permission denied
```
Now run with `sudo`, you can see that the process is actually ran by the user `root`.

$ sudo ./hello.sh
Hello World
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..

```bash
root 6248 6247 0 01:00 pts/7 00:00:00 /bin/bash ./hello.sh
```

Now try running it as `alovelace` or the group `babbage` using `sudo`. In the latter case the script is ran by `Imenabrea` and is allowed because the `sudo` was supplied the group `babbage` and `Imenabrea` is in the `sudo` group.

```
$ sudo -u alovelace ./hello.sh
Hello World
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..
```

```bash
alovela+ 6130 6129 0 00:58 pts/7 00:00:00 /bin/bash ./hello.sh
```

```
$ sudo -g babbage ./hello.sh
Hello World
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..
Press [CTRL+C] to stop..
```

```bash
lmenabrea 6402 6401 0 01:02 pts/7 00:00:00 /bin/bash ./hello.sh
```

### 4.2.1. Who can sudo ?

The `sudo` policy is configured in the `/etc/sudoers` file. This is responsible for defining which users have privileges to use `sudo`.

This file also has an `includedir` that reads in all files in the `/etc/sudoers.d` directory and it is expected that files be added instead of editing the `/etc/sudoers` file directly. It has three important lines that give the user `root` and the users in the `admin` and `sudo` groups rights to `sudo` access.

```
root ALL=(ALL:ALL) ALL
%admin ALL=(ALL) ALL
%sudo ALL=(ALL:ALL) ALL
```
The easiest way to give a user `sudo` rights is to add them to the `sudo` group. In this example Ada Lovelace is added to the `sudo` group and given `sudo` privileges. (It is possible to directly edit the `/etc/group` file either).

$$\text{cat } /etc/group | \text{grep } ^\text{sudo}$$

```
sudo:x:27:lmenabrea
```

$ sudo usermod -a -G sudo alovelace

$ cat /etc/group | grep ^sudo

```
sudo:x:27:lmenabrea,alovelace
```

### 4.2.2. root from sudo

It is possible to get full root privileges using `sudo` with the `-s` switch. This is identical to the `su` command except the root password is not necessary, just using the password of the regular user that has `sudo` privileges.

$$\text{sudo } -s$$

```
whoami
root
```
5. Shell scripting

5.1. Basic bash shell scripting

5.1.1. Hello world

```bash
#!/bin/bash
echo "Hello World"
```

5.1.2. Getting input

```bash
#!/bin/bash
Interactive reading of variables
echo "ENTER YOUR NAME"
read sname
Display of variable values
echo $sname
```

5.1.3. Basic Syntax and Special Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Used to add a comment, except when used as \#, or as #! when starting a script</td>
</tr>
<tr>
<td>\</td>
<td>Used at the end of a line to indicate continuation on to the next line</td>
</tr>
<tr>
<td>;</td>
<td>Used to interpret what follows as a new command</td>
</tr>
<tr>
<td>$</td>
<td>Indicates what follows is a variable</td>
</tr>
</tbody>
</table>

5.1.4. Functions

```bash
display () {
 echo "This is a sample function"
}
```

5.1.5. Command Substitution

By enclosing the inner command with backticks (‘) or by enclosing the inner command in $( ) .

```bash
#!/bin/bash
ls /lib/modules/`uname -r`
echo; printf '*%.0s' {1..20}; echo
ls /lib/modules/${uname -r}
```

Diarmuid Ó Briain
5.1.6. Environment Variables

```
#!/bin/bash
DIDDLY=pink
echo "My teddybear is $DIDDLY"
```

```
$./pink.sh
My teddybear is pink
```

5.1.7. Exporting Variables

Variables created within a script are available only to the subsequent steps of that script. Any child processes (sub-shells) do not have automatic access to the values of these variables.

```
export VAR=value
```

or

```
VAR=value ; export VAR
```

5.1.8. Script Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>Script name</td>
</tr>
<tr>
<td>$1</td>
<td>First parameter</td>
</tr>
<tr>
<td>$2, $3, etc.</td>
<td>Second, third parameter, etc.</td>
</tr>
<tr>
<td>$*</td>
<td>All parameters</td>
</tr>
<tr>
<td>$#</td>
<td>Number of arguments</td>
</tr>
</tbody>
</table>

5.1.9. Redirection

```
$ wc -l syslog.pdf
1721 syslog.pdf
```

```
$ wc -l < syslog.pdf
1721
```
5.1.10. if statement

if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi

A more general definition is:

if condition
then
  statements
else
  statements
fi

i.e.

$ cat if.sh
#!/bin/bash

echo -n "ENTER A NUMBER: 
read number
if [ $number -eq 10 ]
then
  echo 'It is 10'
else
  echo 'It is not 10'
fi

$ ./if.sh
ENTER A NUMBER: 10
It is 10

$ ./if.sh
ENTER A NUMBER: 11
It is not 10

5.1.11. elif statement

if condition
then
  statements
else
  statements
fi
5.11.1. Using 'if' to test for files

if [ -f filename ]
5.1.12. Comparison Operators

5.1.12.1. Numerical tests

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-eq</td>
<td>Equal to.</td>
</tr>
<tr>
<td>-ne</td>
<td>Not equal to.</td>
</tr>
<tr>
<td>-gt</td>
<td>Greater than.</td>
</tr>
<tr>
<td>-lt</td>
<td>Less than.</td>
</tr>
<tr>
<td>-ge</td>
<td>Greater than or equal to.</td>
</tr>
<tr>
<td>-le</td>
<td>Less than or equal to.</td>
</tr>
</tbody>
</table>

5.1.12.2. String tests

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>Is equal to.</td>
</tr>
<tr>
<td>!=</td>
<td>Is not equal to.</td>
</tr>
<tr>
<td>-z</td>
<td>String is null.</td>
</tr>
<tr>
<td>-n</td>
<td>String is not null.</td>
</tr>
</tbody>
</table>

```
if [string1 == string2] ; then
 ACTION
fi
```

5.1.13. Arithmetic Expressions

```
expr 8 + 8
echo $(expr 8 + 8)
```

Using the `$((...))` syntax: This is the built-in shell format. The syntax is as follows:

```
echo $((x+1))
```

Using the built-in shell command `let`. The syntax is as follows:

```
let x=(1 + 2); echo $x
```

5.1.14. Strings

5.1.14.1. Length of a String

```
myLen1=${#mystring1}
```

Saves the length of `mystring1` in the variable `myLen1`. 
5.1.14.2. Parts of a string

${string:0:1}

Here 0 is the offset in the string (i.e., which character to begin from) where the extraction needs to start and 1 is the number of characters to be extracted.

${string#*.}

To extract all characters in a string after a dot (.).

5.1.15. Boolean Expressions

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;&amp;</td>
<td>AND</td>
<td>The action will be performed only if both the conditions evaluate to true.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>NOT</td>
<td>The action will be performed only if the condition evaluates to false.</td>
</tr>
</tbody>
</table>

5.1.16. CASE statement

```bash
#!/bin/bash

echo "ENTER a number between 1 & 5"
read numb

case $numb in
 1) echo "you selected 1";;
 2) echo "you selected 2";;
 3) echo "you selected 3";;
 4) echo "you selected 4";;
 5) echo "you selected 5";;
 *) echo "you cheated !! ";;

esac
```

Example:
5.1.17. Looping Constructs

5.1.17.1. for

```bash
#!/bin/bash
num=0
end=15
for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
do
 num=$(($num+$i))
done
echo "The sum of $end numbers is $num

num=0
for i in {1..15}
do
 num=$(($num+$i))
done
echo "The sum of $end numbers is $num

num=0
for ((j=num; j<=$end; j++))
do
 num=$(($num+$j))
done
echo "The sum of $end numbers is $num
```

5.1.17.2. while

```bash
#!/bin/bash
num=0
end=15
while [$num -lt $end]
do
 echo "$num is less than $end"
 ((num++))
done
echo "$num = $end"
```

5.1.17.3. until

```bash
#!/bin/bash
num=0
end=15
until [$num -eq $end]
do
 echo "$num is less than $end"
 ((num++))
done
echo "$num = $end"
```
5.1.18. Script Debugging

```bash
#!/bin/bash -xv
set -x # activate debugging from here.
```

`cmd`  # Command or command block to be monitored.

```bash
set +x # stop debugging from here.
```

5.1.19. Redirecting Errors to File and Screen

<table>
<thead>
<tr>
<th>File stream</th>
<th>Description</th>
<th>File Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>stdin</td>
<td>Standard Input, by default the keyboard/terminal for programs run from the command line</td>
<td>0</td>
</tr>
<tr>
<td>stdout</td>
<td>Standard output, by default the screen for programs run from the command line</td>
<td>1</td>
</tr>
<tr>
<td>stderr</td>
<td>Standard error, where output error messages are shown or saved</td>
<td>2</td>
</tr>
</tbody>
</table>

5.1.20. Creating Temporary Files and Directories

<table>
<thead>
<tr>
<th>Command</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP=$(mktemp /tmp/tempfile.XXXXXXXX)</td>
<td>To create a temporary file</td>
</tr>
<tr>
<td>TEMPDIR=$(mktemp -d /tmp/tempdir.XXXXXXXX)</td>
<td>To create a temporary directory</td>
</tr>
</tbody>
</table>

```
$ mktemp passwdXXXX
passwdU9t3
$ mktemp -d passwdXXXX
passwdSjnH
$ ls -l | grep pass
drwx------ 2 lmenabrea lmenabrea 4096 Oct 1 17:49 passwdSjnH
-rw-------- 1 lmenabrea lmenabrea 0 Oct 1 17:49 passwdU9t3
```

5.1.21. Discarding Output with /dev/null

`/dev/null` the bit bucket or black hole.
5.1.22. Random Numbers and Data

```
$ echo $RANDOM
3679
$ echo $RANDOM
394
$ echo $RANDOM
16847
$ echo $RANDOM
7609
```

Random, urandom kernel random number source devices.

```
$ head -c 1M < /dev/urandom > ~/Desktop/random.data.1M
$ ls -l ~/Desktop/random.data.1M
-rw-r--r-- 1 lmenabrea lmenabrea 1048576 Oct 1 19:01 /home/lmenabrea/Desktop/random.data.1M
$ cat ~/Desktop/random.data.1M
```

5.1.23. Here Documents

A here document is a special-purpose code block. It uses a form of I/O redirection to feed a command list to an interactive program or a command.

```
$ cat <<EOM

This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is the last line of the message.

EOM
```
Using `<<` instead of `<<` suppresses leading tabs.

```
$ cat <<EOM

This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.

EOM
```

Assign a here document to a variable.

```
#!/bin/bash

here_file=$(cat <<EOM

This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.

EOM
)

echo "Here is the document"; echo

echo "$here_file"
```

Using a here document as a comment block. Handy for troubleshooting.

```
: <<COMMENT
This will not be processed
by the bash interpreter.
COMMENT
```
6. Software management

6.1. Installing software packages

Software is installed on Debian based distributions using the APT utility. `apt-cache` is the tool used to search for packages in the repositories while `apt-get` is the APT tool for handling packages

```
apt-get [options] [command] [package ...]
```

6.1.1. apt-get commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>update</td>
<td>used to resynchronise the package overview files from their sources.</td>
</tr>
<tr>
<td>upgrade</td>
<td>used to install the newest versions of all packages currently installed on the system from the sources enumerated in <code>/etc/apt/sources.list</code>.</td>
</tr>
<tr>
<td>dist-upgrade</td>
<td>dist-upgrade, in addition to performing the function of upgrade, also intelligently handles changing dependencies with new versions of packages.</td>
</tr>
<tr>
<td>install</td>
<td>install is followed by one or more packages desired for installation.</td>
</tr>
<tr>
<td>remove</td>
<td>to install except that packages are removed instead of installed.</td>
</tr>
<tr>
<td>check</td>
<td>Diagnostic tool; it updates the package cache and checks for broken packages.</td>
</tr>
<tr>
<td>clean</td>
<td>clean clears out the local repository of retrieved package files.</td>
</tr>
</tbody>
</table>

6.1.2. Example

Find a package that acts as a sticky note for the desktop and install.

```
apt-cache search <package>
```

```
apt-cache search sticky
knotes - sticky notes application
labrea - a "sticky" honeypot and IDS
rhinote - virtual sticky-notes for your desktop
xpad - sticky note application for X
```

```
sudo apt-get install xpad
```
$ xpad

My sticky notepad
7. Additional handy tools for exam

7.1. Using tmux

**tmux** is a terminal multiplexer: it enables a number of terminals to be created, accessed, and controlled from a single screen. **tmux** may be detached from a screen and continue running in the background, then later reattached.

### 7.1.1. Session Management

<table>
<thead>
<tr>
<th>Shell command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$ tmux new -s &lt;session_name&gt;</code></td>
<td>Creates a new tmux session named <code>&lt;session_name&gt;</code></td>
</tr>
<tr>
<td><code>$ tmux attach -t &lt;session_name&gt;</code></td>
<td>Attaches to an existing tmux session named <code>&lt;session_name&gt;</code></td>
</tr>
<tr>
<td><code>$ tmux switch -t &lt;session_name&gt;</code></td>
<td>Switches to an existing session named <code>&lt;session_name&gt;</code></td>
</tr>
<tr>
<td><code>$ tmux list-sessions</code></td>
<td>Lists existing tmux sessions</td>
</tr>
<tr>
<td><code>$ tmux detach (prefix + d)</code></td>
<td>Detach the currently attached session</td>
</tr>
</tbody>
</table>

### 7.1.2. Session commands

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Ctrl-b&gt;%</code></td>
<td>Split a window vertically</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&quot;&gt;</code></td>
<td>Split the window horizontally</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;x</code></td>
<td>Kill the current pane</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code> Up, Down, Right, Left</td>
<td>Move the cursor from one pane to the other</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;:</code></td>
<td>If you want to go to the previously active pane</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code>&lt;Ctrl-o&gt;</td>
<td>Rotate the panes</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code>x</td>
<td>Close the current pane</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code>{</td>
<td>Scroll within a pane (use q to exit this mode)</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code>}</td>
<td>Swap the current pane with the previous pane</td>
</tr>
<tr>
<td><code>&lt;Ctrl-b&gt;</code>}</td>
<td>Swap the current pane with the next pane</td>
</tr>
</tbody>
</table>

**tmux** is handy for the examination to create multiple shell panes.
7.2. Calculator

`bc` is a command-line calculator.

$ bc
bc 1.06.95
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.

34*4
136

23+45
68

10/5
2

66-6
60

quit
GNU Free Documentation License

Version 1.3, 3 November 2008


Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History"). To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A "Massive
Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable
works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
This page is intentionally blank