Introduction to Free Software

Jesus M. Gonzélez-Barahona
Joaquin Seoane Pascual
Gregorio Robles
Edited by Jordi Mas Hernandez and David Megias Jiménez

Introduction to Free Software
by Jesiis M. Gonzdl ez-Barahona, Joaquin Seoane Pascual, Gregorio Robles, Jordi Mas Hernandez, and David Megias

Jiménez
Publication date 2009-09-01

GNUFDL

Acknowledgements

Theauthorswould liketo thank the Foundation for the Open University of Cataloniafor funding the present
edition of thiswork, and a large share of the improvements leading to this second edition, as part of the
International Mastersin Free Software offered by them, whereit isused as materia for one of the subjects.

Table of Contents

810 00T 0= PP PPT T PPPPPTN Vi
1010 01 1 PP PP PO UOPPPTOPPPPIN Xi
INrOdUCE ON. INEFOAUCTIONceiiti ettt e e e e e e eeees Xi

L FrEE SOMIWEIE ...ttt e et e e et 14
Fg11geTo (¥ oi (oo R PP PP TR TPPPRTR 14

The concept of software freedomiiiiiii i 14
IVIOLIVELIONS ...ttt e ettt e ettt e e ettt e e e e erb e neeeenbneeees 17
The consequences of the freedom of SOftwarecooviiieiiiiiiiiii e, 17
SUMIMBIY e ettt et e e et e e e e e e e e e e e e re s 19
A DIt OF NISLOMY .o 19
Free software before free Software ... 20
The beginning: BSD, GNUcooiiiiiii e 22
EVErything iN IS WaYcceeeeieiiiiie et 26
A tiMe Of MEIUFBLIONveiieiii et e e eeaanns 28
The future: an ObSLaCIe COUrSA? i 35
SUMIMBIY e ettt et e e et e e e e e e e e e e e e re s 35
L B0l BS0ECES ...iiiiii ettt ettt enaas 36
Brief introduction to intellectual Propertyooouviieiiiiiiiii e 36
Free Software lHCENCEScovuei e 39
SUMIMBIY ettt et et et et e et e e e e et e e e e e e ene s 47
Developers and their MOLIVALIONScuuuiiiiiie e e 47
INEFOTUCTION ...ttt et e e e e et e e e e 48
WHO @@ dEVEIOPEIS? ...t 48
What do deVEIOPES QO? .. .coeeiiiiei e 49
Geographical distriDULIONuiiiiii e 49
D<o [[or: 1 o] o PP TRPSPPPTTR 50
IVIOLIVELIONS ...ttt ettt ettt e ettt e e e e et e e e e erb e e e eeneaeeees 51
LEAOEISNIP et 52
SUMMANY aNd CONCIUSIONScevuiieiiiii e eeit ettt e ettt e e et e e ettt e eeerb e e eenb e eeens 53
ECONOIMY .. et 54
Funding free SOftWare ProjECEScoeuveieiiiii e 54
Business models based 0N free SOftWareoeviiiiieiiii e 60
Other business Model ClasSifiCaliONSveiieuiieiiii e 66
Impact on MONOPOIY SITUBLIONSieiiitiieeiii e 67
Free software and public @adminiStralionSovoieeiiiiiiiii e 70
Impact on the public adMINISratioNScoouuiiiiiiiie e 70
Actions of the public administrations in the world of free softwarecco.coee. 74
Examples of legislative iNitiatiVESuiiiiiiiiiieiiii e 77
Free Software eNgiNEEIINGcoouuiiiiiii e 80
(Fg11goTo (¥ oi (oo H PP PP PPPRTT 81
The cathedral and the DAZaaruiiiiiiiii i e 81
Leadership and decision-making in the bazaarcccooovieiiiiiiiiiiiiic e 82
Free SOftWare PrOCESSESiiiiiii ettt et e e 83
Criticism of "The cathedral and the bazaar"ccoooiiiiiiii 84
QUANLITAEIVE STUIES ...ieee e e 85
FULUINE WOTK ..ttt 87
SUMIMBIY ettt ettt et e et e e e e e e e e e e ene s 88
Development environments and teChNOIOGIESc.vuiiiiiiiiieii e 88
Description of environments, tools and SYStEMSoveieiiiieiiiiiieeii e 88
Associated [anguages and tOO0IScveviiiiiii e 89
Integrated development enVIFONMENTSieiiiiiiieiiiii e 89

Introduction to Free Software

Basic collaboration MEChaniSMSocvviuiiiiiiii e 90
SOUMCE MANBGEIMENT .. eueie ettt e e e e e e e e e e eas 91

(Do TH141= g1 = [o PPN 94

Bug management and Other ISSUESccuuiiiiiiiiii e 96
Support for other architeCtUIESccvuiiiiiiii e e 98
DevelOpmeENt SUPPOIT SIEES .. .euuiiiiieiie e e e e e e e e e e e e e e et e e eaaas 98

L0 I o= PP 100
I PN 101
FFEEBSD ittt 105

S USRI 108
GINOME ..t e e et aaan 113
ADACINIE L. 118
1Yo 1 | = PP 121

(@707 010, 1 To7= 0] (o P 124

RS ol F= A 1011 GO 126
DEDIAN GNU/LINUX .vuiiiiiiiiece et e e e e et e e e et 129
o o 132
OthEr frEB MESOUICES ... vt ittt e et e et e e e et e e e e et e e e eaan s 135
The most important free FESOUICEScuuuiiiii e e e e e e eees 135
Licenses for Other frE8 FESOUICESvivvue ettt e s 139

B A oo = o (== N 159
Appendix A. LEArNING QUILEo.uuiiiiiiiii e e e e e e e e an s 159
Appendix B. Key dates in the history of free softwarecoooeviiiiiiiiiiii i, 164
Appendix C. GNU PUBIIC LICENSE ...uiiiiiiciiii it e e 174
Appendix D. Texts of some legidative proposals and related documents..............ccccecevvneeee. 179
Appendix E. Creative Commons' Attribution-ShareAlikeccocoeiiiiiiiiii i 199
Appendix F. GNU Free Documentation LiCENSEccvvviiiiiiieiii e 204

List of Tables

1.1. Table 1. Countries with the largest number of Debian developers..........oooevveviiieiiiiiiiiiiiee, 50
1.2. Table 2. Dedication iN NOUIS PEI WEEKuuuiiiiiieieei ettt e e e 51
1.3. Table 3. Level of awareness of important deVEIOPErSuuiiiiiriiiieiiiiieeee e 52
1.4, Table 4. ANAlYSIS OF LINUX ...ceeeutniiiiiiee ittt ettt e e e e et eeeri e eeens 104
1.5. Table 5. Programming languages USEd iN LiNUXuviviiiiiiiiiieeei e 104
1.6. Table 6. ANalysis Of FIEEBSDccoouuiiiiiiii e 107
1.7. Table 7. Programming languages used in FreeBSDc.coiviiiiiiiiiiiiiic e 108
1.8. Tahle 8. KDE ANBIYSIS ...ttt eeaaans 112
1.9. Table 9. Programming languages used in KDEcooiiiiiiiiiiiii e 113
1.10. Table 10. AnalysiS Of GNOMEcooiiiiiiiiiii e 117
1.11. Table 11. Programming languages used in GNOMEccouuiiiiiiiiiiieii e 118
1.12. Table 12. AnalysiS Of APBCHEc.ouiiiiii e 120
1.13. Table 13. Programming languages used in APaChEiiiiiiiiiieiiiie e 120
1.14. Table 14. Current status of MOzilla FirefoxXooviiiiiiiiiiii e 123
1.15. Table 15. Programming languages used in Mozilla FirefoXcccoeovieiiiinniiiiineecie, 123
1.16. Table 16. Current status of OpPENOFfICEOIGcevvuiiiiiiieieei e 125
1.17. Table 17. Programming languages used in OpenOffiCe.orgccuuvvveeiiiiniieiii e, 125
1.18. Table 18. Status of Red Hat LiNUX.cooeuuiiiiiiiiiiie e 128
1.19. Table 19. Programming languages used in Red Hat.cccooiviiiiiiiiiiiiiii e 128
1.20. Table 20. Status Of DEDIANcoeveiiiiiii e 130
1.21. Table 21. Programming languages used in Debian GNU/LINUX 4.0cccuviieiiiiinienininnnnn. 131
1.22. Table 22. Languages most used in Debiancc.uuiiiiiiiiiiiiii e 131
1.23. Table 23. Comparison with proprietary SYStEMSccevuuuiiiiiii e 132
1.24. Table 24. AnalySiS Of ECHIPSE ...cieeei e 134
1.25. Table 25. Programming languages used in EClipSecoouviiiiiiiiiieiiii e 135

List of Examples

1.1. The ambiguity Of the term freeo e 15
D N o (PP 15
R O N o (PP 16
1.4. Development methods inherent to free SOftWArecvviiiiiiiiiiiiie e 22
ST N o (PRSPPI 29
G o (= PSPPSR 38
L7 N O ettt 41
1.8. Summary outline of the BSD [ICENCEcoouuiiiiiiiii e 42
LL0. N OB ettt 43
0 O Ao PRSPPI 44
0 Lo = PSP PP UPPPTTRN 45
2 Lo = PSSO PP SPPPTTR 49
I Lo = PSPPSR UPPPTTR 51
I Lo = PSSO PP UPPPT TR 55
1.15. The develOpmeENt OF GINAT ...ttt e e et e s 55
G Lo = PSP O PP UPPPTTRN 56
1.17. The case of Corel and WINEcoouuiiiiiii e e 56
S Lo = PSP PP UPPPTTRN 57
T Lo = PSPPSR UPPPTTR 58
1.20. SOUMCEXCNANGE .. .eeteeeeiti ettt ettt ettt ettt e ettt e et et e e et e e e e e tb e e e et e e eenans 59
1.21. Sale of free software a SO MUCH P COPY ..ovvvueiiiiiieiiiii et 60
1.22. Relationship with develOpmENt ProJECEScvevienieiiiii et 61
123, EXAMPIES ..ot 62
L.22, EXAMPIES ..ot 63
L.25. EXAMPIES ..ot 64
1.26. EXAMPIES ..ot 65
1.27. Free products that are dominant in their SECIOTviiiiiiiiiiii e 69
22 R Lo = PSSO UPPPTTR 69
1.29. The case of GNU/LINUX diStriDULIONSiiiiiiiiii e 72
IS O Lo = PSP O PP UPPPTTR 73
1.31. Some cases related to German adminiStrationScceeueiieiiiiiie e 76
IS N Lo L= PSP UPPPTTRN 77
IS 1 Lo = T PSSO PP UPPPTTRN 83
R 7 [0 [PP UPTPP 93
L35, AGVICE .ottt ettt e e e e e e e e eae 96
IS G Lo L= PP TPPPTTR 101
R Y Lo L= PO PRSPPI 102
IS S Lo L= PP TPPPTTR 103
IS Lo L= PP TPPPTTR 112
O Lo = PO PP PSPPPTTR 116
O Lo L= PP PP TPPPTTR 117
LLA2. INOLE ..ottt ettt as 119
R Lo = TP PO P TP TPPPTTR 122
LU INOEE ..ottt ettt et 122
T Lo L= U PO P TR TPPPTTR 126
LLAB. INOLE ...ttt ettt ettt ettt e s 128
LLAT. INOU ..ottt ettt e s 130
S Lo L= PP SPPPTTR 138

preliminars
Glossary

ACM

AFPL

ALSA

AOL

API

ARM

ASCII

AT&T

AITC

ATK

BIND

BIRT

BITNET

BSA

BSD

BSDI

BSI

CDDL

CD-ROM

CEPS

CERN

CaGl

COoCOMO

CORBA

CPL

CSRG

Association for Computing Machinery

Aladdin Free Public License

Advanced Linux Sound Architecture
AmericaOnline

Application program interface

Advanced RISC machines

American standard code for information interchange
American Telephone & Telegraph

Agency of Information Technologies and Communication
Accessibility Toolkit

Berkeley Internet Name Domain

Business Intelligence and Reporting Tools

Because It's There Network

Business Software Alliance

Berkeley Software Distribution

Berkeley Software Design Incorporated

Bundesamt fur Sicherheit in der Informationstechnik
Common Development and Distribution License
Compact disc read-only memory

Cisco Enterprise Print System

Conseil Europeen pour la Recherche Nucléaire
Common Gateway Interface

Cost construction model

Common object request broker architecture
Common Public License

Computer Systems Research Group

Vi

preliminars

Css Cascading style sheet

CVs Control version system

DARPA Defense Advanced Research Projects Agency
DBUS Desktop Bus

DCOP Desktop communication protocol

DEC Digital Equipment Corporation

DECUS Digital Equipment Computer User Society
DFSG Debian Free Software Guidelines

DRM Digital rights management

DSDP Device Software Development Platform
DTD Document type definition

DTP Datatools platform

DVD Digital video disk

ECTS European credit transfer scheme

EMP Eclipse Modeling Project

EPL Eclipse Public License

HCEST Higher College of Experimental Sciences and Technology
ETP Eclipse Tools Project

FAQ Frequently asked questions

FDL Free Documentation License

FIC First International Computer

FSF Free Software Foundation

FTP File transfer protocol

FUD Fear, uncertainty, doubt

GCC GNU C Compiler

GDB GNU Debugger

GFDL GNU Free Documentation License

GIMP GNU Image Manipulation Program
GNAT GNU Ada Translator

GNATS GNU Bug Tracking System

Vii

preliminars

GNU GNU's Not Unix

GPL Genera Public License

GTK GIMP Toolkit

GUADEC GNOME User and Developer European Conference

HIRD HURD of Interfaces Representing Depth

HTML Hypertext markup language

HTTP Hypertext transfer protocol

HURD HIRD of Unix-Replacing Daemons

R&D Research and devel opment

IBM International Business Machines Corporation

IDE Integrated devel opment environment

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

INRIA Ingtitut National de Recherche en Informatique et en Automatique

IP Internet protocol

IRC Internet Relay Chat

ISO International Standards Organization

ITU International Telecommunications Union

JDK Java Developer Kit

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

VM Java Virtual Machine

KBSt Koordinierungs-und Beratungsstelle der Bundesregierung fur
Informationstechnik in der Bundesverwaltung

KDE K Desktop Environment

LGPL Lesser General Public License

LISP List processing language

LLC Limited Liability Company

IPA Intellectual Property Act

LTS Long term support

MCC Manchester City Council

viii

preliminars

MIT Massachusetts I nstitute of Technology

MPEG Moving Picture Experts Group

MPL MozillaPublic License

MTIC Mission Interministerielle de Soutin Technique pour le

Developpement des technologies de I'Information et de la
Communication dans I'Administration

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputing Applications

NPL Netscape Public License

NSFNet National Science Foundation Network

NUMA Non-uniform memory access

NYU New York University

OASIS Organization for the Advancement of Structured Information
Standards

ODF Open document format

ODP Open Directory Project

OHGPL Openl PCore Hardware General Public License

OLPC One Laptop Per Children

WTO World Trade Organisation

WIPO World Intellectual Property Organisation

ORB Object request broker

OSDN Open Software Development Network

OSGi Open Services Gateway |nitiative

osl Open Source Initiative

GDD Gross Domestic Product

PDA Portable digital assistant

PDF Portable document format

PDP Programmed data processor

PHP PHP hypertext preprocessor

PLOS Public Library of Science

PNG Portable network graphics

preliminars

FAQ Frequently asked questions

QPL Qt Public License

RCP Rich client plaftorm

RDF Resource description framework

RFC Request for comments

RFP Request for proposal

RHAD Red Hat Advanced Development

RPM Red Hat Package Manager

RTF Rich text format

SCO Santa Cruz Operation

SPE Secretariat of Public Education

SGI Silicon Graphics Incorporated

SGML Standard generalised markup language
SISSL Sun Industry Standards Source License
SLS Softlanding Linux System

SOA Service oriented architecture

SPARC Scalable processor architecture

SPICE Simulation program with integrated circuits emphasis
SSL Secure socket layer

TAMU Texas A&M University

TCP Transport control protocol

TEI Text Encoding Initiative

TPTP Test and Performance Tools Project
TRIPS Trade-related intellectual property rights
UMTS Universal mobile telecommunications system
uoC Open University of Catalonia

USA United States of America

USD United States dollar

USENET User network

USENIX Unix Users Group

preliminars

USsL Unix System Laboratories
UUCP UNIX to UNIX copy protocol
VHDL Very high speed integrated circuit hardware description language
W3C World Wide Web Consortium
WIPO World Intellectual Property Organisation
WTO World Trade Organisation
WTP Web Tools Project
Www World Wide Web
WY SIWYG What you see iswhat you get
XCF Experimental computing facility format
XML Extensible markup language
Info
Third edition: September 2009
Fundacio per ala Universitat Oberta de Catalunya.
Av. Tibidabo, 39-43, 08035 Barcelona
Material prepared by EurecaMedia, SL
© Jeslis M. Gonzélez Barahona, Joaguin Seoane Pascual, Gregorio Robles
Legal deposit: B-1.559-2008
© 2008, FUOC. Permission is granted to copy, distribute and modify this document either under theterms
of the
or any subsequent version published by the
, with no invariant sections or front-cover or back-cover texts, or under the terms of Creative Commons
by-sa 3.0 license, at the option of the user. A copy of these licenses is included in the corresponding
appendixes of this document.
Introduction

"Anyone who hearsthis, if he can sing, may add and change at pleasure. Let it go from
hand to hand: let those who request it have it. As a ball among young women, catch it
if you can.

Since thisis of 'Good Love', lend it out gladly: do not make a mockery of its name by
keeping it in reserve; nor exchangeit for money by selling or renting it; for 'Good Love
when bought, loses its charm."

Juan Ruiz, Archpriest of Hita. The Book of Good Love (14th century, original in Ancient
Spanish)

The first version of these notes was written by Jeslis M. Gonzalez-Barahona, Joagquin Seoane Pascual
and Gregorio Robles between April and September 2003. Although we had been discussing for a while
preparing a document of this type for the Free Software course that Joaquin and Jesus teach as part of the
PhD programs of their respective departments, it was the initiative of the Open University of Catalonia

Xi

preliminars

(UOC) that commissioned us to prepare material to introduce the free software masters course, which
finally encouraged usto get started. Theinvolvement of Jordi Mas, the academic coordinator of the masters
course, in this task was crucial, in that he proposed us for the job and put us in contact with the UOC,
additionally supporting our relations with the UOC throughout the project's duration.

Shortly after handing in the first edition, the authors started retouching the material as part of an ongoing
process, although with varying degrees of activity, until this second edition was completed in May 2007.
During this time, the first edition was extensively used in the free software masters of the UOC and in
various other postgraduate coursesin Spain and America. The experience with the UOC has been followed
with particular interest by Gregorio Robles, who has participated in it, and has therefore obtained feedback
that has proven extremely valuable for improving the content. The three of us (Joagquin, Jesis, and since
2006, Gregorio) have also continued with the postgraduate software course at the UPM (Polytechnic
University of Madrid) and at the URJC (Rey Juan Carlos University), taking advantage of it in order to
test the material.

Once again, the UOC has been the catalyser of this second edition, charging us with a commission that
we have taken too long to complete. The work of Jordi Mas and David Megias (of the UOC) has been
fundamental, and has provided vital critical support for pushing forward this new edition. Thework of José
Ignacio Fernandez Villamor and Boni Garcia Gutiérrez, pupils of Joaquin Seoane, who have collaborated
in reviewing the materials for this second edition, has also been essential.

Previous materials

Some of thetextsin these notesare based on previousmaterial, usually belonging to the authorsthemselves,
and in some cases to third parties (used with permission when not completely redrafted). Among them,
we would like to mention the following (at the risk of omitting anyone important):

» There are some fragments (especially on the chapters of history and the economy) inspired by the
document " Free Software / Open Source: Information Society Opportunitiesfor Europe?’ [132], which
Jestis Gonzal ez-Barahona co-edited for the European Commission. However, the fragmentsin question
have been extended, retouched and updated to such an extent that in many cases they may be difficult
to recognise.

» The section on monopolies and free software (section 5.4) has been based on the paper " Software libre,
monopoliosy otrasyerbas' ("Free software, monopolies and other herbes") [84], by Jesis M. Gonzal ez-
Barahona.

* Thesectionson legislativeinitiatives and public administrationinitiativesin relation to free software are
partly based on "Iniciativas de las administraciones publicas en relacion a Software Libre" (“Initiatives
of public administrations related to free software") [103] (thanks to Pedro de las Heras for allowing us
to use this material, which he co-authored).

* Part of the section on motivesfor using free softwarein the public administrations (Section 6.2) is based
on the paper [85], by Jesiis M. Gonzélez-Barahona.

» The chapter on free software engineering is an adaptation of the paper on the state of the art of software
engineering applied to free software by Jeslis M. Gonzalez-Barahona and Gregorio Robles for the
magazines Novética (Spanish version) and Upgrade (English version).

* In the chapter on case studies, the part regarding the development of Linux is based on a presentation
made by Juan-Mariano de Goyeneche during the postgraduate course "Free Programs' of the
Polytechnic University of Madrid during academic year 2002-03.

e The historical part of the detailed study of GNOME has been taken from the historical introduction
included in the book on "Applications development in GNOME2" prepared by GNOME Hispano and
written by one of the authors of this book.

Xii

preliminars

e The FreeBSD case study is partly based on the presentation given by Jesls Rodriguez at the il
HispaLinux Conference held in Madrid in the year 2000.

» The Debian and Red Hat case studies are based on the previous work of Gonzdlez-Barahona et a. who
have reflected the results of the quantitative analysis of these two distributions in various papers.

» Various materials, especially updates and new material in the chapter on case studies, were prepared by
José Ignacio Fernandez Villamor and Boni Garcia Gutiérrez towards the beginning of 2007 on aspecific
branch for modifications made in the context of that year's edition of the postgraduate subject of Joaquin
Seoane at the UPM. A large proportion of those materials was included in time for the second edition.

Xiii

Chapter 1. Free Software

Jesus M. Gonzalez-Barahona
Joaguin Seoane Pascual
Gregorio Robles

GNUFDL
2009-09-01

Introduction

"If you have an apple and | have an apple and we exchange apples, then you and | will
still each have one apple. But if you have an idea and | have an idea and we exchange
these ideas, then each of uswill have two idess.”

Attributed to Bernard Shaw

What is free software? What is it and what are the implications of a free program licence? How is free
software devel oped? How are free software projects financed and what are the business model s associated
to them that we are experiencing? What motivates devel opers, especially volunteers, to become involved
in free software projects? What are these developerslike? How are their projects coordinated, and what is
the software that they produce like? In short, what is the overall panorama of free software? These are the
sort of questionsthat we will try to answer in this document. Because although free software isincreasing
itspresencein the mediaand in debates between I T professional s, and although even citizensin general are
starting to talk about it, it is still for the most part an unknown quantity. And even those who are familiar
with it are often aware of just some of its features, and mostly ignorant about others.

To begin with, in this chapter we will present the specific aspects of free software, focusing mainly
on explaining its background for those approaching the subject for the first time, and underlining its
importance. As part of this background, we will reflect on the definition of the term (to know what we are
talking about) and on the main consequences of using (and the mere existence of) free software.

The concept of software freedom

Since the early seventies we have become used to the fact that anyone commerciaising a program can
impose (and does impose) the conditions under which the program can be used. Lending to a third party
may be prohibited for example. Despite the fact that software is the most flexible and adaptable item
of technology that we have, it is possible to impose the prohibition (and it frequently is imposed) to
adapt it to particular needs, or to correct its errors, without the explicit agreement of the manufacturer,
who normally reserves the exclusive right to these possibilities. But this is just one of the possihilities
that current legidation offers: free software, on the other hand, offers freedoms that proprietary software
denies.

Proprietary Software

In this text we will use the term proprietary software to refer to any program that cannot be
considered free software in accordance with the definition we provide later.

14

Free Software

Definition

So, the term free software, as conceived by Richard Stallman in his definition (Free Software Foundation,
"Free software definition” http://www.gnu.org/philosophy/free-sw.html [120]), refers to the freedoms
granted to its receiver, which are namely four:

1. Freedom to run the program in any place, for any purpose and forever.
2. Freedom to study how it works and to adapt it to our needs. This requires access to the source code.
3. Freedom to redistribute copies, so that we can help our friends and neighbours.

4. Freedom to improve the program and to release improvements to the public. This also requires the
source code.

The mechanism that guaranteesthese freedoms, in accordance with current legislation, isdistribution under
a specific licence aswe will see later on (chapter 3). Through the licence, the author gives permission for
the receiver of the program to exercise these freedoms, adding also any restrictions that the author may
wish to apply (such asto credit the original authorsin the case of aredistribution). In order for the licence
to be considered free, these restrictions must not counteract the abovementioned freedoms.

Example 1.1. The ambiguity of theterm free

The English term free software includes the word free, standing for ‘freedom’, but the term can mean also
'free of charge' or 'gratis, which causes agreat deal of confusion. Which iswhy in some cases the English
borrow Spanish/French words and refer to libre software, as opposed to gratis software.

Therefore, the definitions of free software make no reference to the fact that it may be obtained free
of charge: free software and gratis software are two very different things. However, having said this,
we should also explain that due to the third freedom, anyone can redistribute a program without asking
for afinancial reward or permission, which makes it practically impossible to obtain big profits just by
distributing free software: anyone who has obtained free software may redistribute it in turn at a lower
price, or even for free.

Example 1.2. Note

Despite the fact that anyone can commercialise a given program at any price, and that this theoretically
means that the redistribution price tends towards the marginal cost of copying the program, there are
business models based precisely on selling free software, because there are many circumstancesin which
the consumer will be prepared to pay in exchange for certain other benefits, such as for example a
guarantee, albeit a subjective one, for the software acquired or an added value in the choice, updating and
organisation of a set of programs.

From a practical point of view, several texts define more precisely what conditions a licence
must fulfil in order to be considered a free software licence. Among these, we would highlight
for their historical importance, the free software definition of the Free Software Foundation
(http://www.gnu.org/philosophy/free-sw.html) [120], the Debian guidelines for deciding whether
a program is free (http://www.debian.org/social_contract.html#guidelines [http://www.debian.org/
social_contract.ntml]) [104] and the definition of the term open source by the Open Source Initiative
(http://www.opensource.org/docs/definition_plain.html) [215], which is very similar to the preceding
ones.

15

http://www.gnu.org/philosophy/free-sw.html
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.opensource.org/docs/definition_plain.html

Free Software

Example 1.3. Note

For example, the Debian guidelines go into the detail of allowing the author to demand that distributed
source codes not be modified directly, but rather that the original is accompanied by separate patches and
that binary programs be generated with different namesto the original. They also demand that the licences
do not contaminate other programs distributed by the same means.

Related terms

The term open source software, promoted by Eric Raymond and the Open Source Initiative is equivalent
to the term free software . Philosophically speaking, the term is very different since it emphasises the
availahility of the source code and not its freedom, but the definition is practically the same as Debian's
("The open source definition”, 1998 http://www.opensource.org/docs/definition_plain.html) [183]. This
name is politically more aseptic and emphasises the technical side, which can provide technical benefits,
such as improved development and business models, better security, etc. Strongly criticised by Richard
Stallman ("Why free software is better than open source") [204] and the Free Software Foundation (http://
www.fsf.org [http://www.fsf.org/]) [27], it hasresonated far better with the commercial literature and with
the company strategies that one way or another support the model.

Other terms associated in some way to free software are as follows:

Freeware These are gratis programs. They are normally
only distributed in binary format, and can be
obtained free of charge. Sometimes it is possible
to obtain permission to redistribute, and sometimes
not, meaning that then it can only be obtained
from the "official" site maintained for that purpose.
It is frequently used to promote other programs
(normally with more complete functionality) or
services. Examples of thistype of programsinclude
Skype, Google Earth or Microsoft Messenger.

Shareware This is not even gratis software, but rather a
distribution method since usually the programs can
be copied freely, generally without source code, but
not used continuously without paying for them. The
reguirement to pay may be motivated by a limited
functionality, being sent annoying messages or the
mere appeal to the user's ethic. Also, the licence's
legal terms may be used against the transgressor.

Charityware, careware This is normally shareware that requires payment
to be directed towards a sponsored charitable
organisation. In many cases, instead of demanding
payment, a voluntary contribution may be
requested. Some free software, such as Vim, asks
for voluntary contributions of this nature (Brian
Molenaar, "What is the context of charityware?")
[173].

Public domain Here, the author totally renounces al his rights in
favour of the public domain, and this needs to be
explicitly stated in the program since otherwise, the
program will be deemed proprietary and nothing
can be done with it. In this case, if additionally the
source codeis provided, the program is free.

16

http://www.opensource.org/docs/definition_plain.html
http://www.fsf.org/
http://www.fsf.org/
http://www.fsf.org/

Free Software

Copyleft This is a particular case of free software where
the licence requires any distributed modificationsto
also befree.

Proprietary, locked-in, non-free These are terms used to refer to software that is
neither free nor open source.

Motivations

Aswe have seen, there aretwo large families of motivationsfor free software development, which likewise
giverise to the two names by which it is known:

» The ethical motivation, championed by the Free Software Foundation (http://www.fsf.org [http://
www.fsf.org/]) [27], which hasinherited the hacker culture and supportsthe use of thetermfree, arguing
that software is knowledge that should be shared unimpeded, that hiding it is antisocial and additionally
claims that the ability to modify programs is a form of freedom of expression. You can study thisin
more depth by reading (Free software, free society. Selected essays of Richard M. Stallman) [211] or
the analysis of Pekka Himanen (The hacker ethic and the spirit of the information age. Random House,
2001) [144].

» The pragmatic motivation, championed by the Open Source Initiative (http://www.opensource.org
[http://www.opensource.org/]) [54] which supportsthe use of the term open source, and arguesthe case
of the technical and financial advantages that we will discussin the next section.

Asidefrom these two main motivations, peopleworking on free software can do so for many other reasons,
including for fun (Linus Torvalds and David Diamond, Texere, 2001) [217] or for money, potentially
with sustainable business models. Chapter 4 studies these motivations in detail on the basis of objective
analyses.

The consequences of the freedom of software

Free software offers many advantages and, of the few disadvantages, many have been exaggerated (or
invented) by proprietary competitors. The most well-founded disadvantage is the financial one, since as
we have seen it is not possible to make much money from its distribution, which can and tends to be
made by someone other than the author. Thisiswhy other business model s and financing mechanisms are
needed, which we look into in chapter 5. Other disadvantages, such as the lack of support or poor quality,
are related to financing but also in many cases are false, since even software with no form of financing
tends to offer good support levels thanks to user and devel oper forums, and often the quality is very high.

Bearing in mind the financia considerations, we should note that the free software cost model is very
different to the proprietary software cost model, since alarge amount of it devel ops outside of the formal
monetary economy, and frequently using exchange/barter mechanisms: "I give you aprogram that you are
interested in, and you adapt it to your architecture and make the improvements that you need." Chapter 7
discussestheright software engineering mechanismsto make the most of these unpaid for human resources
with their own particular features, while chapter 8 studies the tools used to make this collaboration
effective. Also, alarge share of the costs is reduced by the fact that it is free, since new programs do not
need to start from scratch, because they can reuse already made software. The distribution also hasamuch
lower cogt, sinceit isdistributed viathe Internet and with free advertising through public forums designed
for this purpose.

Another outcome of the freedoms is the quality resulting from the voluntary collaboration of people who
contribute or discover and notify bugsin environments or situations that are unimaginable for the original
developer. Plus, if a program does not offer sufficient quality, the competition may take it and improve

17

http://www.fsf.org/
http://www.fsf.org/
http://www.fsf.org/
http://www.opensource.org/
http://www.opensource.org/

Free Software

on it on the basis of what thereis. Thisis how collaboration and competition, two powerful mechanisms,
combine in order to produce better quality.

Now let's examine the beneficial consequences for the receiver.

For the end user

The end user, whether an individual or acompany, can find real competition in a market with amonopoly
trend. To be precise, it does not necessarily depend on the software manufacturer's support, since there
may be several companies, even small ones with the source code and the knowledge that allows them to
do business while keeping certain programs free.

Trying to find out the quality of a product no longer relies so much on the manufacturer's trustwor thiness
as on the guide given by the community's acceptance and the availability of the source code. Also, we can
forget about black boxes, that must be trusted "because we say so", and the strategies of manufacturers
that can unilaterally decide whether to abandon or maintain a particular product.

Evaluating products before they are adopted has been made much easier now, since all we haveto dois
to install the alternative productsin our real environment and test them, whereas for proprietary software
we must rely on external reports or negotiate tests with suppliers, which are not always possible.

Because of the freedom to modify the program for own use, users are able to customise it or adapt it to
own requirements correcting errorsif there are any. The process of debugging errorsfound by proprietary
software users is normally extremely laborious, if not impossible, since if we manage to get the errors
debugged, the correction will often be incorporated in the following version, which may take years to be
released, and which moreover we will have to buy again. With free software, on the other hand, we can
make corrections or fixes ourselves, if we are qualified, or otherwise outsource the service. We can also,
directly or by contracting external services, integrate the program with another one or audit its quality (for
example in terms of security). To agreat extent, control is passed on from the supplier to the user.

For the public administration

The public administration isalarge user of special characteristics, asit has aspecial obligation towardsits
citizens, whether to provide accessible services, neutral in relation to manufacturers, or to guarantee the
integrity, utility, privacy and security of their datain thelong term. All of the above makesit obligatory for
the public administration to be more respectful towards standards than private companies and to maintain
data in open formats and to process data with software that is independent of usually foreign companies
strategies, certified as secure by an internal audit. Adaptation to standards is a notable feature of free
software that proprietary software does not respect to the same extent, because it is generally eager to
create captive markets.

Also, the Administration serves as a sort of showcase and guide for industry, meaning that it has a great
impact, which ought to be directed at weaving a technological fabric that generates national wealth. This
wealth may be created by promoting the development of companies dedicated to developing new free
software for the Administration, or maintaining, adapting or auditing existing software. In chapter 6, we
will look at thisissue in more depth.

For the developer

For the software developer and producer, freedom significantly changes the rules of the game. It makesit
easier to continue to compete while being small and to acquire cutting edge technology. It allows usto take
advantage of others work, competing even with another product by modifying its own code, although the
copied competitor can then al so take advantage of our code (if it iscopyleft). If the project iswell-managed,

18

Free Software

it is possible to obtain the free collaboration of alarge number of people and, also, to obtain accessto a
virtually free and global distribution system. Nonetheless, the issue of how to obtain financial resources
remains, if the software is not the product of a paid-for commission. Chapter 5 deals with this aspect.

For the integrator

For integrators, free software is paradise. It means that there are no longer black boxes that need to be
fitted together, often using reverse engineering. Rough edges can be smoothed out and parts of programs
can be integrated in order to obtain the required integrated product, because there is a huge shared pool
of free software from which the parts can be extracted.

For service and maintenance providers

Having the source code changes everything and puts usin the same position asthe producer. If the position
isnot the same, it is because we are lacking an in-depth knowledge of the program that only the devel oper
has, which means that it is advisable for maintenance providers to participate in the projects that they are
required to maintain. The added value of servicesismuch more appreciated because the cost of the program
islow. It is currently the clearest business with free software and the one where the most competition is
possible.

Summary

This first chapter has served as a preliminary encounter with the world of free software. The concept
defined by Richard Stallman is based on four freedoms (freedom to execute, freedom to study, freedom
to redistribute and freedom to improve), two of which require access to the source code. This accessibility
and its advantages have motivated another less ethical and more pragmatic point of view, defended by
the Open Source Initiative, which has given rise to another term: open source software . We have also
mentioned other related similar or opposite terms, which serve to clarify various concepts. Finally, we
have discussed the consequences of free software for the main partiesinvolved.

A bit of history

"When | started working at the MIT Artificial Intelligence Lab in 1971, | became part
of a software-sharing community that had existed for many years. Sharing of software
was not limited to our particular community; it is as old as computers, just as sharing
of recipes is as old as cooking. But we did it more than most. [...] We did not call
our software free software, because that term did not yet exist; but that is what it
was. Whenever people from another university or a company wanted to port and use a
program, we gladly let them. If you saw someone using an unfamiliar and interesting
program, you could always ask to see the source code, so that you could read it, change
it, or cannibalize parts of it to make a new program.”

Richard Stallman, "The GNU Project" (originally published in the book Open sources)
[208]

Although all the historiesassociated to I T are necessarily brief, free software'sisone of thelongest. Infact,
we could say that in the beginning aimost all devel oped software fulfilled the definition of free software,
even though the concept didn't even exist yet. Later the situation changed completely, and proprietary
software dominated the scene, almost exclusively, for afairly long time. It was during that period that the
foundations were laid for free software as we know it today, and when bit by bit free programs started to
appear. Over time, these beginnings grew into atrend that has progressed and matured to the present day,
when free software is a possibility worth considering in virtualy all spheres.

19

Free Software

This history is largely unknown, to such an extent that for many IT professionals proprietary softwareis
software "in its natural state”. However, the situation is rather the opposite and the seeds of change that
could first be discerned in the first decade of the 21% century had already been sown in the early 1980s.

Bibliography

There are not many detailed histories of free software, and the ones that there are, are usually papers limited to their
main subject. In any case, interested readers can extend their knowledge of what we have described in this
chapter by reading "Open Source Initiative. History of the OSI" [146] (http://www.opensource.org/docs/
history.php), which emphasises the impact of free software on the business community in the years 1998
and 1999; "A brief history of free/open source software movement" [190], by Chris Rasch, which coversthe
history of free software up until the year 2000, or "The origins and future of open source software" (1999)
[177], by Nathan Newman, which focuses to a large extent on the US Government's indirect promotion of
free software or similar systems during the decades of the 1970s and the 1980s.

Free software before free software

Free software as a concept did not appear until the beginning of the 1980s. However, its history can be
traced back to several years earlier.

And in the beginning it was free

During the sixties, the IT panoramawas dominated by large computers, mainly installed in companies and
governmental institutions. IBM was the |eading manufacturer, way ahead of its competition. During this
period, when buying a computer (the hardware), the software came added. As long as the maintenance
contract was paid for, accesswas given to the manufacturer's software catal ogue. Plus, theideaof programs
being something "separate” from acommercia point of view was uncommon.

In this period, software was normally distributed together with its source code (in many cases just as
source code), and in general, with no practical restrictions. User groups such as SHARE (users of IBM
systems) or DECUS (DEC users) participated in these exchanges, and to a certain extent, organised them.
The "Algorithms" section of the magazine Communications of the ACM was another good example of an
exchange forum. We could say that during these early years of IT, software was free, at least in the sense
that those who had access to it could normally have access to the source code, and were used to sharing
it, modifying it and also sharing these modifications.

On 30MJune 1969, IBM announced that as of 1970, it would sell part of its software separately (Burton
Grad, 2002) [131]. This meant that its clients could no longer obtain the programs they needed included
in the price of the hardware. Software started to be perceived as something with an intrinsic value, and
consequently, it became more and more common to scrupulously restrict access to the programs and
the possibility of users sharing, modifying or studying the software was limited as much as possible
(technically and legally). In other words, the situation changed to the one that continues to be case in the
world of software at the beginning of the 21% century.

Bibliography

Readersinterested in learning about thistransition period, can read, for example "How the |CP Directory began" [226]
(1998), in which Larry Welke discusses how one of the first software catalogues not associated to a
manufacturer was born, and how during this process it was discovered that companies would be prepared to
pay for programs not made by their computer manufacturers.

Inthe mid-1970sit was already totally common, inthefield of I T, to find proprietary software. This meant
an enormous cultural change among professionals who worked with software and was the beginning of

20

Free Software

aflourishing of alarge number of companies dedicated to this new business. It would still be almost a
decade before what we now know as free software started to appear in an organised manner and as a
reaction to this situation.

The 70s and early 80s

Even when the overwhelming trend was to explore the proprietary software model, there were initiatives
that showed some of the characteristics of what would later be considered free software. In fact, some of
them produced free software as we would define it today. Of these, we would mention SPICE, TeX and
Unix, which isamuch more complex case.

SPICE (Simulation Program with Integrated Circuit Emphasis) is a program developed by the University
of California, in Berkeley, in order to simulate the electrical characteristics of an integrated circuit. It
was developed and placed in the public domain by its author, Donald O. Pederson, en 1973. SPICE was
originally ateaching tool, and as such rapidly spread to universitiesworldwide. There it was used by many
students of what was then an emerging discipline: integrated circuits design. Because it was in the public
domain, SPICE could beredistributed, modified, studied. It could even be adapted to specific requirements,
and that version could be sold as a proprietary product (which is what a large number of companies have
done dozens of times throughout their history). With these characteristics, SPICE had all the cards to
become the industry standard, with its different versions. And indeed, that is what happened. This was
probably the first program with free software characteristics that for a certain period captured a market,
the one of integrated circuits simulators, and that undoubtedly was able to do so precisaly thanks to these
characteristics (in addition to its undeniable technical qualities).

Bibliography

More information on the history of SPICE can be consulted in "The life of SPICE", presented during the Bipolar
Circuits and Technology Meeting, Minneapolis, MN, USA, in September 1996 [175].

Y ou can find the SPICE web page at http://bwrc.eecs.berkeley.edu/Classes/| cBook/SPICE/.

Donald Knuth started to develop TeX during a sabbatical year, in 1978. TeX is an electronic typography
system commonly used for producing high-quality documents. From the start, Knuth used a licence that
today would be considered a free software licence. When the system was considered sufficiently stable,
in 1985, he maintained that licence. At that time, TeX was on the largest and most well-known systems
that could be considered free software.

Bibliography

You can find some of the milestones in the history of TeX by consulting online http://www.math.utah.edu/software/
plot79/tex/history.html [39]. For further details, the corresponding article in Wikipedia is also extremely
useful, http://www.wikipedia.org/wiki/TeX [233].

The early development of Unix

Unix, one of thefirst portable operating systems, was originally created by Thompson and Ritchie (among
others) from AT&T's Bell Labs. It has continued to develop since its birth around 1972, giving rise to
endless variants sold (literally) by tens of companies.

In the years 1973 and 1974, Unix arrived at many universities and research centres worldwide, with a
licencethat permitted its use for academic purposes. Although there were certain restrictionsthat prevented
its free distribution, among the organisations that did possess alicence the functioning was very similar to
what would later be seen in many free software communities. Those who had access to the Unix source
code were dealing with asystem that they could study, improve on and extend. A community of developers

21

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.math.utah.edu/software/plot79/tex/history.html
http://www.math.utah.edu/software/plot79/tex/history.html
http://www.wikipedia.org/wiki/TeX

Free Software

emerged around it, which soon gravitated towards the CSRG of the University of California, in Berkeley.
This community developed its own culture, which as we will see later, was very important in the history
of free software. Unix was, to a certain extent, an early trial for what we would see with GNU and Linux
several years later. It was confined to a much smaller community, and the AT&T licence was necessary,
but in all other aspects, its development was very similar (in afar less communicated world).

Example 1.4. Development methods inherent to free software

In Netizens. On the history and impact of Usenet and the Internet (IEEE Computer Society Press, 1997
[139], page 139) we can read afew linesthat could refer to many free software projects: " Contributing to
the value of Unix during its early development, was the fact that the source code was open and available.
It could be examined, improved and customised”.

Page 142 of the same work states the following: "Pioneers like Henry Spencer agree on how important
it was to those in the Unix community to have the source code. He notes how having the sources made
it possible to identify and fix the bugs that they discovered. [...] Even in the late 1970s and early 1980s,
practically every Unix site had complete sources".

The text of Marc Rochkind "Interview with Dick Haight" is even more explicit (Unix Review, May 1986)
[198]: "that was one of the great things about Unix in the early days: people actually shared each other's
stuff. [...] Not only did welearn alot in the old days from sharing material, but we also never had to worry
about how things really worked because we always could go read the source.”

Over time, Unix also became an early example of the problems that could arise from proprietary systems
that at first sight "had some free software feature”. Towards the end of the 1970s and especially during the
decade of the 1980s, AT& T changed its policy and access to new versions of Unix became difficult and
expensive. The philosophy of the early years that had made Unix so popular among developers, changed
radically to such an extent that in 1991 AT& T even tried to sue the University of Berkeley for publishing
the Unix BSD codethat Berkeley's CSRG had created. But thisisanother story that wewill pick up onlater.

The beginning: BSD, GNU

All of the cases discussed in the previous section were either individual initiativesor did not strictly comply
with the requirements of free software. It was not until the beginning of the 1980s that the first organised
and conscious projectsto create systems comprising free software appeared. During that period, theethical,
legal and even financial grounds of these projects started to be established (probably more importantly),
with them being developed and completed right up to the present day. And since the new phenomenon
needed a name, this was when the term free software was first minted.

Richard Stallman, GNU, FSF: the free software movement is born

At the beginning of 1984, Richard Stallman, who at the time was employed by the MIT Al Lab, quited
his job to started working on the GNU project. Stallman considered himself to be a hacker of the kind
that enjoys sharing his technological interests and his code. He didn't like the way that his refusal to
sign exclusivity or non-sharing agreements made him an outcast in his own world, and how the use of
proprietary software in his environment left him impotent in the face of situations that could easily be
resolved before.

His idea when he left the MIT was to build a complete software system, for general use, but totally
free ("The GNU Project”, DiBona et al.) [208]. The system (and the project that would be responsible
for making it come true) was called GNU ("GNU's not Unix", a recursive acronym). Although from the
beginning the GNU project included software in its system that was aready available (like TeX or, later,
the X Window system), there was still alot to be built. Richard Stallman started by writing a C compiler
(GCC) and an editor (Emacs), both of which are still in use today (and very popular).

22

Free Software

From the start of the GNU project, Richard Stallman was concerned about the freedoms that the users of
the software would have. He wanted not only those who received programs directly from the GNU project
to continue to enjoy the same rights (modification, redistribution, etc.) but also those who received it after
any number of redistributions and (potentially) modifications. For this reason he drafted the GPL licence,
probably the first software licence designed specifically in order to guarantee that a program would be
freein thisway. Richard Stallman called the generic mechanism that these GPL type licences use in order
to achieve these guarantees, copyleft, which continues to be the name of alarge family of free software
licences (Free Software Foundation, GNU General Public Licence, version 2, June 1991) [118].

Richard Stallman also founded the Free Software Foundation (FSF) in order to obtain funds, which he
uses to develop and protect free software, and established his ethical principles with the "The GNU
Manifesto" (Free Software Foundation, 1985) [117] and "Why software should not have owners" (Richard
Stallman, 1998) [207].

From atechnical point of view, the GNU project was conceived as a highly structured endeavor with very
clear goals. The usual methodology was based on relatively small groups of people (usually volunteers)
developing one of the tools that would then fit perfectly into the complete jigsaw (the GNU system). The
modularity of Unix, onwhich this project wasinspired, fully coincided with that idea. The working method
generally implied the use of Internet, but because at that time it was not extensively implanted, the Free
Software Foundation would aso sell tapes on which it would record the applications, which means that
it was probably one of the first organisations to obtain financial compensation (albeit in arather limited
way) from creating free software.

In the early 90s, about six years after the project was founded, GNU was very close to having a complete
system similar to Unix. However, at that point it had not yet produced one of the key parts: the system's
core (also known as the kernel, the part of the operating system that handles with the hardware, abstracts
it, and allows applications to share resources, and essentially, to work). However, GNU software was
very popular among the users of several different variants of Unix, at the time the most commonly used
operating system in businesses. Additionally, the GNU project had managed to become relatively well
known among IT professionals, and especially among those working at universities. In that period, its
products already had a well-deserved reputation for stability and good quality.

Berkeley's CSRG

Since 1973, the CSRG (Computer Science Research Group) of the University of California at Berkeley
had been one of the centres where most of the Unix-related developments had been made, especially
between 1979 and 1980. Not only were applications ported and other new ones built to run on Unix,
but also important improvements were made to the kernel and a lot of functionality had been added.
For example, during the 80s, severa DARPA contracts (under the US Department of Defence) financed
the implementation of TCP/IP which until today has been considered the reference for the protocols that
make the Internet work (in the process, linking the devel opment of the Internet and the expansion of Unix
workstations). Many companies used the CSRG's devel opments as the bases for their Unix versions giving
rise to well-known systems at the time, such as SunOS (Sun Microsystems) or Ultrix (Digital Equipment).
This is how Berkeley became one of the two fundamental sources of Unix, together with the "official"
one, AT&T.

In order to use al of the code that the CSRG produced (and the code of the collaborators of the Unix
community which to some extent they coordinated), it was necessary to have AT& T'sUnix licence, which
was becoming increasingly difficult (and expensive) to obtain, especialy if access to the system's source
code was required. Partly in an attempt to overcome this problem, in June 1989 the CSRG released the
part of Unix associated to TCP/IP (the implementation of the protocols in the kernel and the utilities),
which did not include AT&T code. It was called the Networking Release 1 (Net-1). The licence with
which it was released was the famous BSD licence, which except for certain problems with its clauses
on advertising obligations, has aways been considered an example of a minimalist free software licence

23

Free Software

(which in addition to allowing free redistribution, also allows incorporation into proprietary products). In
addition, the CSRG tested anovel financing model (which the FSF was already trying out successfully): it
sold tapeswith itsdistribution for USD 1,000 each. Despite the fact that anybody in turn could redistribute
the content of the tapes without any problem (because the licence allowed it), the CSRG sold tapes to
thousands of organisations thus obtaining funds with which to continue developing.

Having witnessed the success of the Net-1 distribution, Keith Bostic proposed to rewrite all of the code
that still remained from the original AT& T Unix. Despite the scepticism of some members of the CSRG,
he made a public announcement asking for help to accomplish this task, and little by little the utilities
(rewritten on the basis of specifications) became integrated into Berkeley's system. Meanwhile, the same
process was done with the kernel, in such a way that most of the code that had not been produced by
Berkeley or volunteer collaborators was rewritten independently. In June 1991, after obtaining permission
from the University of Berkeley's governing body Networking Release 2 (Net-2) was distributed, with
almost al of the kernel's code and all of the utilities of a complete Unix system. The set was once again
distributed under the BSD licence and thousands of tapes were sold at a cost of USD 1,000 per unit.

Just six months after the release of Net-2, Bill Jolitz wrote the code that was missing for the kernel to
function on the 386 architecture, releasing 386BSD, which was distributed over the Internet. On the basis
of that code later emerged, in succession, al the systems of the *BSD family: first NetBSD appeared, as
a compilation of the patches that had been contributed over the Net in order to improve 386BSD; later
FreeBSD appeared, as an attempt to focus on the support of the 1386 architecture; several years later the
OpenBSD project was formed, with an emphasis on security. And there was also a proprietary version
based on Net-2 (although it was certainly original, since it offered its clients all the source code as part
of the basic distribution), which was done independently by the now extinct company BSDI (Berkeley
Software Design Inc.).

Partly as areaction to the distribution produced by BSDI, the AT& T subsidiary that held the Unix licence
rights, Unix System Laboratories (USL), tried to sue first BSDI and then the University of California. The
accusation was that the company had distributed its intellectual property without permission. Following
various legal manoeuvres (which included a countersuit by the University of California against USL),
Novell bought the Unix rights from USL, and in January 1994 reached an out-of-court settlement with
the University of California. As a result of this settlement, the CSRG distributed version 4.4BSD-L.ite,
which was soon used by all the projects of the *BSD family. Shortly afterwards (after releasing version
4.4BSD-Lite Release 2), the CSRG disappeared. At that point, some feared that it would be the end of
*BSD systems, but time has shown that they are till alive and kicking under a new form of management
that ismoretypical of free software projects. Eveninthefirst decade of the year 2000 the projects managed
by the *BSD family are among the oldest and most consolidated in the world of free software.

Bibliography

The history of Unix BSD is illustrative of a peculiar way of developing software during the seventies and eighties.
Whoever is interested in it can enjoy reading "Twenty years of Berkeley Unix" (Marshall Kirk McKusick,
1999) [170], which follows the evolution from the tape that Bob Fabry took to Berkeley with the idea of
making one of the first versions of Thompson and Ritchie's code function on a PDP-11 (bought jointly by
the faculties of informatics, statistics and mathematics), through to the lawsuits filed by AT& T and the latest
releases of code that gave rise to the *BSD family of free operating systems.

The beginnings of the Internet

Almost since its creation in the decade of the 1970s, Internet has been closely related to free software. On
the one hand, since the beginning, the community of developers that built the Internet had several clear
principles that would later become classics in the world of free software; for example, the importance
of users being able to help fix bugs or share code. The importance of BSD Unix in its development (by
providing during the eighties the most popular implementation of the TCP/IP protocols) made it easy to

24

Free Software

transfer many habits and ways of doing things from one community - the developers centred around the
CSRG - to another community - the devel operswho were building what at the timewas NSFNet and would
later become Internet - and vice versa. Many of the basic applications for the Internet's development, such
as Sendmail (mail server) or BIND (implementation of the domain name services) were free and, to agreat
extent, the outcome of collaboration between these two communities.

Finally, towards the end of the 80s and in the decade of the 90s, the free software community was one
of the first to explore in depth the new possibilities offered by the Internet for geographically disperse
groups to collaborate. To alarge extent, this exploration made the mere existence of the BSD community
possible, the FSF or the devel opment of GNU/Linux.

One of the most interesting aspects of the Internet's development, from the free software point of view,
was the compl etely open management of its documents and its rules. Although it may seem normal today
(because it is customary, for example, in the IETF or the World Wide Web Consortium), at the time,
the free availability of al its specifications, and design documents including the norms that define the
protocols, was something revolutionary and fundamental for its development. In Netizens. On the history
and impact of Usenet and the Internet [139] (page 106) we can read:

"This open process encouraged and led to the exchange of information. Technical
development is only successful when information is allowed to flow freely and easily
between the partiesinvolved. Encouraging participation is the main principle that made
the development of the Net possible."

We can see why this paragraph would almost certainly be supported by any developer referring to the free
software project in which he isinvolved.

In another quote, on "The evolution of packet switching" [195] (page 267) we can read:

"Since ARPANET wasapublic project connecting many major universitiesand research
institutions, the implementation and performance details were widely published.”

Obvioudly, thisis what tends to happen with free software projects, where all the information related to a
project (and not only to its implementation) is normally public.

Inthisatmosphere, and beforethe Internet, well into the nineties, became an entire business, the community
of users and its relationship with devel opers was crucial. During that period many organisations learned
to trust not a single supplier of data communication services, but rather a complex combination of
service companies, equipment manufacturers, professional developers, and volunteers, etc. The best
implementations of many programswere not those that came with the operating system purchased together
with the hardware, but rather free implementations that would quickly replace them. The most innovative
developments were not the outcome of large company research plans but rather the product of students or
professional swho tested ideas and collected feedback sent to them by various users of their free programs.

As we have aready mentioned, Internet also offered free software the basic tools for long-distance
collaboration. Electronic mail, news groups, anonymous FTP services (which were thefirst massive stores
of free software) and, later, the web-based integrated development systems have been fundamental (and
indispensable) for the development of the free software community aswe know it today, and in particular,
for the functioning of the immense mgjority of free software projects. From the outset, projects such as
GNU or BSD made massive and intensive use of al these mechanisms, developing, at the same time as
they used them, new tools and systems that in turn improved the Internet.

Bibliography

Readers interested in the evolution of the Internet, written by several of its key protagonists, can consult "A brief
history of the Internet" (published by the ACM, 1997) [166].

25

Free Software

Other projects

During the 1980s many other important free software projects saw the light of day. We highlight for their
importance and future relevance, X Window (windowing system for Unix-type systems), developed at the
MIT, oneof thefirst examplesof large-scal e funding for afree project financed by abusiness consortium. It
isalso worth mentioning Ghostscript, aPostScript document management system devel oped by acompany
called Aladdin Software, which was one of the first cases of searching for a business model based on
producing free software.

Towards the end of the 1980s, there was already an entire constellation of small (and not so small) free
software projects underway. All of them, together with the large projects we have mentioned up until now,
established the bases of the first complete free systems, which appeared in the beginning of the 1990s.

Everything in its way

Around 1990, most of the components of a complete system were ready as free software. On the one
hand, the GNU project and the BSD distributions had completed most of the applications that make
up an operating system. On the other hand, projects such as X Window or GNU itself had built from
windowing environments to compilers, which were often among the best in their class (for example, many
administrators of SUnOS or Ultrix systems would replace their system's proprietary applications for the
free versions of GNU or BSD for their users). In order to have a complete system built exclusively with
free software, just one component was missing: the kernel. Two separate and independent efforts came
to fill the gap: 386BSD and Linux.

The quest for a kernel

Towardsthe end of the 1980s and beginning of the 1990s, the GNU project had abasic range of utilitiesand
toolsthat made it possible to have a complete operating system. Even at the time, many free applications,
including the particularly interesting case of X Window, were the best in their field (Unix utilities,
compilers...). However, to complete the jigsaw a vital piece was missing: the operating system's kernel.
The GNU project was looking for that missing piece with a project known as Hurd, which intended to
build a kernel using modern technologies.

The *BSD family

Practically at the same time, the BSD community was aso on the path towards a free kernel. The Net-2
distribution was only missing six files in order to complete it (the rest had already been built by the
CSRG or its collaborators). In the beginning of 1992, Bill Jolitz finished those files and distributed
386BSD, a system that functioned on the 1386 architecture and that in time would give rise to the projects
NetBSD, FreeBSD and OpenBSD. Progress in the following months was fast, and by the end of the
year it was sufficiently stable to be used in non-critical production environments, which included, for
exampl e, awindows environment thanks to the X Free project (which had provided X Window for the 386
architecture) or agreat quality compiler, GCC. Although there were components that used other licences
(such as those from the GNU projects, which used the GPL), most of the system was distributed under
the BSD licence.

Bibliography

Linux Magazine. Some episodes of this period illustrate the capability of the free software development models. There
isthewell-known case of Linus Torvalds, who developed Linux while asecond-year student at the University
of Helsinki. But thisis not the only case of a student who made hisway thanks to his free developments. For
exampl e, the German Thomas Roel ported X 11R4 (aversion of the X Window system) to a PC based on a 386.

26

Free Software

This development took him to work at Dell, and later to become the founder of the X386 and X Free projects,
which were fundamental for quickly giving GNU/Linux and the *BSDs a windows environment. Y ou can
read more about the history of XFree and Roel's role in it in "The history of xFree86" (Linux Magazine,
December 1991) [135].

Then came the lawsuit from USL, which made many potential usersfear proceedings against themin turn
if the University of California were to lose the court case or simply, that the project came to a standstill.
Perhaps this was the reason why later, the installed base of GNU/Linux was much greater than all the
*BSDs combined. But we cannot know this for sure.

GNU/Linux comes onstage

InJuly 1991 Linus Torvalds (aFinnish 21-year old student) placed hisfirst message mentioning his project
(at the time) to build afree system similar to Minix. In September he released the very first version (0.01),
and every few weeks new versions would appear. In March 1994 version 1.0 appeared, the first one to be
called stable, though the kernel that Linus built had been usable for several months. During this period,
literally hundreds of developers turned to Linux, integrating all the GNU software around it, as well as
XFree and many more free programs. Unlike the *BSDs, the Linux kernel and a large number of the
components integrated around it were distributed with the GPL licence.

Bibliography

The story about Linux is probably one of the most interesting (and well-known) in the world of free software. You
can find many links to information on it from the pages marking the 10" anniversary of its announcement,
although probably one of the most interesting ones is the "History of Linux", by Ragib Hasan [138].
As a curiosity, you can consult the thread on which Linus Torvalds announced that he was starting to
create what later became Linux (in the newsgroup comp.os.minix) at http://groups.google.com/groups?
th=d161e94858c4c0b9. There he explains how he has been working on his kernel since April and how he has
already ported some GNU project tools onto it (specifically mentioning Bash and GCC).

Of the many developments to have emerged around Linux, one of the most interesting isthe distribution
concept. The first distributions appeared soon, in 1992 (MCC Interim Linux, of the University of
Manchester; TAMU, of Texas A&M, and the most well-known, SLS, which later gave rise to Slackware,
which is till being distributed in the first decade of 2000), entailing the arrival of competition into the
world of systems packaged around Linux. Each distribution tries to offer a ready-to-use GNU/Linux, and
starting from the basi s of the same software hasto compete by making improvements considered important
by their user base. In addition to providing pre-compiled ready-to-use packages, the distributions also tend
to offer their own tools for managing the selection, installation, replacement and uninstallation of these
packages, in addition to the initial installation on the computer, and the management and administration
of the operating system.

Over time, distributions have succeeded each other as different ones became the most popular. Of them
all, we would highlight the following:

1. Debian, developed by a community of volunteer users.

2. Red Hat Linux, which wasfirst developed internally by the company Red Hat, but which later adopted
amore community-based model, giving rise to Fedora Core.

3. Suse, which gave rise to OpenSUSE, following a similar evolution to Red Hat.
4. Mandriva (successor of Mandrake Linux and Conectiva).

5. Ubuntu, derived from Debian and produced on the basis of Debian by the company Canonical.

27

http://groups.google.com/groups?th=d161e94858c4c0b9
http://groups.google.com/groups?th=d161e94858c4c0b9

Free Software

A time of maturation

Midway through the first decade of 2000, GNU/Linux, OpenOffice.org or Firefox were present in the
media quite often. The overwhelming majority of companies use free software for at least some of their
IT processes. It isdifficult tobean I T student and not to use large amounts of free software. Free software
is no longer a footnote in the history of IT and has become something very important for the sector.
IT companies, companies in the secondary sector (those that use software intensively, even though their
primary activity is different) and public administrations are starting to consider it as something strategic.
And slowly but surely it is arriving among domestic users. In broad terms, we are entering a period of
maturation.

And at the bottom of it all, an important question starts to arise, which summarises in a way what is
happening: "are we facing a new model of software industry?'. Perhaps, it may yet happen that free
software becomes no more than a passing trend to be remembered nostalgically one day. But it may also
be (and this seems increasingly likely) a new model that is here to stay, and perhaps to change radically
one of the youngest but also most influential industries of our time.

End of the nineties

In the mid-1990s, free software already offered complete environments (distributions of GNU/Linux,
*BSD systems...) that supported the daily work of many people, especially software developers. There
were still many pending assignments (the main one to have better graphical user interfaces at atime when
Windows 95 was considered the standard), but there were already several thousand people worldwide who
used exclusively free softwarefor their day to day work. New projectswere announced in rapid succession
and free software embarked onitslong path towards companies, the mediaand public awarenessin general.

This period is also associated with Internet taking off as anetwork for everyone, in many casesled by the
hand of free programs (especially in itsinfrastructure). The net's arrival into the homes of millions of end
users consolidated this situation, at least in terms of servers: the most popular web (HTTP) servers have
always been free (first the NCSA server, followed by Apache).

Perhaps the beginning of the road for free software until itsfull release among the public is best described
in the renowned essay by Eric Raymond, "The cathedral and the bazaar" (Eric S. Raymond, 2001) [192].
Although much of what is described in it was already well known by the community of free software
developers, putting it into paper and distributing it extensively made it an influential tool for promoting
the concept of free software as an alternative development mechanism to the one used by the traditional
software industry. Another important paper of this period was "Setting up shop. The Business of open
source software" [141], by Frank Hecker, which for the first time described the potential business models
for free software, and which waswrittenin order to influence the decision to rel ease the Netscape Navigator
code.

Whereas Raymond's paper was a great tool for promoting some of the fundamental characteristics of free
software, the release of Netscape Navigator's code was the first case in which arelatively large company,
in avery innovative sector (the then nascent web industry) made the decision to rel ease one of its products
asfree software. At that time, Netscape Navigator was |osing the browser war against Microsoft's product
(Internet Explorer), partly dueto Microsoft'stactics of combining it withits operating system. Many people
believe that Netscape did the only thing that it could have done: to try to change the rules to be able to
compete with a giant. And from this change in the rules (trying to compete with a free software model)
the Mozilla project was born. This project, which had its own problems, has led several years later to a
navigator that, although it has not recovered the enormous market share that Netscape had in its day, seems
technically at least as good as its proprietary competitors.

In any case, irrespective of itslater success, Netscape's announcement that it would release its navigator's
source code had agreat impact on the software industry. Many companies started to consider free software
worthy of consideration.

28

Free Software

The financial markets also started paying attention to free software. In the euphoria of the dotcom boom,
many free software companies became targets for investors. Perhaps the most renowned case is that of
Red Hat, one of the first companies to realise that selling CDs with ready-to-use GNU/Linux systems
could be a potential business model. Red Hat started distributing its Red Hat Linux, with huge emphasis
(at least for what was common at the time) on the system's ease of use and ease of maintenance for people
without aspecific IT background. Over timeit diversified, keeping within the orhit of free software, andin
September 1998 it announced that Intel and Netscape had invested init. "If itisgood for Intel and Netscape,
it must be good for us’, is what many investors must have thought then. When Red Hat went public in
summer 1999, the IPO was subscribed completely and soon the value of each share rose spectacularly. It
was the first time that a company was obtaining financing from the stock exchange with a model based
on free software. But it was not the only one: later, others such as VA Linux or Andover.net (which was
later acquired by VA Linux) did the same.

Example 1.5. Note
Red Hat provides alist of its company milestones at http://fedora.redhat.com/about/history/.

During this period, many companies were a so born with business model s based on free software. Despite
not going public or achieving such tremendous market caps, they were nevertheless very important for
the development of free software. For example, many companies appeared that started distributing their
own versions of GNU/Linux, such as SUSE (Germany), Conectiva (Brazil) or Mandrake (France), which
would later join the former in order to create Mandriva. Others offered services to companies that wanted
maintenance or to adapt free products. LinuxCare (US), Alcove (France), ID Pro (Germany), and many
more.

Meanwhile, the sector's giants started to position themselvesin relation to free software. Some companies,
such as IBM, incorporated it directly into their strategy. Others, such as Sun Microsystems, had a curious
relationship with it, at times backing it, at others indifferent, and at others confrontational. Most (such as
Apple, Oracle, HP, SGI, etc.) explored the free software model with various strategies, ranging from the
selective freeing of software to straightforward porting of their products to GNU/Linux. Between these
two extremes there were many other lines of action, such asthe more or less intensive use of free software
in their products (such as the case with Mac OS X) or the exploration of business models based on the
maintenance of free software products.

From the technical point of view, the most remarkable event of this period was probably the appearance
of two ambitious projects designed to carry free software to the desktop environment for inexperienced I T
users. KDE and GNOME. Put simplistically, the final objective was not to have to use the command line
in order to interact with GNU/Linux or *BSD or with the programs on those environments.

KDE was announced in October 1996. Using the Qt graphic libraries (at that time a proprietary product
belonging to the company Trolltech, but free of charge for use on GNU/Linux), construction began of aset
of desktop applications that would work in an integrated manner and have a uniform appearance. In July
1998 version 1.0 of the K Desktop Environment was rel eased, and was soon followed by increasingly more
complete and more mature new versions. GNU/Linux distributions soon incorporated KDE as a desktop
for their users (or at least as one of the desktop environments that users could choose).

Mostly as a reaction to KDE's dependence on the Qt proprietary library, in August 1997 the GNOME
project wasannounced (Miguel delcaza, "The story of the GNOME Project™) [101], with similar goalsand
characteristicsto those of KDE, but stating the explicit objective of al its components being free software.
In March 1999, GNOME 1.0 was released, which would also improve and stabilise over time. As of that
moment, most distributions of free operating systems (and many Unix-derived proprietary ones) offered
the GNOME or KDE desktop as an option, and the applications of both environments.

Meanwhile, the main free software projects underway remained in good health with new projects emerging
almost every day. In various niche markets, free software was found to be the best solution (acknowledged

29

http://fedora.redhat.com/about/history/

Free Software

almost worldwide). For example, since its appearance in April 1995, Apache has maintained the largest
market sharefor web servers; X Free86, thefree project that develops X Window, isby far the most popular
version of X Window (and therefore, the most extended windows system for Unix-type systems); GCC is
recognised as the most portable C compiler and one of the best quality; GNAT, the compilation system
for Ada 95, has conquered the best part of the market for Ada compilersin just afew years; and so on.

In 1998, the Open Source Initiative (OSI) was founded, which decided to adopt the term open source
software as a brand for introducing free software into the business world, while avoiding the ambiguity
of the term free (which can mean both free to use and free of charge). This decision sparked one
of the fiercest debates in the world of free software (which continues to this day), since the Free
Software Foundation and others considered that it was much more appropriate to speak about free
software (Richard Stallman, "Why free software is better than open source", 1998) [206]. In any case,
the OSlI made a great promotional campaign for its new brand, which has been adopted by many as
the preferred way to talk about free software, especially in the English-speaking world. To define open
source software, the OSl used a definition derived from the one used by the Debian project to define
free software ("Debian free software guidelines', http://www.debian.org/socia_contract. html#guidelines
[http://www.debian.org/social_contract.html]) [104], which at the sametimefairly closely reflectstheidea
of the FSF in thisregard (" Free software definition”, http://www.gnu.org/phil osophy/free-sw.html) [120],
meaning that from the practical point of view almost any program considered free software can also be
considered open source and vice versa. However, the free software and open source software communities
(or at least the people who identify with them) can be very different.

Decade of 2000

In the early years of the decade of 2000, free software was already a serious competitor in the servers
segment and was starting to be ready for the desktop. Systems such as GNOME, KDE, OpenOffice.org
and Mozilla Firefox can be used by domestic users and are sufficient for the needs of many companies,
at least where office applications are concerned. Free systems (and especially systems based on Linux)
are easy to install, and the complexity of maintaining and updating them is comparable to that of other
proprietary systems.

Right now, every company in the software industry has a strategy with regards to free software. Most of
the leading multinationals (IBM, HP, Sun, Novell, Apple, Oracle...) incorporate free software to agreater
or lesser extent. At one extreme we can find companies such as Oracle, which react by simply porting their
products to GNU/Linux. At another extreme, we can find IBM, which has the most decisive strategy and
has made the biggest publicity campaigns about GNU/Linux. Among the leaders in the IT market, only
Microsoft has positioned itself in clear opposition to free software and particularly software distributed
under the GPL licence.

As regards the world of free software itself, despite the debates that occasionaly stir the community, its
growth is massive. Every day there are more developers, more active free software projects, more users,
etc. With each passing day free software is moving away from the sidelines and becoming a force to be
reckoned with.

In light of this, new disciplines are emerging that specifically study free software, such as free software
engineering. Based on research, bit by bit we are starting to understand how free software operates
in its various aspects: development models, business models, coordination mechanisms, free project
management, developers motivations, etc.

These years we are also starting to see the first effects of the offshoring that free software devel opment
allows. countries considered "peripheral” are actively participating in the world of free software. For
exampl e, the number of Mexican or Spanish devel opers (both countrieswith alimited tradition of software
industry) in projects such as GNOME is significant (Lancashire, "Code, culture and cash: the fading
altruism of open source development", 2001) [164]. And the role of Brazil is even more interesting, with
its numerous developers and experts in free software technologies, and decisive backing from the public

30

http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.gnu.org/philosophy/free-sw.html

Free Software

administrations. gnuLinEx is a case that merits special attention, as an example of how aregion with very
little tradition of software development can try to change the situation through an aggressive strategy of
free software implantation.

From the decision-making perspective when it comes to implementing software solutions, we would
highlight the fact that there are certain markets (such as Internet services or office applications) in which
free software isanatural choice that cannot be overlooked when studying what type of system to use.

On the negative front, these years have seen how the legal environment in which free software operates
is changing rapidly worldwide. On the one hand, software patents are increasingly adopted in more and
more countries. On the other hand, new copyright laws make it difficult or impossible to develop free
applications in some spheres, the most well-known one being DVD viewers (due to the CSS encoding
algorithm that this technology uses).

gnuLinEx

Inthe beginning of 2002 the Extremadura Regional Government publicly announced the gnuLinEx project.
The ideawas simple: to promote the creation of a distribution based on GNU/Linux with the fundamental
objective of using it on the thousands of computers to be installed in public schools throughout the
region. Extremadura, situated in the western part of Spain, bordering Portugal, has approximately 1 million
inhabitants and has never stood out for its technological initiatives. In fact, the region had practically no
software industry.

In this context, gnuLinEx has made a very interesting contribution to the free software panorama on a
global scale. Beyond being just anew distribution of GNU/Linux based on Debian (which is still aworthy
anecdote), and beyond its enormous impact on the mass media (it was the first time that Extremadura
made the front cover of The Washington Post and one of the first that a free software product did), what
is extraordinary isthe (at least apparently) solid backing of a public administration for free software. The
Regional Government of Extremadura decided to try a different model where educational software was
concerned, and then to extend thismodel to all the software used within the scope of itsinfluence. Thishas
made it the first public administration of a devel oped country to have decisively adopted this approach. A
lot of interest was generated around the Regional Government'sinitiative, within Extremaduraand outside
of it: there are academies that teach I T using gnuLinEx; books have been written to support this teaching;
computers are being sold with gnuLinEx pre-installed. In general, they are trying to create an educational
and businessfabric around thisexperiencein order to giveit support. And the experience has been exported.
At the beginning of the 21% century, several autonomous communitiesin Spain have backed free software
in education (in one way or another), and in general, its importance for public administrations is widely
acknowledged.

Knoppix

Since the end of the nineties, there are GNU/Linux distributions that can be easily installed, but Knoppix,
whosefirst version appeared in 2002, has probably allowed thisideato reach itsfull expression. ItisaCD
that boots on almost any PC, converting it (without even having to format the disk, since it can be used
"live") into afully functional GNU/Linux machine, with a selection of the most frequent tools. Knoppix
combines good automatic hardware detection with a good choice of programs and "live" functioning. For
example, it allows a rapid and direct experience of what it means to work with GNU/Linux. And it is
giving rise to an entire family of distributions of the same type, specialised for the specific requirements
of auser profile.

OpenOffice.org

In 1999, Sun Microsystems bought a German company called Stardivision, whose star product was
StarOffice, a suite of office applications similar in functionality to the Microsoft Office set of tools.
One year later, Sun distributed most of the StarOffice code under a free licence (the GPL) creating the

31

Free Software

OpenOffice.org project. Thisproject rel eased version 1.0 of OpenOffice.orgin May 2002. OpenOffice.org
has become a quality suite of office applications with a similar functionality to that of any other office
product, and, more importantly, it interoperates very well with the Microsoft Office data formats. These
features have made it the reference free software application in the world of office suites.

The importance of OpenOffice.org, from the point of view of extending free software to a large number
of users, is enormous. Finally it is possible to change, almost without problems, from the proprietary
environments common with office suites (undoubtedly the star application in the business world) to
totally free environments (such as GNU/Linux plus GNOME and/or KDE plus OpenOffice.org). Also, the
transition can be made very smoothly: since OpenOffice.org also works on Microsoft Windows, it is not
necessary to change operating systemsin order to experiment in depth with using free software.

Mozilla, Firefox and the rest

Practically since its appearance in 1994 until 1996, Netscape Navigator was the unchallenged market
leader in web browsers, with market shares of up to 80%. The situation started to change when Microsoft
included Internet Explorer with Windows 95, causing Netscape Navigator to gradually lose market share.
At the beginning of 1998 Netscape announced that it was going to distribute a large part of its navigator
code as free software, which it did in March that same year, launching the Mozilla project. For quite a
while the project was clouded by uncertainty, and even pessimism (for example, when its leader, Jamie
Zawinski, abandoned it), because as time went by no product was resulting from its launch.

In January 2000, the proj ect rel eased MozillaM 13, which was considered thefirst relatively stable version.
In May 2002 version 1.0 was finally published, thefirst officially stable version, over four years after the
first Netscape Navigator code had been released.

Bibliography

In "Netscape Navigator", by Brian Wilson, [234], we can consult a detailed list of the main versions of Netscape
Navigator and Mozilla, and their main characteristics.

Finally Mozilla had become a reality, although perhaps too late, if we bear in mind the market shares
that Internet Explorer had in 2002 or 2003 (when it was the undisputed leader leaving Mozilla and others
in atotally margina position). But despite taking so long, the Mozilla project has borne fruit; not only
expected fruit (the Mozillanavigator), but also other "collateral" ones, such as Firefox for example, another
navigator based on the same HTML engine, which has become the main product, and which since it
appeared in 2005 is managing bit by bit to erode other navigators market share.

The Mozillaproject has helped tofill alarge gap in theworld of free software. Before Konqueror appeared
(the KDE project's navigator), there were not many free navigators with a graphic interface. Since the
publication of Mozilla, an enormous number of projects based on it have emerged which have produced
alarge number of navigators. At the same time, the combination of Mozilla Firefox and OpenOffice.org
allows free software to be used for the most common tasks, even in a Microsoft Windows environment
(they both work not only on GNU/Linux, *BSD and other Unix-type systems, but also on Windows). For
the first time in the history of free software, it has made the transition from proprietary software to free
software in office environments a simple task: we can start by using these two applications on Windows,
without changing operating systems (for those who use it normally), and over time eliminate the only non-
free part and move onto GNU/Linux or FreeBSD.

The case of SCO

At the beginning of 2003, the SCO corporation (formerly Caldera Systems and Caldera International)
presented alegal case against IBM for alleged breach of itsintellectual property rights. Although the case
wascomplex, it centred on the accusation that IBM had contributed to the Linux kernel with code belonging
to SCO. In May 2007, the matter had still not been resolved and had even become more complicated by

32

Free Software

further legal suits (IBM and Red Hat against SCO, SCO against AutoZone and DaimlerChrysler, two large
IT users) and by SCO's campaigns threatening to pursue big companies that used Linux, etc.

Although the winner of this enormous legal battle has still not emerged, the case has highlighted certain
legal aspects concerning free software. In particular, many companies have considered the problems that
they may have to face if they use Linux and other free programs, and the guarantee that in doing so they
are not in breach of third party intellectual or industrial property rights.

In someway, this case and other ones (such as those related to the validity of the GPL licenceswhich were
resolved in Germany in 2005) may also be interpreted as a sign of the maturity of free software. It has
stopped being a stranger to the business world to become part of many of its activities (including those
related to legal strategies).

Ubuntu, Canonical, Fedora and Red Hat

Although Canonical (the company that produces and distributes Ubuntu) could be considered a recent
arrival to the business of GNU/Linux distributions, its activities deserve our attention. In arelatively short
time, Ubuntu has established itself as one of the best known and most widely used distributions, with a
reputation for good quality, and great ease of installation and use. Ubuntu also stands out for its greater
attention to including fundamentally free software than most distributions produced by companies.

However, the fundamental characteristic of Ubuntu (and of Canonical's strategy) has been to base on
Debian, a distribution created and maintained by volunteers. In fact, Ubuntu is not the first case of a
distribution based on Debian (another well-known case is gnuLinEx), but perhaps it is the one to have
received the most funding. For example, Canonical has hired alarge number of Debian experts (many of
whom participate in the project) and has pursued a strategy that seeks collaboration with the volunteer
project. To some extent, Canonical has tried to fill what it considers is missing from Debian in order to
gain acceptance from the average user.

Red Hat, in turn, has followed a different path in order to wind up in a fairly similar situation. Starting
from adistribution produced entirely with its own resources, it decided to collaborate with Fedora, agroup
of volunteers that was already working with distributions based on Red Hat, in order to produce Fedora
Core, its "popular” distribution. Red Hat maintains its version for companies, but this collaboration with
volunteersis, in the end, very similar to the one that has produced Ubuntu.

Perhaps all of these movements are no more than the product of the fierce competition taking place in
the market for GNU/Linux distributions and of one more notable trend: companies' collaboration with
volunteers (with the community) to produce free software.

Customised distributions

Since Linux came onto the scene, a large number of groups and companies have created their own
distributions based on it. But during these years, the phenomenon has caught on with many organisations
and companies that want customised versions for their own requirements. Customisation has been able
to expand because the process has become cheaper and there is widespread availability of the technical
knowledge to do so, even making this a niche market for certain companies.

Perhaps one of the best known cases of customised distributions is the one for Spain's autonomous
communities. The Extremadura Regional Government with its gnuLinEx sparked atrend that many other
autonomous communities have since followed. The process is so common that several of them regularly
convene tenders for the creation and maintenance of new versions of their distributions.

Thecreation of customised distributionsrealisesatrend that the world of free software had been discussing
for along time: adapting programs to users' specific needs without it having to be the original producers
that necessarily make the adaptation.

33

Free Software

Bibliography
Some of the most well-known distributions of GNU/Linux in the Spanish autonomous communities include:
gnuLinEx: http://linex.org [http://linex.org/] (Extremadura)
Guadalinex: http://guadalinex.org [http://guadalinex.org/] (Andalucia)
Lliurex: http://Iliurex.net [http://lliurex.net/] (Comunidad V alenciana)
Augustux: http://www.zaralinux.org/proy/augustux/ (Aragén)
MAX: http://www.educa.madrid.org/web/madrid_linux/ (Madrid)

MoLinux: http://molinux.info [http://molinux.info/] (Castilla-La Mancha)
Company-company and volunteer-company collaborations

Since practically the beginning of free software, there have been companies that collaborated with
volunteers in developing applications. However, in these years when it appears that we are reaching
maturity there is a growing number of companies that use free software as part of their strategy to
collaborate with other companies, when they find it interesting. Two of the most significant cases,
organised specifically with this objective, are ObjectWeb (an aliance formed in France which over time
clearly has clearly become international) and Morfeo (in Spain). In both cases, a group of companies has
agreed to develop a set of free systems that are of interest to them, and decided to distribute it as free
software.

In other cases, companies have actively sought to collaborate in free projects promoted by volunteers, or
tried to make volunteers collaborate with their own free projects. The GNOME Foundation or the already-
mentioned Ubuntu in respect of Debian are examples of this first scenario. Sun and OpenOffice.org and
OpenSolaris, or Red Hat with Fedora Core, are examples of the second.

Expanding to other spheres

Free software has proven that in the field of producing programs there is another way of doing things. In
practice, we have seen how granting the freedom to distribute, modify and use can achieve sustainahility,
either through volunteer work, or through business generation that allows companies to survive.

As time passes, this same idea is being transferred to other spheres of intellectual work. The Creative
Commons licences have made it possible to free spheres such as literature, music, or video. Wikipediais
proving that afield as particular as the production of encyclopaedias can move through a very interesting
path. And there are more and more literary authors, music bands and even film producers interested in
models of free production and distribution.

In all these domains there is still along way to go, and in almost all of them practice has not yet fully
proven that sustainable creation is possible with free models. But it cannot be denied that experimentation
with it is reaching a boiling point.

Free software as a subject of study

Although some works, such as the renowned "The cathedral and the bazaar" cleared the way for the study
of free software as such, it was not until 2001 and subsequent years that the academic community started
to consider free software as something worthy of study. Over time, the massive availability of data (almost
everything in the world of free softwareis public and available from public information archives) and the
innovations that free software has provided have drawn the attention of many groups. Midway through the

http://linex.org/
http://linex.org/
http://guadalinex.org/
http://guadalinex.org/
http://lliurex.net/
http://lliurex.net/
http://www.zaralinux.org/proy/augustux/
http://www.educa.madrid.org/web/madrid_linux/
http://molinux.info/
http://molinux.info/

Free Software

decade of 2000 there are already several international conferences centred specifically on free software,
top-ranking magazines frequently produce papers on it, and research-funding agencies are opening lines
aimed specifically towardsiit.

The future: an obstacle course?

Of course, it isdifficult to predict the future. And that is certainly not our objective. Therefore, rather than
trying to explain what the future of free software will be like, we will try to show the problemsthat it will
foreseeably have to face (and has indeed been facing for along time). How the world of free softwareis
able to overcome these obstacles will undoubtedly determine its situation in several years time.

* FUD (fear, uncertainty, doubt). This is a fairly common technique in the world of information
technologies, used by free software's competitors in order to discredit free software, with more or less
justification and varying degrees of success. In general terms, free software has been fairly immune to
these techniques, perhaps due to its complexity and different ways of seeping into companies.

 Dissolution. Many companies are testing the limits of free software as a model, and in particular are
trying to offer their clients models that present some similar characteristics to free software. The main
problem that can present itself with this type of model isthat it generates confusion among clients and
developers, who need to read the small print in detail in order to realise that what they are being offered
does not have the advantages that free software offers them. The most well-known model of this type
is the Shared Source program, by Microsoft.

» Lack of knowledge. In many cases, users turn to free software simply because they think that it is free
of charge; or because they think that it is"fashionable”. If they do not ook deeper intoit, and study with
a certain amount of detail the advantages that free software can offer as a model, they run the risk of
not taking full advantage of them. In many cases, the initial assumptionsin the world of free software
are so different from the traditional onesin the world of proprietary software that a minimum analysis
isrequired in order to understand that what in one case is frequent in the other may be impossible, and
vice versa. Therefore, lack of knowledge can only generate dissatisfaction and loss of opportunities for
any person or organisation approaching free software.

» Legal obstacles. Thisis certainly the main problem that free software is going to have to deal with in
coming years. Although thelegal environment in which free software devel oped in the 80s and first half
of the 90s was not ideal, at least it left enough space for it to grow freely. Since then, extension of the
scope of patenting to software (which has occurred in many developed countries) and new copyright
legislation (limiting the software devel oper'sliberty to create) are producing increasingly higher barriers
to free software's entry into important segments of applications.

Summary

This chapter presents the history of free software. The sixties was a period dominated by large computers
and IBM in which software was distributed together with the hardware, and usually with the source code.
In the seventies, software started to be sold separately, and soon proprietary distributions, which did not
include source code and did not give permission to modify or redistribute, became almost the only option.

Tip
Interested readers will find in Appendix B alist of some of the most relevant dates in the history

of free software.

In the decade of the 1970s, work began on developing the Unix operating system at AT& T's Bell Labs,
givingriselater to Unix BSD. Itsevolution, in parallel with the birth of the Internet, served asatesting field
for new ways of developing in collaboration, which later became common in the world of free software.

35

Free Software

In 1984, Richard Stallman started to work on the GNU project, founding the Free Software Foundation
(FSF), writing the GPL licence, and in general establishing the foundations of free software as we now
know it.

In the 90s Internet matured offering free software communities new channels for communication and
distribution. In 1991, Linus Torvalds started to develop a free kernel (Linux) which helped to complete
the GNU system, which already had almost all the parts for becoming a complete system similar to Unix:
C compiler (GCC), editor (Emacs), windowing system (X Window), etc. This is how the GNU/Linux
operating systems were born, branching out into many distributions, such as Red Hat Linux and Debian
GNU/Linux. Towards the end of the 90s, these systems were completed with two desktop environments:
KDE and GNOME.

In the decade of 2000, free software managed to lead in some sectors (such as for web servers, dominated
by Apache), and new tools appeared covering alarge number of I T requirements.

Legal aspects

"The licences for most software are designed to take away your freedom to share and
changeit."

GNU General Public Licence, version 2

This chapter looks at the main legal aspectsrelated to free software. To put them into context, we start with
asmall introduction to the most basic concepts of intellectual and industrial property rights, before offering
the detailed definition of free software, open source software and other related concepts. We also look
in some detail at the most common free software licences and their impact on business models (subject
covered in greater detail in chapter 5) and devel opment models.

Brief introduction to intellectual property

The term intellectual property has various meanings according to its context and who uses it. Nowadays
it is frequently used in many spheres to refer to various privileges awarded over intangible goods with
economic value. It includes concepts such as copyright and similar, which protect from unauthorised copy
literary or artistic works, computer programs, datacompilations, industrial designs, etc.; trademarks, which
protect symbols; geographical indications, which protect appellations of origin; trade secrets, which protect
the hiding of information, and patents, which concede temporary monopolies to inventions in exchange
for their revelation. However, in many legal traditions, including the Hispanic tradition, a distinction is
made between intellectual property, which refers exclusively to copyright, and industrial property, which
covers the other concepts.

In any case, the legidlation applicable to all of these aspects is one of the best coordinated practically
worldwide. On the one hand, the WIPO (Worldwide International Property Organisation) covers both
types of property in all of their aspects. On the other hand, the TRIPS agreement (Trade-Related aspects
of Intellectual Property rights) establishes certain minimum levels of protection and obliges all member
countries of the WTO (World Trade Organisation) to develop them within certain timeframes, according
to the level of development of the country.

Article 27 of the Declaration of Human Rights acknowledges that everyone has the right to the protection
of the moral and material interests resulting from any scientific, literary or artistic production of which he
is the author. However, in many cases (and frequently in the case of software), thisright istransferred in
practice to the companies that employ the creators or that distribute or sell their creations. Nonethel ess,
intellectual property is justified not just morally, but also for practical reasons, in order to comply with
another right: the public's right to benefit from creation, promoting it through incentives and protecting

36

Free Software

investments in creation, research and development. In order to harmonise these two rights, intellectual
property istemporary and expires once it has fulfilled its function of promotion.

But expiry is not the only distinguishing feature between intellectual property and ordinary property.
Nowadays, its products can be copied easily and cheaply, without any loss of quality. Copying does not
prejudice the party that is already benefiting from what is copied, unlike theft, which does deprive the
original possessor. Copying can prejudice the owner, by depriving him of potential income from a sale.
Controlling the copying of intangibles is much more complicated than controlling the theft of tangible
property and can lead us to a situation of a police state, having to control all copies of information, and
legal insecurity, since the potential for accidental infringement of rightsincreases. Furthermore creativity
is incremental: creating always copies something, and the dividing line between a poor imitation and
inspiration is asubtle one.

In order to study thisin more depth, the following sections go over some of the categories of intellectual
property. In any case, we can already advance that free software proposes a new point of equilibrium in
this sphere, advocating the benefits of copying and incremental innovation versus exclusive control of a
work by its author.

Copyright

Copyright protects the expression of acontent, not the content itself. Copyright was developed in order to
compensate the authors of books or art. Protected works may express ideas, knowledge or methods that
arefreely usable, but it is prohibited to reproduce them without full or partial permission, with or without
modifications. This protection is very simple, since it automatically comes into force with an almost
universal scope just when the work is published/released. Currently, it has been extended to computer
programs and (in some geographical areas) to data compilations.

The Law on Intellectual Property (LPI) in Spain, and similar laws in other countries, developed on the
basis of the Berne Convention of 1886 for the protection of literary and artistic works, regul ates copyright.
Theserights are divided into moral and intellectual rights. The former guarantee the author's control over
the distribution of hiswork, under his name or pseudonym, the recognition of authorship, respect for the
integrity of the work and the right to modify and withdraw it. The second give the author the right to
exploit the work economically and may be ceded in whole or in part, exclusively or not, to athird party.
Moral rightsarelifelong or indefinite, whereasintellectual rights have afairly long duration (seventy years
following the author's death, in the case of aphysical person and Spanish law).

Cession of these rights is established by means of a contract known as a licence. In the case of
proprietary programs, these are generally distributed through "non exclusive" licencesfor use, understood
as automatically accepted by opening or installing the product. Therefore it is not necessary to sign the
contract, since in the case of the receiver not accepting it, the rights by default under the law govern
automatically, that is none. Licences cannot restrict some of the rights granted by current legislation, such
as the right to make private copies of art or music, which allows a copy of arecording to be given to a
friend as a gift, but this right does not apply to programs. According to the LPI of 1996 (Spanish Law
on Intellectual Property. Royal Legislative Decree 1/1996, of 12th April) [77], modified in 2006 (Law on
Intellectua Property. Law 23/2006, of 7 July) [79], in respect of programsit is always possible to make
a backup copy, they may be studied to be made interoperable and they may be corrected and adapted to
our needs (which is difficult, because normally we do not have access to the source code). These rights
can not be restricted through licences, although the laws are under review, in an apparently unstoppable
trend to limit the rights of users. Organised compilations of works or third party data are also subject to
copyright, although under different terms with a shorter timeframe.

New information technologies, and specially the web, have deeply transformed copyright protection, since
expressions of content are much easier to copy than content itself. And in the case of programs and some
worksof art (music, images, films, and even literature) they "work" automatically on the computer without

37

Free Software

the need for any appreciable human effort. However, designs or inventions need to be built and possibly put
into production. This possihility of generating wealth at no cost hasled alarge proportion of the public, in
particular in poor countries, to duplicate programs without paying the licence, without public awareness of
thisbeing a"malicious action" (unlikein the case of stealing physical property, for example). Meanwhile,
program manufacturers, either alone or in coalition (through the BSA, Business Software Alliance, for
example), exert enormous pressure for licencesto be paid and for governmentsto pursue what has become
known as piracy.

Example 1.6. Note

Theword piracy has become generally accepted as a synonym for the 'violation of any form of intellectual
property, especialy in the case of illegally copying of programs, music and films. The term seems
exaggerated and in the dictionary of the Royal Spanish Academy of Language it appearswith that meaning
in the figurative sense, since the origina word refers to 'robbery with violence committed at sed. Thisis
why Richard Stallman recommends avoiding it ("Some confusing or loaded words and phrases that are
worth avoiding”, 2003) [212].

Precisely in order to protect the copyright of contentswith proprietary licences, the so-called DRM systems
were born (digital rights management), designed to control access and the use of datain digital format or
to restrict its use to certain devices. The use of DRM systems has been strongly criticised in many sectors,
because they protect copyright imposing restrictions beyond what is sufficient, which iswhy some, such as
the Free Software Foundation, recommend interpreting the acronym as digital restrictions management,
in an attempt to avoid using the word rights, because it considers that there is an excessive deprivation of
the rights of usersin favour of satisfying copyright demands.

Trade secret

Another resource that companies use in order to make profit from their investments is trade secret,
protected by the laws of industrial property, provided that companies take sufficient measures to hide
the information that they do not wish to disclose. In the case of chemical or pharmaceutical products
that require governmental approval, the government undertakes not to disclose submitted data that is not
mandatory to make public.

One of the best known applications of trade secret is the propietary software industry, which generally
sells compiled programs without access to the source code, in order to prevent derived programs from
being devel oped.

At first sight it would appear that the protection of trade secret is perverse, since it can deprive society
of useful knowledge indefinitely. To some extent some legislations also interpret it this way, and allow
reverse engineering in order to develop replacement products, although industry pressure has managed
to prohibit this activity in many countries, and in other countries only made it possible on the grounds
of compatibility.

Whether or not trade secret is a perversion, in many cases it is better than a patent since it offers a
competitive advantage to the person placing a product on the market while the competition tries to imitate
it through reverse engineering. The more sophisticated the product the more it will cost the competition
to reproduce it, whereas if it is trivial, it will be copied quickly. Imitation with improvements has been
fundamental in the development of today's superpowers (the US and Japan) and is very important for the
financial independence of developing countries.

Patents and utility models

The aternative to trade secret is a patent. In exchange for a seventeen to twenty five year monopoly and
a specific financial cost, an invention is publicly disclosed so that it can be easily reproduced. It aims to

38

Free Software

promote private research, at no cost to the taxpayer and without losing the outcome. The patent holder can
decide whether to allow othersto use it and the price to be paid for the licence.

Officia doctrine is that the patent system promotes innovation, but more and more voices are making
themselves heard with the view that it impedes it, either because the system is poorly implemented
or because they consider that it is perverse in itself (Francois-René Rideau, "Patents are an economic
absurdity", 2000) [194].

What is considered an invention has changed over time, and there is enormous pressure to extend the scope
of the system, to include algorithms, programs, business models, natural substances, genes and forms of
life, including plants and animals. TRIPS requires the patents system not to discriminate against any field
of knowledge. The pressures of the World Intellectual Property Organisation (WIPO) aim to eliminate
the need for an invention to have an industrial application and also to reduce the standards of invention
required of apatent. The USis at the forefront of countries with minimum requirements on patentability,
and is aso the most belligerent for other countries to adopt its standards, forgetting that the US refused to
accept foreign patents when it was an underdevel oped country.

After obtaining apatent, therights of the owner areindependent of the quality of theinvention and the effort
invested in obtaining it. Given the cost of maintaining a patent, and litigation costs, only large companies
are able to maintain and do maintain alarge portfolio of patents, which puts them in a position to strangle
any competition. Given the ease of getting patents on trivial or widely applicable solutions, they can thus
monopolise an extensive field of economic activity.

With patents, many activities, especially programming, become extremely risky, because it is very easy
that in developing a complicated program there is an accidental violation of some patent. When two or
more companies are conducting research in order to resolve a problem, it is highly probable that they
will reach a similar solution at almost the same time, but only one of them (usually the one with most
resources) will manage to patent its invention, preventing the others from having any chance of recouping
their investment. Any complex technological development becomes a nightmare if in order to solve each
part you first need to find out whether the solution found is patented (or patent pending), so as to obtain
the licence or find an alternative solution. This problem is particularly severe with free software, where
the violation of algorithm patentsis evident from simply inspecting the code.

Although in Europe it is still illegal to patent an algorithm, it will become possible in the near future,
perhaps by the time the reader reads these lines.

Registered trademarks and logos

Trademarksand logosare namesand symbol sthat represent an established quality (or amassiveinvestment
in publicity). They are not very important in the world of free software, possibly because registering
them has a cost. Therefore, just a few important names such as Open Source (by the Open Source
Foundation), Debian (by Software in the Public Interest), GNOME (by the GNOME Foundation), GNU
(by the Free Software Foundation) or OpenOffice.org (by SUN Microsystems) are registered, and only in
afew countries. However, not registering the names has caused problems. For example, in the US (1996)
and in Korea (1997) people have registered the name Linux and demanded payment for its use. Resolving
these disputes entailslegal costs and the need to prove the use of the name prior to the date of registration.

Free software licences

Legally speaking, the situation of free programs in relation to proprietary onesis not very different: they
are both distributed under a licence. The difference lies in what the licence alows. In the case of free
program licences, which do not restrict particularly their use, redistribution and modification, what can be
imposed are conditions that need to be met precisaly in the case of wanting to redistribute the program.

39

Free Software

For example, it is possible to demand observation of authorship indications or to include the source code
if wanting to redistribute the program ready to run.

Although essentialy free software and propietary software differ in terms of the licence under which the
authors publish their programs, it isimportant to emphasise that this distinction is reflected in completely
different conditions of use and redistribution. Aswe have seen in thelast few years, thishas not only given
rise to totally different development methods, but also to practically opposite ways (in many aspects) of
understanding I T.

The laws on intellectua property ensure that in the absence of explicit permission virtually nothing can
be done with a work (in our case, a program) received or purchased. Only the author (or the holder of
the rights of the work) can grant us that permission. In any case, ownership of the work does not change
by granting alicence, since this does not entail transfer of ownership, but rather just the right of use, and
in some cases (mandatory with free software), of distribution and modification. Free software licences
are different from proprietary software licences precisely in that instead of carefully restricting what is
alowed, it makes certain explicit allowances. When people receive a free program they may redistribute
it or not, but if they do redistribute it, they can only do so because the licence alows it. But to do so the
licence must be observed. Indeed, the licence contains the rules of use that users, distributors, integrators
and al other partiesinvolved in the world of IT must observe.

In order to fully understand all the legal ins and outs that arise in this chapter (and which are without
guestion very important to understand the nature of free software) we should a so be aware that each new
version of a program is considered a new work. The author, once again, is fully entitled to do what he
wantswith it, even to distributeit under totally different termsand conditions (in other words, with atotally
different licence to the earlier one). That way if the reader is the sole author of a program, he may publish
one version under a free software licence and, if he wishesto, a later one under a proprietary licence. In
the case of there being more authors and the new version containing code that they have produced, if the
code isto be published under different conditions, all of them will have to approve the changein licence.

A dtill relatively openissueisthelicencethat appliesto external contributions. Generally it isassumed that
someone who contributes to a project accepts de facto that his or her contribution adjusts to the conditions
specified by its licence, although the legal grounds for this are poor. The initiative of the Free Software
Foundation to ask by means of a (physical) letter for cession of all copyright from anyone who contributes
more than ten lines of code to a GNU sub-project is a clear indication that in the world of free software
there are stricter policies with regards to these contributions.

Based on theforegoing, intherest of the chapter wewill focus on analysing different licences. To placethis
analysis into context, we must remember that from now on, when we say that alicence is a free software
licence, what we mean is that it fulfils the definitions of free software presented in section 1.1.1.

Types of licences

There is an enormous variety of free licences, although for practical reasons most projects use a small
group of four or five. On the one hand, many projects don't want to or don't have the resources to design
their own licence; on the other hand, most users prefer to refer to a well-known licence than having to
read and analyse complete licences.

Bibliography

Thereis acompilation and discussion of the licences considered non-free or free but incompatible with the GPL from
the point of view of the FSF in the Free Software Foundation, "Free licences' [121]. The philosophically
different point of view of the Open Source Initiativeisshowninitslist (Open Source Initiative, "Open Source
licences') [181]. Wecan seediscrepanciesin somelicences, such asthe Apple Public SourceLicenceVer. 1.2,

40

Free Software

which the FSF considers non-free because of the obligation to publish all changes (even if they are private),
to notify Apple of redistributions, or the possibility of unilateral revocation. Nevertheless, the pressure of this
classification made Apple publish its version 2.0 in August 2003, which the FSF then did consider free.

It is possible to divide free software licences into two large families. The first comprises licences that
do not impose special conditions on the second redistribution (in other words, that only specify that the
software can be redistributed or modified, but that do not impose specia conditions for doing so, which
allows, for example, someone receiving the program to then redistribute it as proprietary software): these
are what we will refer to as permissive licences. The second family, which we will call strong licences
(or copyleft licences), include those that, in the style of GNU's GPL, impose conditions in the event of
wanting to redistribute the software, aimed at ensuring compliance with the licence's conditions following
thefirst redistribution. Whereasthefirst group emphasi sesthe freedom of the person receiving the program
to do almost anything he or she wants with it (in terms of the conditions for future redistributions), the
second emphasi ses the freedom of anyone who may potentially receive some day awork derived from the
program, obliging subsequent modifications and redistributionsto respect the terms of the original licence.

Note

The term copyleft when applied to a licence, used mainly by the Free Software Foundation to
refer to its own licences, has similar implications to those referred to as strong licences as used
in thistext.

The difference between these two types of licences has been (and remains) a debatabl e issue amongst the
free software community. In any case, we should remember that they are all free licences.

Permissive licences

Permissive licences, also known sometimes as liberal or minimal licences, do not impose virtually any
conditions on the person receiving the software, and yet, grant permission to use, redistribute and modify.
From a certain point of view, this approach can be seen as a guarantee of maximum freedom for the
person receiving the program. But from another, it may also be understood as maximum neglect in respect
of ensuring that once someone receives the program, that person guarantees the same freedoms when
redistributing that program. In practice, these licences typically allow software that its author distributes
under a permissive licence to be redistributed with a proprietary licence.

Among these licences, the BSD licence is the best known, to such an extent that often permissive licences
are referred to as BSD-type licences. The BSD (Berkeley Software Distribution) licence stems from the
publication of different versions of Unix produced by the University of Californiain Berkeley, in the US.
The only obligation it imposes is to credit the authors, while it allows redistribution in both binary and
source code formats, without enforcing either of the two in any case. It also gives permission to make any
changes and to be integrated into other programs without almost any restrictions.

Example 1.7. Note

One of the consequences in practice of BSD-type licences has been to diffuse standards, since developers
find no obstacleto making programs compatiblewith areferenceimplementation under thistype of licence.
In fact, thisis one of the reasons for the extraordinary and rapid diffusion of Internet protocols and the
sockets-based programming interface, because most commercia developers derived their implementation
from the Berkeley University one.

Permissive licences arefairly popular, and thereisan entire family with similar characteristicsto the BSD:
X Window, Tcl/Tk, Apache, etc. Historically, these licences appeared because the corresponding software
was developed by universities with research projects financed by the US Government. The universities
did not sell these programs, on the assumption that they had already been paid for by the Government,

41

Free Software

and therefore by the taxpayer, which meant that any company or individual could use the software without
almost any restriction.

As already mentioned, on the basis of a program distributed under a permissive licence another one can
be created (in reality, a new version), which may be proprietary. Critics of BSD licences see a danger in
this feature, because it does not guarantee the freedom of future program versions. Its supporters, on the
contrary, consider it the maximum expression of freedom and argue that, ultimately, you can do (almost)
everything you want with the software.

Most permissive licences are a word for word copy of Berkeley's original, modifying just what refers to
authorship. In some cases, such as the Apache project licence, it includes an additional clause, such as
prohibiting giving the same name as the original to redistributed versions. All of these licences usually
include, like BSD, the prohibition to use the name of the rightholder for promoting derived products.

At the same time, al the licences, whether BSD-type or not, include a limitation of guarantee which
is realy a disclaimer, necessary in order to avoid legal claims for implicit guarantees. Although this
disclaimer in free software has been broadly criticised, it is common practice with proprietary software,
which generally only guarantees that the medium is correct and that the program in question runs.

Example 1.8. Summary outline of the BSD licence
Copyright © the owner. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must reproduce the copyright notice, and list these conditions and the
disclaimer.

2. Redistributions in binary form must reproduce the copyright notice and list these conditions and the
disclaimer in the documentation.

3. Neither the name of the owner nor the names of its contributors may be used to endorse products derived
from this software without permission.

This program is provided "asis", and any express or implicit warranties, of merchantability or
fitnessfor a particular purpose aredisclaimed. I n no event shall the owner beliablefor any damage
caused by itsuse (including loss of data, loss of profits or businessinterruption).

Next we describe in brief afew permissive licences:

» X Window licence, version 11 (X11)
(http://lwww.x.org/Downloads_terms.html) [73].

Thisisthe licence used to distribute the X Window system, the most extensively used windows system
in the world of Unix, and also GNU/Linux environments. It is very similar to the BSD licence, which
alows redistribution, use and modification without practically any restrictions. It is sometimes called
the MIT licence (with adangerouslack of precision, since MIT has used other types of licences). Works
derived from the X Window System, such as XFree86 are also distributed under this licence.

» Zope Public Licence 2.0 (http://www.zope.org/Resources/ZPL) [76].

Thislicence (commonly referred to as ZPL) is used for the distribution of Zope (an application server)
and other related products. It is similar to BSD, with the curious feature that it expressly prohibits the
use of trademarks registered by the Zope Corporation.

» Apachelicence.

42

http://www.x.org/Downloads_terms.html
http://www.zope.org/Resources/ZPL

Free Software

This is the licence under which most of the programs produced by the Apache project are distributed.
Itissimilar to the BSD licence.

There are some free programs that are not distributed with a specific licence, rather the author explicitly
declaresthem to be public domain. The main outcome of this declaration isthat the author waivesall rights
to the program, which can therefore be modified, redistributed, used, etc., in any way. In practical terms,
itisvery similar to a program being under a BSD-type licence.

Strong licences

The GNU General Public Licence (GNU GPL)

The General Public Licence of the GNU project (Free Software Foundation, 1991) [118] (better known
by its acronym GPL), which appears in appendix C, is by far the most popular and well-known in the
world of free software. It was created by the Free Software Foundation (promoter of the GNU project),
and was originally designed to be the licence for all software generated by the FSF. However, its use has
extended further becoming the most used licence (for example, more than 70% of the projects announced
on Freshmeat are licensed under the GPL), even by flagship projects in the world of free software, such
astheLinux kernel.

The GPL licence is interesting from a legal point of view because it makes creative use of copyright
legidation, to achieve practically the opposite effect of what that legislation intends: instead of limiting
users rights, it guarantees them. For this reason, this manoeuvre is frequently called copyleft (a play on
words by replacing theword "right" with "left"). Someone with a sense of humour even devised the slogan
"copyleft, al rights reversed".

In basic terms, the GPL licence allows redistribution in binary form and in source code, athough in the
case of abinary redistribution access to the source code is also obligatory. It also allows modifications to
be made without any restrictions. However, it is only possible to redistribute code licensed under the GPL
integrated with other code (for example, linking the code) if it has a compatible licence. This has been
called the viral effect (although many consider this name to be disrespectful) of the GPL, since once code
has been published with these conditions they can never be changed.

Example 1.9. Note

A licence isincompatible with the GPL when it restricts any of the rights guaranteed by the GPL, either
explicitly by contradicting any of its clauses, or implicitly, by imposing a new limitation. For example,
the current BSD licence is compatible, but the Apache licence is incompatible because it demands that
publicity material s expressly mention that combined work contains code of each and every one of theright
holders. This does not imply that programs with both licences cannot be used simultaneously, or even
be integrated. It just means that those integrated programs cannot be distributed, since it isimpossible to
comply simultaneously with the redistribution conditions of both.

TheGPL licenceisdesigned to guarantee the freedom of source codeat all times, since aprogram published
and licensed under its conditions may never become proprietary. Moreover, neither that program nor
modifications of it may be published with a different licence other than the GPL. As already mentioned,
supporters of the BSD-type licences see a limitation of freedom in that clause, whereas followers of the
GPL believe that it is a way of ensuring that the software will always be free. One way of looking at
it would be to consider that the GPL licence maximises the freedom of users, whereas the BSD licence
maximises the freedom of developers. However, we should note that in the second case we are referring
to developers in general and not to authors, since many authors consider the GPL licence to be more in
their interest, since it obliges competitors to publish their modifications (improvements, corrections, etc.)
if they redistribute their software, whereas with a BSD-type licence thisis not necessarily the case.

43

Free Software

As regards this licence's contrary nature to copyright, it is because its philosophy (and that of the Free
Software Foundation) is that software should not have owners (Richard Stallman, "Why software should
not have owners", 1998) [207]. Althoughit istrue that software licensed under the GPL has an author, who
isthe person that allows copyright legislation to apply toit, the conditionswith which it is published confer
such a nature on the software that we can consider ownership to correspond to the person in possession
of the software and not to the person who has created it.

Of course, thislicenceal so includesdisclaimersin order to protect the authors. Likewise, in order to protect
the good reputation of the original authors, any modification of asourcefile must include anote specifying
the date and author of the modification.

The GPL aso takes software patents into account, and demands that if the source carries patented
algorithms (as we have said, something common and legal in the US, but currently irregular in Europe),
either alicence for use of the patent free of charge must be granted, or it cannot be distributed under the
GPL.

The latest version of the GPL licence, the second one, was published in 1991 (although at the time of
writing the third one isin an advanced stage of preparation). Specifically bearing in mind future versions,
the licence recommends licensing under the conditions of the second one or any other subsequent one
published by the Free Software Foundation, which iswhat many authors do. Others, however, including in
particular Linus Torvalds (Linux creator), only publish their software under the conditions of the second
version of the GPL, in a bid to distance himself from potential future evolutions of the Free Software
Foundation.

The third version of the GPL (http://gplv3.fsf.org [http://gplv3.fsf.org/]) [115] intends to update it to the
current software scenario, in respect mainly of aspects such as patents, DRM (digital rights management)
and other limitations on software freedom. For example, the draft currently available at the time of writing
(May 2007) does not alow a hardware manufacturer to block the use of certain software modulesif they
do not carry adigital signature accrediting a determined author. An example of this practice occurs with
digital video recorders TiV o, which provide the source code to all their software (licenced with GPLVv2)
at the same time as they do not allow modifications of the code to be used on the hardware.

Neither does the licence allow the software to be forcibly run on a pre-set environment, such as occurs
when the use of unsigned kernels is prohibited on distributions that consider it appropriate for security
reasons.

Example 1.10. Note

There are several points in the GPLv3 licence that have generated a degree of opposition. One of the
opposing groupsisthe group of Linux kernel developers (including Linus Torvalds himself). They consider
that the requirement to use signed software components allows certain security features to be granted that
would otherwise be impossible, at the same time as their explicit prohibition would extend the licence to
the hardwarefield. Plus, the limitation established by the signatures mechanism would only occur with the
hardware and software platforms that are designed that way, meaning that the software could be modified
for itsuseon different hardware. I n respect of thispoint, the FSFisin favour of using signature mechanisms
that advise against using unsigned components for security reasons, but believes that not prohibiting those
signatures mechanisms that prevent the use of unsigned components, could give rise to scenarios where
there would be no hardware or software platforms on which to run those software modifications, meaning
that the liberty of free software would then become totally limited where modifying code is concerned.

The GNU Lesser General Public Licence (GNU LGPL)

The GNU Lesser General Public Licence, (Free Software Foundation, GNU LGPL, version 2.1, February
1999) [119], commonly referred to by its initials - LGPL - is another licence of the Free Software

http://gplv3.fsf.org/
http://gplv3.fsf.org/

Free Software

Foundation. Designed initially for itsuse with libraries (the L, originally stood for library), it was recently
modified to be considered the little sister (Iesser) of the GPL.

The LGPL allows free programs to be used with proprietary software. The program itself is redistributed
asif it were under the GPL licence, but itsintegration with any other software package is allowed without
virtually any restrictions.

Aswe can see, originally thislicencewasaimed at libraries, in order to promote their use and devel opment
without encountering the integration problems implied by the GPL. However, when it was realised that
the pursued objective of making free libraries popular was not compensated by the generation of free
programs, the Free Software Foundation decided to change the library to lesser and advised against its
use, except in very occasiona and particular circumstances. Nowadays, there are many programs that are
not librarieslicensed under the terms of the LGPL. For example, the Mozilla navigator or OpenOffice.org
office suite are also licensed, among others, under the LGPL.

Example 1.11. Note

Asisthe case with the GPL, thelast published version of the LGPL isthe second, although thereis already
a template of the third version (http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html) [116].
This new version is shorter than the previous one since it refers al its text to the GPLv3 and merely
highlights its differences.

Other strong licences
Other strong licences that deserve mentioning:
» Sleepycat license () [59].

This is the license under which the company Sleepycat (http://www.sleepycat.com/) [60] distributes
its programs (of which we could mention the well-known Berkeley DB). It enforces certain conditions
whenever the program or works derived from it are redistributed. In particular, it obliges the source
code to be offered (including the modificationsin the case of a derived work) and for the redistribution
to impose the same conditions on the receiver. Although much shorter than the GNU GPL, it is very
similar inits main effects.

» eCosLicense 2.0 (http://www.gnu.org/licenses/ecos-license.html) [25].

This is the license under which eCos (http://sources.redhat.com/ecos/) [24], a real-time operating
system, isdistributed. It isamaodification of the GNU GPL which does not consider that code linked to
the programs it protects, is subject to the clauses of the GNU GPL if redistributed. From this point of
view, its effects are similar to those of the GNU LGPL.

» Affero General Public License (http://www.affero.org/oagpl.html) [78].

It isaninteresting modification of the GNU GPL which considersthe case of programs offering services
viathe web, or in general, via computer networks. This type of program represents a problem from the
point of view of strong licences. Since use of the program does not imply having received it through a
redistribution, even though it is licensed, under the GNU GPL for example, someone can modify it and
offer a service on the Web using it, without redistributing it in any way, and therefore, without being
obliged, for example, to distribute its source code. The Affero GPL has a clause obliging that if the
program has a means for providing its source code via the web to whoever usesiit; this feature may not
be disabled. This means that if the original author includes this capability in the source code, any user
can obtain it, and plus that redistribution is subject to the conditions of the licence. The Free Software
Foundation is considering including similar provisionsin version 3 of its GNU GPL.

» IBM Public License 1.0 () [4Q].

45

http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html
http://www.sleepycat.com/
http://www.gnu.org/licenses/ecos-license.html
http://sources.redhat.com/ecos/
http://www.affero.org/oagpl.html

Free Software

It is a licence that allows a binary redistribution of derived works only if (among other conditions)
a mechanism is contemplated for the person receiving the program to receive the source code. The
redistribution of source code must be made under the same licence. This licence is also interesting
because it obliges the party redistributing the program with modifications, to license automatically and
free of charge any patents affecting such modifications and that are the property of the redistributor to
the party receiving the program.

* MozillaPublic License 1.1 () [49].

Thisis an example of afree licence drawn up by a company. It is an evolution of the first free licence
that Netscape Navigator had, which was very important in its day because it was the first time that a
well-known company decided to distribute a program under its own free licence.

Distribution under several licences

Up until now we have assumed that every program is distributed under asingle licence which specifiesthe
conditions for use and redistribution. However, an author can distribute works under different licences.
In order to understand this, we should remember that every publication is a new work, and that different
versions can be distributed with the only difference being in their licence. Aswewill see, most of thetime
this translates into the fact that depending on what the user wants to do with the software he will have to
observe the terms of one licence or another.

One of the best known examples of adoublelicenceisthe onefor the Qt library, on which the KDE desktop
environment is founded. Trolltech, acompany based in Norway, distributed Qt with a proprietary licence,
although it waived payment for programs that didn't use it for profit. For this reason and because of its
technical characterigtics, it was the KDE project's choice in the mid-nineties. This gave rise to an intense
controversy with the Free Software Foundati on because then K DE stopped being compl etely free software,
as it depended on a proprietary library. Following an extensive debate (during which GNOME appeared
as KDE's free competitor in the desktop environment), Trolltech decided to use the double-licence system
for its star product: the programs under the GPL could use a Qt GPL version, whereasif the intention was
to integrate it with programs that had incompatible licences with the GPL (such as proprietary licences),
a specia licence had to be bought from them. This solution satisfied all parties, and nowadays KDE is
considered free software.

Other well-known examples of dua licences are StarOffice and OpenOffice.org, or Netscape
Communicator and Mozilla. In both cases, the first product is proprietary whereas the second is a free
version (generally under the conditions of several free licences). Although originally free projects were
limited versions of their proprietary siblings, over time they have followed their own path, meaning that
nowadays they have afairly high level of independence.

Program documentation

The documentation that comes with a program forms an integral part of it, as do the comments on
source code, as recognised, for example by the Spanish Law on Intellectual Property. Given this level of
integration, it would seem logical that the same freedoms should apply to the documentation and that it
should evolveinthe sameway asthe program: any modification madein aprogram requiresasimultaneous
and consistent change in its documentation.

Most of this documentation tends to be coded as unformatted text files, since the aim is to make it
universally accessible with a minimum tools environment, and (in the case of free programs) normally
includes asmall introduction to the program (README), installation guidelines (INSTALL), some history
on the evolution and future of the program (CHANGELOG and TODO), authors and copyright (AUTHORS
and COPYRIGHT or COPYING), as well as the instructions for use. All of these, excluding authors and
copyright, must be freely modifiable as the program evolves. To authors we just need to add names and
credits without eliminating anything, and the copyright must only be modified if the conditions alow it.

46

Free Software

The instructions for use are normally coded in more complex formats, since they tend to be longer and
richer documents. Free software demands that this documentation may be changed easily, which in turn
enforces the use of so-called transparent formats, with known specifications and able to be processed
by free toals, such as, in addition to pure and clean text, the format of the Unix manual pages, TexInfo,
LaTeX or DocBook, without prejudice to also being able to distribute the result of transforming these
source documents into more suitable formats for visualisation or printing, such as HTML, PDF or RTF
(normally more opaque formats).

However, program documentation is often prepared by third parties who have not been involved in the
development. Sometimes the documentation is of adidactic nature, to facilitate theinstallation and use of a
specific program (HOWTO); sometimes it is more extensive documentation that covers several programs
and their integration, that compares solutions, etc., either in the form of a tutoria or reference manual;
sometimesit is amere compilation of frequently asked questions and their answers (FAQ). A noteworthy
example is the Linux documentation project (http://www.tldp.org [http://www.tldp.org/]) [44]. In this
category we could also include other technical documents, not necessarily about programs, whether the
instructions for cabling a local network, making a solar oven, repairing an engine or selecting a tools
supplier.

These documents are halfway between mere program documentation and highly technical and practical
articles or books. Without prejudice to the freedom to read, copy, modify and redistribute, the author may
wish to give opinionsthat he does not want to be distorted, or at |east not want any distortion to be attributed
to him; or he may wish to keep paragraphs, such as acknowledgements; or make it forcible to modify
others, such as the title. Although these concerns can also arise with software itself, they have not been
expressed as vehemently in the world of free software as in the world of free documentation.

Summary

Inthis chapter we have looked at the legal aspectsthat govern or influence the world of free software. They
form part of intellectua or industrial property legidation conceived, in principle, to stimulate creativity
by rewarding creators for a specific period. Of the different types, so-called copyright is the one that most
affects free software, and properly applied it can be used to guarantee the existence of free software in
the form of free licences.

We have seen the importance of licences in the world of free software. And we have also presented the
enormous variety of existing licences, the grounds on which they are based, their repercussions, advantages
and disadvantages. Certainly, we can say that the GPL tries to maximise the freedom of software users,
whether they receive the free software directly from its author or not, whereas BSD-type licences try to
maximise the freedom of the modifier or redistributor.

Given what we have seen in this chapter, we can deduce that it is very important to decide early on
what licence a project will have and to be fully aware of its advantages and disadvantages, since a later
modification tendsto be extremely difficult, especialy if the number of external contributionsisvery large.

To conclude, we would like to highlight the fact that free software and proprietary software differ solely
and exclusively in terms of the licence under which the programs are published. In the following chapters,
however, wewill seethat thispurely legal difference may or may not affect the way software is devel oped,
giving rise to a new development model, which can differ from the "traditional” development methods
used in the software industry to a greater or lesser extent, depending on each case.

Developers and their motivations

"Being a hacker islots of fun, but it's akind of fun that takes alot of effort. The effort
takes motivation. Successful athletes get their motivation from akind of physical delight

47

http://www.tldp.org/
http://www.tldp.org/

Free Software

in making their bodies perform, in pushing themselves past their own physical limits.
Similarly, to beahacker you haveto get abasic thrill from solving problems, sharpening
your skills and exercising your intelligence.”

Eric Steven Raymond, "How to become a hacker"

Introduction

The partly anonymous and distributed way in which free software is developed has meant that for many
yearsthe human resourcesthat it relies on have been largely unknown. Theresult of thislack of knowledge
has been to mythologise, at least to some extent, the world of free software and the life of those behind
it, based on more or less broad stereotypes about the hacker culture and computers. In the last few years,
the scientific community has made an enormous effort to get to know the people who participate in free
software projects better, their motivations, academic backgrounds, and other potentially relevant aspects.
From a purely pragmatic point of view, knowing who is involved in this type of projects and why,
can be extremely useful when it comes to generating free software. Some scientists, mainly economists,
psychologists, and sociologists, have wanted to go further and have seen in this community the seed of
future virtual communities with their own rules and hierarchies, in many casestotally different to those we
know in "traditional” society. One of the most important mysteriesto resolve wasto learn what motivated
software devel opers to participate in acommunity of this nature, given the fact that financial benefits, at
least direct ones, are practically non-existent, whereas indirect ones are difficult to quantify.

Who are developers?

This section aimsto provide aglobal overview of the people who spend their time and energy participating
in free software projects. The datathat we show stems mostly from scientific researchin thelast few years,
the most significant but by no means exclusive including Free/libre and open source software. Survey
and study, part IV: "Survey of developers', 2002 [126], and "Who is doing it? Knowing more about libre
software developers’, 2001 [197].

Software developers are normally young people. The average age is around twenty seven. Thevariationin
age is significant, since the dominant group is in the twenty one to twenty four age bracket, and the most
frequently appearing value istwenty three. It isinteresting to note how the age of joining the free software
movement peaks between eighteen and twenty five and is particularly pronounced between twenty one
and twenty three, which would coincide with university age. This evidence standsin contrast to the claim
that free software is mostly ateenage thing, although there is an obvious involvement of teenagers (about
20% of developers are under twenty). For certain, what we can see is that most developers (60%) are in
their twenties, with the under-twenties and over-thirties equally sharing the remaining 40%.

From the age of joining we can deduce that there is an enormous university influence on free software.
Thisis not surprising, given that as we have seen in the chapter on history, before free software was even
known by that name it was closely connected to higher education. Even today, student user groups and
universities continue to drive the use and expansion of free software. Therefore, it is not surprising that
more than 70% of developers have a university education. This datais even more significant if we bear in
mind that the remaining 30% are not at university yet because they are still in school. Even so, they are
also involved and are no | ess appreciated than devel opers who have never had access to higher education,
but are IT enthusiasts.

The free software developer is normally male. The figures juggled by different surveys on the presence
of women in the community vary between 1% and 3%, competing with their own margin of error. At the
same time, a majority (60%) claims to have a partner, while the number of developers with children is
just 16%. Given the age brackets of free software developers, this data coincides fairly accurately with
arandom sample, meaning that it may be considered "normal”. The myth of the lonely developer whose
enthusiasmfor IT istheonly thing in hislifeisshownto be, aswe can see, an exception rather than therule.

48

Free Software

What do developers do?

Professionally speaking, free software developers describe themselves as software engineers (33%),
students (21%), programmers (11%), consultants (10%), university professors (7%), etc. On the opposite
end of the scale, wefind that they tend not to form part of sales or marketing departments (about 1%). It is
interesting to note how many of them define themselves as software engineers rather than programmers,
almost three times as many, bearing in mind, as we will see in the chapter on software engineering, that
the application of classical software engineering techniques (and even some modern ones) is not really
entrenched in the world of free software.

The university connection, which has already been proven, rearsits head again in this section. About one
in three developersis a student or university professor, which goes to show the tremendous collaboration
between people mainly from the software industry (the remaining two thirds) and the academic sphere.

At the sametime, it has been possibleto identify alarge scope of mixed disciplines: onein five devel opers
comes from afield that is not IT. This, combined with the fact that there is also a similar number of non-
university developers, reflects a wealth of interests, origins, and certainly, composition of development
teams. It is very difficult to find a modern industry, if there is one, where the degree of heterogeneity is
as large as the one we can seein free software.

In addition to the approximately 20% of students, 64% of developers are mostly paid employees, whereas
the proportion of self-employed developersis 14%. Finally, just 3% claimsto be unemployed, asignificant
fact since the survey was conducted after the dotcom crisis began.

Example 1.12. Note

The fact that free software business model, unlike with proprietary software, cannot be achieved through
the sale of licences has always propitiated heated debates as to how programmers should earn their living.
In the surveys that we refer to in this chapter, 50% of developers claimed to have obtained direct or
indirect financial compensation for their involvement in free software. However, many others aren't so
sure. Richard Stallman, founder of the GNU project, when asked what a free software developer should
do in order to make money, tends to reply that he can work as awaiter.

Geographical distribution

Obtaining devel opers geographical dataisan issuethat needsto be approached in amore scientific manner.
The problem with the research shown in this chapter is that because it is based on Internet surveys, open
to anyone wishing to participate, participation has depended to a great extent on the sites it was posted,
and the way in which it was announced. To be accurate, we should note that the surveys did not aim to
be representative in this regard, but rather to obtain the answers and/or opinions of the largest possible
number of free software developers.

However, we could venture to make a few statements on this issue, knowing that this data is not as
reliable as previous data, and that therefore, the margin of error is much greater. What seems to be a
fact is that most free software developers come from industrialised countries, and that the presence of
developers from so-called Third World countriesis rare. Consequently, it shouldn't be surprising that the
map of developers of the Debian project (http://www.debian.org/devel/devel opers.loc) [187], for example,
matches the photographs of the Earth at night: where there islight - read "where there is an industrialised
civilisation" - that is where free software developers tend to concentrate. This, which may seem logical
at first sight, stands in contrast to the potential opportunities that free software can offer Third World
countries.

We can find a clear example in the following table, which contains the most common countries of origin
of the Debian project developersin thelast four years. Thereis anoticeable trend towards decentralisation

49

http://www.debian.org/devel/developers.loc

Free Software

of the project, evident from the fact that the growth in the number of developers from the US, the country
which most contributes, islower than the average. And the fact isthat, in general, countries have managed
to double their numbers of volunteers from 1999 to 2003, and France, which has managed to multiply its
presence by five, isthe clearest example in this regard. Considering that Debian took its first steps on the
American continent (inthe USand in Canadain particular), we can seethat in the last few yearsthe project
has become Europeanised. We assume that the following step will be the much sought-after globalisation,
with the incorporation of South American, African and Asian countries (with the exception of Korea and
Japan, which are aready well represented), although the data in our possession (two collaborators from
Egypt, China or India, and one in Mexico, Turkey or Colombia in June 2003) are not very promising in
this sense.

In the world of free software (and not just in the case of Debian), there is an extensive debate over the
supremacy of Europe or the United States. Almost all studies have shown that the presence of European
developers is dlightly higher than the North American one, an effect that is mitigated by the fact that
Europe's population is greater than that of the US. Therefore, we are dealing with awar of numbers, since
the number of developers per capita is higher among the North Americans. If we take into account the
number of peoplewith Internet accessinstead of the total population, then Europe comes out on top again.

In terms of countries, the areas with the highest levels of implantation (in numbers of developers divided
by the population) are Northern Europe (Finland, Sweden, Norway, Denmark and Iceland) and Central
Europe (Benelux, Germany and the Czech Republic), followed by Australia, Canada, New Zealand and
the US. Despiteits importance in absolute terms (due to the large populations of France, Italy and Spain),
the Mediterranean zone however, is below average.

Table1l.1. Table 1. Countrieswith the largest number of Debian developers

Country 01/07/1999 01/07/2000 01/07/2001 01/07/2002 20/06/2003
us 162 169 256 278 297
Germany 54 58 101 121 136
UK 34 34 55 63 75
Australia 23 26 41 49 52
France 11 11 24 44 51
Canada 20 22 41 47 49
Spain 10 11 25 31 34
Japan 15 15 27 33 33
Italy 9 9 22 26 31
Netherlands 14 14 27 29 29
Sweden 13 13 20 24 27
Dedication

The number of hours that free software developers spend on developing free software is one of the big
unknowns. We should also point out that this is one of the main differences with company-generated
software, where the members of the team and the time spent by each team member on a devel opment
are well known. The time that developers dedicate to free software can be taken as an indirect measure
of their level of professionalisation. Before showing the data currently available, it is important to note
that it has been obtained from estimates given by developers in various surveys, so that in addition to the
inherent inaccuracies of this type of data gathering, we need to consider a margin of error associated to
how each devel oper interprets devel opment time. Hence, it iscertain that many developerswill not include

50

Free Software

the time spent reading e-mails (or perhaps they will) and only specify the time they spend programming
and debugging. Therefore, all the figures we show next need to be considered with due reserve.

Theresearch conducted to date shows that each software devel oper spends eleven hoursaweek on average
("Motivation of software developers in open source projects: an internet-based survey of contributors to
the Linux kernel", 2003) [143]. However, thisfigure can be deceptive, since thereisan enormousvariation
in the time spent by software developers. In the study Free/libre and open source software. Survey and
study, part 1V: "Survey of developers', 2002 [126], 22.5% of those surveyed said that their contribution
was |ess than two hours per week, and thisfigure increased to 26.5% for those spending two to five hours
per week; between six and ten hours was the time spent by 21.0%, while 14.1% spent between eleven
and twenty hours per week; 9.2% claimed that the time they spent developing free software was between
twenty and forty hours per week and 7.1%, over forty hours per week.

Table 1.2. Table 2. Dedication in hours per week

Hours per week Per centage
Lessthan 2 hours 22.5%
Between 2 and 5 hours 26.1%
Between 5 and 10 hours 21.0%
Between 10 and 20 hours 14.1%
Between 20 and 40 hours 9.2%

More than 40 hours 7.1%

Example 1.13. Note

In addition to showing the level of professionalisation of free software devel opment teams, the time spent
in hoursisarelevant parameter when it comesto making cost estimates and comparisons with proprietary
development models in the industry. With free software, for now, we just have the end products (new
software deliveries, synchronisation of new code in versions systems...) which do not alow us to know
how much time the devel oper has spent on achieving them.

An analysis of these figures tell us that about 80% of developers perform these tasks in their free time,
whereas only one in five could consider that they spend as much time on this activity as a professional.
Later, in the chapter on software engineering, we will see how this data matches devel opers' contributions,
since they both appear to follow the Pareto law (vid. section 7.6).

Motivations

There has been much speculation as to the motivations that developers have to develop free software,
especialy when it isdone in free time (which, as we have seen, corresponds to about 80% of developers).
As in previous sections, we only have the survey data, which is why it is important to realise that
the answers have been given by the developers themselves, meaning that they may be more or less
coherent with reality. The percentages shown next exceed the 100% mark because there was an option for
participants to select several answers.

Inany case, it appearsfrom their answersthat most want to learn and to develop new skills (approximately
80%) and that many do so in order to share knowledge and skills (50%) or to participate in a new form of
cooperation (about athird). Thefirst datais not surprising, given that a professional with more knowledge
will be in greater demand than one with less. However, it is not quite so easy to explain the second data,
and it would even seem to contradict Nikolai Bezroukov's opinion in "A second look at the cathedral
and the bazaar" (December, 1998) [91] that the leaders of free software projects are careful not to share
all the information in their possession in order to perpetuate their power. Meanwhile, the third most

51

Free Software

frequent choice is undoubtedly, atrue reflection of developers' enthusiasm about the way free software is
created in general; it is difficult to find an industry in which a group of lightly organised volunteers can
-technologically speaking- stand up to the sector's giants.

Although the "classical" theory for explaining why free software developers spend time contributing to
this type of projects is reputation and indirect financial benefits in the medium and long term, it would
appear that devel opers themselves disagree with these claims. Just 5% of those surveyed replied that they
develop free software in order to make money, whereas the number who did so in order to establish a
reputation rose to 9%, far from the answers given in the preceding paragraph. In any case, it seems that
researching developers motivations to become part of the free software community isafundamental task,
which sociologists and psychologists will have to face in the near future.

Leadership

Reputation and leadership are two of the characteristics used to explain the success of free software, and
especialy, the bazaar model, as we will see from the chapter on software engineering. Aswe have seenin
another chapter, on software licences, there are certain differences between free software licences and its
equivalents in the documentation field. These differences stem from the way of retaining authorship and
authors' more accentuated opinion in text than in programs.

In Free/libre and open source software. Survey and study, part 1V: "Survey of developers' (2002) [126]
a question was included that asked developers to point out what people from alist were known to them,
not necessarily personally. The results, set out in table 3, show that these people can be divided into three
clearly distinct groups:

Table1.3. Table 3. Level of awareness of important developers

Developer Known for
Linus Torvalds 96.5%
Richard Stallman 93.3%
Miguel de Icaza 82.1%
Eric Raymond 81.1%
Bruce Perens 57.7%
Jamie Zawinski 35.8%
Mathias Ettrich 34.2%
Jorg Schilling 21.5%
Marco Pesenti Gritti 5.7%
Bryan Andrews 5.6%
Guenter Bartsch 3.5%
Arpad Gereoffy 3.3%
Martin Hoffstede 2.9%
Angelo Roulini 2.6%
Sal Valliger 1.2%

» A first group of people with clear philosophical and historical connotations within the world of free
software (although, as we know, they may also have notable technical skills):

1. LinusTorvalds. Creator of the Linux kernel, the most used free operating system, and co-author of Just
for fun: the story of an accidental revolutionary [217].

52

Free Software

2. Richard Stallman. Ideologist and founder of the Free Software Foundation and developer on various
GNU projects. Author of several important essays on free software ("Why free software is better than
open source’, 1998 [206], "Copyleft: pragmatic idealism”, 1998 [205], "The GNU Project" [208] and
"The GNU Manifesto", 1985 [117]).

3. Miguel de Icaza. Co-founder of the GNOME project and Ximian Inc., and developer in GNOME and
MONO.

4. Eric Raymond. Promoter of the Open Source Initiative, author of "The cathedral and the bazaar" [192]
and main developer of fetchmail.

5. Bruce Perens. Former leader of the Debian project, promoter (converted) of the Open Source Initiative
and developer of the e-fence tooal.

6. Jamie Zawinsky. Ex developer of Mozilla and famous for a letter of 1999 in which he left the
Mozilla project arguing that the model they were following would never bear fruit ("Resignation and
postmortem”, 1999) [237].

7. Mathias Ettrich. Founder of KDE and developer of LyX and others.

A second group consisting of developers. This survey took the names of the leading developers of the
six most popular projects according to the FreshM eat free software download site. We can see that (with
the exception of Linus Torvalds, for obvious reasons, and Jorg Schilling) thelevel of awareness of these
developersissmall:

1. Jorg Schilling, creator of cdrecord, among other applications.
2. Marco Pesenti Gritti, main developer of Galeon.

3. Bryan Andrews, developer of Apache Toolbox.

4. Guenther Bartsch, creator of Xine.

5. Arpad Gereoffy, developer of MPEGPlayer.

* A third group consisting of the names of the three last "peopl€" in the table. These names were invented
by the survey team in order to check the margin of error.

We can draw two conclusions from the results: the first is that we can consider the margin of error to be
small (lessthan 3%), and the second is that most devel opers of the most popular free software applications
are as well-known as people who do not exist. This data should make those who alege that one of the
main reasons for devel oping free software is fame-seeking think twice.

Summary and conclusions

This chapter has attempted to shed some light on the largely unknown issue of the people who dedicate
time to free software. In general terms, we can say that a free software developer is ayoung male with a
university qualification (or on the way to getting one). The relationship between theworld of free software
and universities (students and professors) isvery close, although the devel oper who has nothing to do with
the academic sphere still predominates.

In terms of hours of dedication, we have shown that there is an enormous disparity, similar to what is
postulated in the Pareto law. Developers' motivations, in their own opinion, are far from being monetary
and egocentric, as economists and psychologists tend to suggest, and are mostly to do with sharing and
learning. Finally, we have shown atable of the most significant personalitiesin the world of free software
(including otherswho were not so well-known, aswe have seen) and shown that reputation in the enormous
free software community tends to depend on more than just coding a successful free software application.

53

Free Software

Economy

"Res publica non dominetur.”
"Public things have no owner." (free trandation)
Appeared in an IBM advert about Linux (2003)

This chapter looks at some economic aspects related to free software. We will start by showing how free
software projects are financed (when they are indeed financed, since in many cases they rely solely on
efforts and resources contributed voluntarily). Next, we will ook at the main business models put into
practice by companies directly associated to free software. The chapter ends with a small study of the
relationship between free software and monopoliesin the software industry.

Funding free software projects

Public

Free software is developed in many different ways and using mechanisms to obtain funds that vary
enormously from case to case. Every free project has its own way of financing itself, from the one
consisting totally of volunteer developersand using only altruistically ceded funds, to the one carried out by
acompany that invoices 100% of its costs to an organisation interested in the corresponding devel opment.

In this section, we will focus on the projects where there is external funding and not al the work is
voluntary. In these cases, there is normally some form of cash inflow, from an external source to the
project, responsible for providing funds for its development. Thisway, the free software that is built may
be considered, to some extent, to be the product of this external funding. Thisiswhy it is common for that
external source to decide (at least in part) how the funds are spent and on what.

In some way, this external funding for free projects can be considered a kind of sponsorship, although
this sponsorship has no reason for being disinterested (and usualy it is not). In the following sections
we discuss the most common types of external funding. However, while learning about them, we should
remember that these are just some of the ways that free software projects obtain resources. But there are
others, and of these the most important one (as we have seen in chapter 4) is the work of many volunteer
developers.

funding

A very special type of financing for free projects is public funding. The funding body may be directly
a government (local, regional, national or even supranational) or a public institution (for example, a
foundation). In these cases, the funding tends to be similar as for research and development projects, and
infact it iscommon for the funding to come from public bodies that promote R+D. Normally, the funding
body will not seek to recover the investment (or at least not directly), although it tends to have clear
objectives (such as promoting the creation of an industrial or research-based fabric, promoting a certain
technology or a certain type of application, etc.).

In most of these cases, there is no explicit financing of products or services related to free software, but
rather this tends to be the sub-product of a contract with other more general objectives. For example, as
part of its research programs, the European Commission funds projects aimed at improving European
competitiveness in certain fields. Some of these projects have as part of their objectives to use, improve
and create free software within the scope of the research (as aresearch tool or a product derived from it).

The motivations for this type of financing are very varied, but we can distinguish the following:

1. Scientific. Thisisthe most frequent one in the case of publicly funded research projects. Although its
objectiveisnot to produce software but rather to investigate a specific field (whether I T-related or not),

Free Software

itislikely to require programs to be developed as tools for achieving the project's objectives. Usually
the project is not interested in commercialising these tools, or may even be actively interested in other
groups using and improving them. In such cases, it isfairly common to distribute them as free software.
In this way, the group conducting the research has partly dedicated funds to producing this software,
so we can say that it has been developed with public funding.

2. Promoting standards. Having a reference implementation is one of the best ways of promoting a
standard. In many cases this involves having programs that form part of said implementation (or
if the standard refers to the software field, to be the implementation themselves). For the reference
implementation to be useful in promoting the standard, it needs to be available, at least in order to
check interoperativity for al those wishing to develop products that subscribe to that standard. And
in many cases it is also advisable for manufacturers to be able to adapt the reference implementation
directly in order to use it with their products if they wish. This is how, for example, the Internet
protocol s were devel oped, which have now become auniversal norm. In such cases, releasing reference
implementations as free software can contribute enormously towards that promotion. Once again, free
software hereis asub-product, in the case of promoting a standard. And normally the party responsible
for this promotion is a public body (although sometimes it may be a private consortium).

3. Social. Free software is a very interesting tool for creating the basic infrastructure for the information
society. Organisations interested in using free software to promote universal access to the information
society can finance projects related to it (normally with projects for developing new applications or
adapting already existing ones).

Example 1.14. Note

An example of public financing for a primarily social objective is the case of gnuLinEx, promed by the
Extremadura Regional Government (Extremadura, Spain) in order to promote the information society
fundamentally in terms of computer literacy. The Regional Government has financed the devel opment
of adistribution based on Debian in order to achieve this objective. Another similar case is the German
government funding of GnuPG devel opments, aimed at making them easier to use for inexperienced users,
with the idea of promoting the use of secure mail by its citizens.

Example 1.15. The development of GNAT

A notorious case of public financing for a free software development is the case of the GNAT compiler.
GNAT, the Adacompiler, was financed by the Ada9X project of the US Department of Defence, with the
ideaof having acompiler of the new version of the Ada programming language (which would later become
Ada 95), which it was trying to promote at that time. One of the causes identified in relation to software
companies adopting Adas first version (Ada 83) was the late availability of alanguage compiler and its
high cost when it wasfinally rel eased. Therefore, they tried to prevent the same thing from happening with
Ada 95, ensuring that the compiler was ready almost simultaneously with the release of the language's
new standard.

To do so, Ada 9X contracted a project with a team from the University of New York (NYU), for an
approximate value of one million USD, to carry out a"concept implementation” of the Ada 95 compiler.
Using these funds, and taking advantage of the existence of GCC (GNU's C compiler, of which most of
the backend was used), the NY U team effectively built the first Ada 95 compiler, which it released under
the GNU GPL. The compiler was so successful that when the project was finished some of its creators
founded acompany (Ada Core Technologies), which since then has become the market leader in compilers
and help tools for building programsin Ada.

In this project it is worthy to note the combination of research elements (in fact, this project advanced
knowledge on the building of front ends and run time systems for Ada-type language compilers) and
promotion of standards (which was the funding body's clearest objective).

55

Free Software

Private not-for-profit funding

Thistype of funding has many similar characteristicsto the previoustype, which isnormally conducted by
foundations or non-governmental organisations. Direct motivation in these casestendsto beto producefree
software for usein a sphere that the funding body considers particularly relevant, but we may also find the
indirect motivation of contributing to problem-solving (for example, a foundation that promotes research
into a disease may finance the construction of a statistics program that helps to analyse the experimental
groups used as part of the research into that disease).

In general, both the motives and the mechanismsfor thistype of funding are very similar to those of public
funding, although naturally they are aways in the context of the funding body's objectives.

Example 1.16. Note

Probably, the archetypal case of afoundation that promotes the devel opment of free software is the Free
Software Foundation (FSF). Since the mid-1980s this foundation is dedicated to promoting the GNU
project and to encouraging the development of free software in general.

Another interesting case, although in arather separate field, is the Open Bioinformatics Foundation. The
objectives of thisfoundation include promoting the development of basic computer programs for research
in any of the branches of bioinformatics. An in general, it promotes this by financing and contributing to
the construction of free programs.

Financing by someone requiring improvements

Another type of financing the development of free software, which is not quite so altruistic, takes place
when someone needs to make improvements to a free product. For example, for internal use, a company
may need a certain program to have a particular functionality or to correct a few bugs. In these cases, it
is common for the company in question to contract the required development. This development is often
free software (whether because the licence of the modified program imposes it, or because the company
decidesit).

Example 1.17. The case of Coredl and Wine

Towards the end of the 1990s, Corel decided to port its products to GNU/Linux. During this process
it discovered that a free program designed to facilitate the execution of binaries for Windows in Linux
environments could help to make considerable development savings. But in order to do so, it had to be
improved, fundamentally by adding the emulation of some Windowsfunctionality that the Corel programs
used.

For this, Corel contracted Macadamian, which contributed its improvements to the Wine project. This
way, both Corel and Wine benefited.

Funding with related benefits

With thistype of financing, the funding body aims to obtain benefits from products related to the program
whose development it funds. Normally, in these cases the benefits obtained by the funding body are not
exclusive, since others can also enter the market for selling the related products, but either the market
share it captures is sufficient for it not to worry too much about sharing the pie with others, or it has a
clear competitive advantage.

Some examples of products related to a particular software are as follows:

» Books. The company in question sells manuals, user guides, course materials, etc. related to the free
program that it helps to finance. Of course, other companies can also sell related books, but normally

56

Free Software

financing the project will give the company early access to key developers before the competition, or
simply provide a good image towards the user community of the program in question.

e Hardware. If a company funds the development of free systems for a certain type of hardware, it can
more easily dedicate itself to selling that type of hardware. Once again, since the software developed is
free, competitors selling the same type of devices may appear, that use the same devel opments without
having collaborated in the funding. But even so, the company in question has several advantages over
its competitors, and one of them may be that its position as a source of funding for the project allows it
to exert influence so that priority is given to the developments in which it is most interested.

e CD with programs. Probably, the best known model of this type is the one of companies financing
certain developments that they then apply to their software distribution. For example, having a good
desktop environment can help alot to sell aCD with acertain distribution of GNU/Linux, and therefore,
financing its development could be a good business for the party selling the CDs.

We need to bear in mind that under this heading the financing in question has to be made with a profit
motivation, and therefore the funding body has to obtain a potential benefit from the financing. In reality,
however, it is common for there to be a combination of profit motive and altruism when a company
provides funds for afree program to be made from which it expects to benefit indirectly.

Example 1.18. Note

A well-known case of funds contributed to a project, albeit fairly indirectly, is the help that the O'Reilly
publishing house gives to the devel opment of Perl. Naturaly, it isno coincidence that O'Reilly isalso one
of the main publishers of subjects related to Perl. In any case, it is obvious that O'Reilly does not have
exclusivity over the publication of books of this kind, and that other publishing houses compete in this
market segment, with varying degrees of success.

VA Software (originally VA Research and later VA Linux) has collaborated actively in developing the
Linux kernel. Through this, it has achieved, among others, ensured continuity, which was particularly
critical for it in relation to its customers when its main business was selling equipment with a GNU/Linux
pre-installation.

Red Hat has financed the development of many GNOME components, essentially obtaining a desktop
environment for its distribution, which has contributed to increasing its sales. Asin previous cases, other
manufacturers of distributions have benefited from this development, although many of them have not
collaborated with the GNOME project to the same extent as Red Hat (and quite afew have not collaborated
at al). Despite this fact, Red Hat benefits from its contribution to GNOME.

Financing as an internal investment

There are companies that develop free software directly as part of their business model. For example,
a company may decide to start a new free project in a field where it believes that there are business
opportunities, with the idea of subsequently obtaining a return on that investment. This model could be
considered a variation of the previous one (indirect financing), and the "related benefits' would be the
advantages that the company obtains from producing the free program. But sincein this caseit isthe free
product itself which is expected to produce the benefits, it seems appropriate to give it its own heading.

This type of financing gives rise to various business models. When we analyse them (in section 5.2) we
will also explain the advantages that a company normally obtains from this type of investment in a project
and what methods tend to be used in order to make it profitable. But in any case, we should mention that
sometimes the software in question may be developed simply in order to satisfy the company's own needs,
and that only later the company may decide to release it, and perhaps, to open abusiness line based on it.

57

Free Software

Example 1.19. Note

Digital Creations (now Zope Corporation) is one of the most well-known cases of a company dedicated
to developing free software with the expectation of making a return on its investment. The free project
that Zope invests most heavily in is an applications server that is enjoying a certain amount of success.
Its history with free software started when the then Digital Creations was looking for venture capital to
develop its proprietary applications server, around 1998. One of the groups most interested in investing
in them (Opticality Ventures) established as a condition that the resulting product must be free, because
otherwise they did not see how they could obtain a significant market share. Digital Creations agreed to
this approach and afew months|later announced the first version of Zope. Nowadays, Zope Corporationis
specialised in consulting, training and support for content management systems based on Zope, and other
products of which Zope is unguestionably the cornerstone.

Ximian (formerly Helix Code) is a well-known case of free applications development in a business
environment. Closaly linked since its origins to the GNOME project, Ximian has produced software
systems such as Evolution (a persona information manager which includes a relatively similar
functionality to Microsoft Outlook), Red Carpet (an easy-to-use system for managing packages on an
operating system) and MONO (an implementation of alarge part of .NET). The company was founded
in October 1999 and attracted many devel opers from GNOME, who became members of its devel opment
team (while continuing in many cases to collaborate with the GNOME project). Ximian positioned itself
as an engineering company expert in GNOME adaptations, in building applications based on GNOME,
and in general, in providing development services based on free software, especialy tools related to the
desktop environment. In August 2003, Ximian was bought by Novell.

Cisco Enterprise Print System (CEPS) (http://ceps.sourceforge.net/) [17] is a printing management system
for organisations that use very many printers. It was developed internally in Cisco to satisfy its own needs
and freed in 2000 under the GNU GPL. It is difficult to know for sure Cisco's reasons for doing this, but
they could be related to finding external contributions (error reports, new controllers, patches, etc.). In any
case, what is obviousisthat since Cisco had no plansto commercialise the product and its potential market
was not very clear, it had very little to lose with this decision.

Other financing modes

There are other financing modes that are difficult to classify under the previous headings. As an example,
we could mention the following:

e Use of the market for putting developers and clients in contact. The idea that sustains this mode
of financing is that, especially for minor developments, it is difficult for a client wanting a specific
development to come into contact with a devel oper capable of doing it in an efficient manner. In order
to improve this situation, free software development markets are established where developers can
advertise their skills and clients, the developments that they need. A developer and a client reach an
agreement; we have a similar situation to the one already described as "funding by a party requiring
improvements " (section 5.1.3).

58

http://ceps.sourceforge.net/

Free Software

Example 1.20. Sour ceXchange

SourceX changeisan example of amarket that put devel opersin contact with potential clients. To advertise
aproject, aclient would present an RFP (request for proposal) specifying the development required and the
resources it was prepared to provide for that development. These RFPs were published on the site. When
adeveloper read one that interested him, he would make an offer for it. If a developer and a client agreed
on the terms of the devel opment, a project would begin. Normally, every project was supervised by a peer
reviewer, areviewer responsible for ensuring that the developer complied with the specifications and that
indeed the specifications made sense, and advising on how to carry through the project, etc. SourceX change
(owned by the company CollabNet) took charge of providing the site, guaranteeing reviewers capabilities,
ensuring payment in the case of completed projects and offering monitoring tools (services for which it
invoiced the client). The first project mediated through SourceX change was completed in March 2000,
but just over ayear later, in April 2001, the site closed down.

» Project financing through the sale of bonds. The idea behind this type of financing is similar to that
of the ordinary bonds market approached by companies, but targeted at developing free software. It
has several variations, but one of the best known operates as follows. When a developer (an individual
or a company) has an idea for a new program, or improvement for an existing program, he writes it
up as a specification, with a cost estimate for its development and issues bonds for its construction.
The value of these bonds is only executed if the project is finally completed. When the developer has
sold enough bonds, development begins, financed with loans based on them. When the development is
completed, and an independent third party certifies that indeed what has been done complies with the
specifications, the developer "executes' the bonds, settles the debts, and what is left over is the profit
made from the development.

Who would be interested in buying these bonds? Obviously, users who would want the new program or
improvement to an existing program to be made. To some extent, this bonds system allows interested
parties to establish developers priorities (at least in part), through the acquisition of bonds. This also
means that development costs do not have to be assumed by just one company, but rather can be shared
between severa (including individuals), who additionally only have to pay if the project concludes
successfully intheend. A similar mechanismto thisis proposed in much moredetail in"The Wall Street
performer protocol. Using software completion bonds to fund open source software development”, by
Chris Rasch (2001) [191].

Bibliography

street performer protocol Third USENIX Workshop on Electronic Commerce Proceedings rational street performer
protocol. The bonds system described is based on the street performer protocol ("The street performer
protocol”, in: Third USENIX Workshop on Electronic Commerce Proceedings, 1998 [152], and "The street
performer protocol and digital copyrights’, 1999 [153]), a mechanism based on e-commerce designed to
facilitate private funding of free creations. In short, whoever isinterested in a particular job would formally
promiseto pay acertain amount if thework isdone and published asfree. Its objectiveisto find anew way of
financing relatively small jobs that are made available to everyone, but may be extended in many ways (the
bondsfor the construction of free software being one of them). We can see asmall case of putting a derivation
of this protocol into practice, therational street performer protocol (Paul Harrison, 2002, [137]) where http://
www.csse.monash.edu.au/~pfh/circle/funding_results.htmlit is applied to obtaining funds to finance part of
The Circle, afree software project.

» Developer cooperatives. In this case, free software developers, instead of working individualy or for
a company, join some form of association (normally similar to a cooperative). In all other aspects, it
functions the same way as a company, with an overtone of its ethical commitment to free software,
which may form part of its company statutes (although an ordinary company can do this too). In this
type of organisation, we may see a variety of combinations of voluntary and paid work. An example
is Free Developers.

59

http://www.csse.monash.edu.au/~pfh/circle/funding_results.html
http://www.csse.monash.edu.au/~pfh/circle/funding_results.html

Free Software

 Donations system. This involves enabling a mechanism for paying the author of a particular software,
through the web page that accommodatesthe project. Thisway, usersinterested in the project continuing
to release new versions can support it financially by making voluntary donations in the way of funding
for the devel oper.

Business models based on free software

In addition to the project funding mechanisms that we have already talked about, another aspect related to
the economy which deserves mentioning is business models. In speaking about financing mechanisms, we
have already mentioned afew in passing. Here, in this section, we will describe them in amore methodical
fashion.

In general, we can say that many business models are being explored around free software, some more
classical and others more innovative. We need to take into account that it is not easy to use those based
on the sale of licences, the most common found models in software industry, since in the world of free
softwarethisfinancing mechanismisvery difficult to exploit. However, we can use those based on services
to third parties, with the advantage that it is possible to offer complete support for a program without
necessarily being its producer.

Example 1.21. Sale of free software at so much per copy

In the world of free software it is difficult to charge for licences for use, but not impossible. In general,
there is nothing in the free software definitions to prevent a company from creating a product and only
distributing it to anyone who pays a certain amount. For example, a particular producer could decide to
distributeits product with afreelicence, but only to whoever pays 1,000 euros per copy (likeintheclassical
world of proprietary software).

However, although theoretically thisis possible, in practice it is difficult for this to occur. Because once
the producer has sold the first copy, whoever receives it may be motivated to try and recover his or her
investment by selling more copiesat alower price (something which cannot be prohibited by the program's
licenceif it isfree). In the previous example, one could try selling ten copies at 100 euros each, meaning
that additionally the product would work out free of charge (also, thiswould make it very difficult for the
original producer to sell another copy at 1,000 euros, since the product could be legally obtained at atenth
of the cost). It is easy to see how this process would continue in waterfall until copies were sold at aprice
close to the copying marginal cost, which with current technologiesis practically zero.

Even so, and bearing in mind that the mechanism described will mean that normally a producer cannot
put a price (particularly a high price) on the mere fact of the program'’s redistribution, there are business
models that implicitly do just that. One exampleisthe case of GNU/Linux distributions, which are sold at
amuch lower price in comparison with proprietary competitors, but above (and normally far above) the
cost of the copy (even when it can be freely downloaded from the Internet). Of course, in these cases other
factors come into play, such as the brand image or convenience for the consumer. But thisis not the only
case. Therefore, rather than saying that free software "cannot be sold at so much per copy"”, we should
bear in mind that it is more difficult to do so, and that probably it will generate less profit, but that there
can be models based precisely on that.

Given these limitations (and these advantages), for several years now variations on the usual business
models in the software industry are being tried out, at the same time as other more innovative solutions
are sought for exploiting the possibilities offered by free software. No doubt, in the next few years we
will see even more experimentation in thisfield, and will also have more information on what models can
work and under what circumstances.

Inthis section we offer apanoramaof the business model sthat we most frequently encounter today, divided
into groups with the intention of showing the reader what they share in common and what distinguishes

60

Free Software

them, focusing on those based on the development and services around a free software product. Revenue,
in this case, comes directly from the development activities and services for the product, but does not
necessarily imply new product development. When this development does occur, these models have the
financing of free software products as a subproduct, meaning that they are particularly interesting models
with a potentially large impact on the world of free software in general.

In any case, and although here we offer arelatively clear classification, we must not forget that almost all
companiesin reality use combinations of the modelsthat we describe, and with other moretraditional ones.

Better knowledge

The company that follows this business model tries to make profits on its knowledge of a free product
(or set of products). Its revenue will come from clients to which it will sell services related to that
knowledge: development based on the product, modification, adaptation, installation and integration with
other products. The company's competitive advantage will be closely related to its better knowledge of
the product: therefore, the company will be particularly well positioned if it is the producer or an active
participant in the project producing the software product.

Thisis one of the reasons why companies that use this model tend to be active participants in the projects
related to the software for which they try to sell services: itisavery efficient way of obtaining knowledge
about it, and more importantly, for that knowledge to be recognised. Certainly, being able to tell a client
that the company's employeesinclude various devel opers on the project that produces the software, which,
for example, needs to be changed, tends to provide a good guarantee.

Example 1.22. Relationship with development proj ects

Therefore, companiesof thistype arevery interested in transmitting an image of having good knowledge of
certain free products. Aninteresting outcome of thisisthat support for free software projects (for example,
by participating actively in them, or allowing employees to do so in the course of the working day) is not
therefore, something purely philanthropic. On the contrary, it may be one of the company's most profitable
assets, since clients will value it very positively as a clear sign that the company is knowledgeable about
the product in question. Plus, this way it will be able to follow the development closely, trying to make
sure, for example, that the improvements requested by its clients become part of the product developed
by the project.

Analysing this from a more general point of view, thisis a situation in which both parties, the company
and the project, benefit from the collaboration. The project benefits from the devel opment made by the
company, or because some of its developers are paid (at least part-time) for their work on the project. The
company benefits in knowledge about the product, image towards its clients, and a degree of influence
over the project.

The range of services provided by this type of company can be very broad, but normally consists of
customised devel opments, adaptations or integrations of the productsthat they are expertsin, or consulting
serviceswherethey advisetheir clients how best to use the product in question (especially if itisacomplex
product or its correct functioning is critical for the client).

61

Free Software

Example 1.23. Examples
Examples of companies that up to a point have used this business model include the following:

e LinuxCare (http://www.linuxcare.com [http://www.linuxcare.com/]) [45]. Established in 1996, it
originally provided consulting services and support for GNU/Linux and free software in the US, and
its staff consisted essentially of experts in GNU/Linux. However, in 2002 its objectives changed and
since then it has specialised in providing services almost exclusively to GNU/Linux running on virtual
machines in large IBM computers. Its business model has also changed to "better knowledge with
limitations", since as a fundamental part of its servicesit offers anon-free application, Levanta.

* Alcove (http://www.alcove.com [http://www.al cove.com/]) [3]. Established in 1997 in France, it mainly
offers free software consulting services, strategic consulting, support and development. Since its
foundation, Alcbve has kept the developers of various free projects on staff, trying to make areturn on
this in terms of image. It has also tried to offer the image, in general, of a company linked to the free
software community, by collaborating, for example, with user associations and giving publicity to its
collaborations with free projects (for example, through Alcbve-Labs [4]).

Better knowledge with limitations

These modelsare similar to those described in the previous section, but try to limit the competition that they
may haveto face. Whereasin the pure models based on better knowledge, anyonecan, in principle, jointhe
competition, since the software used isthe same (and free), in this case the attempt isto avoid that situation
by placing barriers to competition. These barriers tend to consist of patents or proprietary licences, which
normally affect asmall (but fundamental) part of the developed product. Thisiswhy these models may be
considered as mixed, in the sense that they are halfway between free software and proprietary software.

In many cases, the free software community develops its own version, meaning that the competitive
advantage can disappear, or even turn against the company in question if the free competitor becomes the
market standard and is demanded by the company's own clients.

62

http://www.linuxcare.com/
http://www.linuxcare.com/
http://www.alcove.com/
http://www.alcove.com/

Free Software

Example 1.24. Examples

There are many cases that use this business model, since it is frequently considered less risky than the
pure knowledge one. However, the companies that have used it have evolved in different ways. Some of
them include the following:

e Caddera (http://www.sco.com [http://www.sco.com/]) [16]. Calderas history is complicated. In the
beginning, it created its own distribution of GNU/Linux, aimed at businesses. Caldera OpenLinux.
In 2001 it bought the Unix division from SCO, and in 2002 it changed its name to SCO Group. Its
business strategy has changed as frequently as its name, from its total support for GNU/Linux, to its
legal suits against IBM and Red Hat in 2003 and abandoning its own distribution. But in relation to this
heading, Caldera's business, at least until 2002, is a clear model of better knowledge with limitations.
Calderatried to exploit its knowledge of the GNU/Linux platform, but limiting the competition it could
have faced by including proprietary software in its distribution. This made it difficult for its clients to
change distribution once they had adopted it, because even though the other distributions of GNU/Linux
included the free part of Caldera OpenLinux, they did not include the proprietary part.

e Ximian (http://ximian.com/) [74]. Founded in 1999 under the name Helix Code by developers closely
connected to the GNOME project, it was acquired in August 2003 by Novell. Most of the software
that it has developed has been free (in general, part of GNOME). However, in a very specific sphere
Ximian decided to licence a component as proprietary software: the Connector for Exchange. This
module allows one of its star products, Evolution (a personal information manager that includes e-mail,
agenda, calendar, etc.,), to interact with Microsoft Exchange servers, which are commonly used by large
organisations. Thisis how it tried to compete with an advantage over the other companies that offered
services based on GNOME, perhaps with the products developed by Ximian itself but that could not
interact as easily with Exchange. With the exception of this product, the Ximian model has been the one
of "better knowledge", and has also been based on being the source of a program (as we will see later
on). In any case, this component was released as free software in 2005.

Source of a free software product

This model is similar to the one based on better knowledge but with a specialisation, meaning that the
company using it isthe producer, almost integrally, of afree product. Naturally, the competitive advantage
increases through being the developers of the product in question, controlling its evolution and having it
before the competition. All of this positions the devel opment company very strongly towards clients who
are seeking services for that program. Also, it is a very interesting model in terms of image, since the
company has proven its development potential by creating and maintaining the application in question,
which can be very useful when it comes to convincing clients of the company's capabilities. Likewise, it
creates a good image towards the free software community in general, sinceit receives anew free product
from the company that becomes part of the common domain.

63

http://www.sco.com/
http://www.sco.com/
http://ximian.com/

Free Software

Example 1.25. Examples

Many free products started to be developed in a company, and very often that company has continued to
guide its subsequent development. Some examples:

e Ximian. We have already mentioned how it has partly used the model of better knowledge with
limitations. But in general, Ximian has followed the clear model based on being the source of free
programs. Its main products, like Evolution or Red Carpet, have been distributed under GPL licences.
However, other also important ones, such as Mono, are distributed mostly under the MIT X11 or LGPL
licences. Inany case, Ximian has devel oped the products almost exclusively from the start. The company
has tried to make areturn on these devel opments by obtaining contracts to make them evolvein certain
ways, adapting them to clients' needs, and offering customisation and maintenance.

 Zope Corporation (http://www.zope.com/) [75]. In 1995 Digital Creations was established, developing
a proprietary product for the management of classified ads on the web. In 1997 it received a capital
injection from, among others, a venture capital company called Opticality Ventures. What was strange
about this investment (at that time) was the condition that was imposed of distributing the evolved
product as free software, which later became Zope, one of the most popular content managers on the
Internet. Since then, the company's business model has been to produce Zope and related products, and
to offer adaptation and maintenance services for al of them. Zope Corporation has also known how to
create adynamic community of free software devel opers around its products and to collaborate actively
with them.

Product source with limitations

This model is similar to the previous one, but takes measures to limit the competition or to maximise
revenue. Among the most common limitations, we can find the following:

 Proprietary distribution for atime, then released as free software. With or without a promise of alater
free distribution, each new version of the product is sold as proprietary software. After a certain amount
of time (normally, when a new version is released, also as proprietary software), the old version is
distributed with afreelicence. Thisway, the production company obtainsrevenuefrom clientsinterested
in having the new versions, and at the same time limits the competition, since any company wanting to
compete using that product can only do so with thefree version (only avail able when the new proprietary
version is released, which is supposedly improved and more complete).

 Limited distribution for aperiod. In this case, the softwareisfree as of the moment it isfirst distributed.
But because there is nothing in the free licence forcing to distribute the program to anyone who wants
it (this is something that the person in possession of the software may or may not do), the producer
distributesfor atimetoitsclientsonly, who pay for it (normally in the form of amaintenance contract).
After awhile, it distributesit to anyone, for example by placing it in a public access file. Thisway, the
producer obtains income from its clients, who perceive this preferential availability of the software as
an added value. Naturally, the model only works if the clients do not in turn make the program public
when they receiveit. For certain types of clients, this may not be common.

In general, in these cases the devel opment companies obtain the mentioned benefits, but not at zero cost.
Because of the delay with which the product is available for the free software community, it is practically
impossible for it to be able to contribute to its development, meaning that the producer will benefit very
little from externa contributions.

http://www.zope.com/

Free Software

Example 1.26. Examples
Some companies that use this business model are as follows:

« artofcode LLC (http://artofcode.com/) [9]. Since the year 2000, artofcode sells Ghostscript in three
versions (previously Alladin Enterprises had done this with a similar model). The latest version is
distributed as AFPL Ghostscript, under a proprietary licence (which allows use and non-commercial
distribution). The next one (with ayear's delay more or less) is distributed as GNU Ghostscript, under
the GNU GPL. For example, in summer 2003, the AFPL versionis8.11 (released on 161" August), while
the GNU version is 7.07 (distributed as such on 17" M ay, but whose equivalent AFPL versionis dated
2002). Also, artofcode offers a third version, with a proprietary licence that allows its integration with
products not compatible with the GNU GPL (in this case it uses adual model, which we will describe
|ater on).

» Ada Core Technologies (http://www.gnat.com/) [2]. It was established in 1994 by the authors of the
first Ada 95 compiler, developed with partial funding from the US Government, based on GCC, the
GNU compiler. Since the beginning its products have been free software. But most of them are first
offered to their clients, as part of a maintenance contract. For example, its compiler, which continues
to be based on GCC and is distributed under the GNU GPL, is offered to its clientsas GNAT Pro. Ada
Core Technologies does not offer this compiler to the general public by any means, and normally you
cannot find versions of it on the Net. However, with a varying delay (of about one year), Ada Core
Technologies offers the public versions of its compiler, very similar but without any type of support,
in an anonymous FTPfile.

Special licences

Under these models, the company produces a product that it distributes under two or more licences. At
least one of them isfree software, but the othersaretypically proprietary and allow the product to be sold in
amoreor lesstraditional way. Normally, these sales are complemented with the sale of consulting services
and developmentsrelated to the product. For example, acompany can distribute a product asfree software
under the GNU GPL, but also offer a proprietary version (simultaneously, and with no delay between the
two versions) for those not wanting the conditions of the GPL, for example, because they want to integrate
the product with a proprietary one (which the GPL does not allow).

Sleepycat Software (http://www.sleepycat.com/download/oslicense.ntml) [60]. This company was
established in 1996 and hasannounced that it hasmade aprofit from the start (whichiscertainly remarkable
inasoftware- related company). Its products, including Berkeley DB (avery popular datamanager because
it can be easily embedded in other applications), are distributed under a free licence that specifiesthat in
the case of embedding with another product, it has to provide the source code of both. Sleepycat offers
consulting and development servicesfor its products, but al so offersthem under licencesthat allow themto
be embedded without having to distribute the source code. Of course, it does this under aspecific contract,
and in general, under a proprietary software sales regime. In 2005, Sleepycat Software was bought by
Oracle.

Brand sale

Although it is possible to obtain very similar products for far less money, many clients are prepared to
pay extrato buy abrand. This principle is adopted by companies that invest in establishing a brand with
a good and well-recognised image that allows them to then sell free products with a sufficient margin.
In many cases, they do not just sell those products, but also services that the clients will also accept as
an added value.

The most well-known cases of this business model are the companies that sell GNU/Linux distributions.
These companies try to sell something that in general can be obtained at a far lower cost from the Net
(or others sources with less of a brand image). Therefore, they have to make consumers recognise their

65

http://artofcode.com/
http://www.gnat.com/
http://www.sleepycat.com/download/oslicense.html

Free Software

brand and be prepared to pay the additional cost. To do so, they don't just invest in publicity, they also
offer objective advantages (for example, awell-assembled distribution or adistribution channel that offers
proximity to the client). Also, they tend to offer alarge number of servicesaround it (from training to third
party certification programs), in order to make the most of the brand image.

Red Hat (http://www.redhat.com [http://www.redhat.com/]) [56]. Red Hat Linux started to be distributed
in 1994 (the company started to be known by its current name in 1995). For along time, Red Hat managed
to establish its name as the GNU/Linux distribution par excellence (although in the mid 2000 it shares that
position with other companieslike OpenSUSE, Ubuntu, and perhaps Debian). Several years down the line
Red Hat sells all types of services related to the distribution, GNU/Linux and free software in general.

Other business model classifications

Free software literature provides other classifications of traditional business models. As an example, here
are afew.

Hecker classification

The classification provided in "Setting up shop: the business of open source software" (Frank Hecker,
1998) [141] was most used in the publicity of the Open Source Initiative, and also one of the first to try
and classify the businesses that were emerging around that time. However, it includes various model s that
havelittle to do with free software (where free softwareislittle more than acompanion to the main mode!).
In any case, the models it describes are as follows:

e Support seller (sale of servicesrelated to the product). The company promotes a free software product
(which it has developed or in which it participates actively) and sells services such as consulting or
adaptation to specific requirements.

» Loss leader (sale of other proprietary products). In this case, the free program is used to somehow
promote the sale of other proprietary products related to it.

» Widget frosting (Sale of hardware). The main business is the sale of hardware and the free software is
considered a complement that can help the company obtain a competitive advantage.

» Accessorising (sale of accessories). Products related to free software are sold, such as books, computer
devices, etc.

e Service enabler (sale of services). The free software serves to create a service (normally accessible
online) from which the company makes a profit.

» Brandlicensing (sale of abrand). A company registers trademarksthat it manages to associate with free
software programs, probably that it has developed itself. Then it obtains income through licensing the
use of those trademarks.

» Sl it, freeit. Thisisasimilar model to the loss leader, but done in a cyclical fashion. First a product
is marketed as free software. If it isrelatively successful, the next version is distributed as proprietary
software for atime, after which it is freed. By then, a new proprietary version is being distributed, and
SO On successively.

» Softwarefranchising. A company franchisesthe use of itsbrandsin relation to aparticul ar free program.

Note

Readerswill have observed that this classification isfairly different to the onethat we have given,
but even so some of the categories almost totally match some of ours.

66

http://www.redhat.com/
http://www.redhat.com/

Free Software

Impact on monopoly situations

The software market tends towards the domination of one product in each of its segments. Users want to
make the most of the effort madein learning how a program works, companies want to recruit people who
are familiar with the use of their software, and everyone wants the data that they handle to be manageable
by the programs of the companies and people with whom they work. Thisis why any initiative designed
to break a de facto situation in which one product clearly dominates the market is destined to produce
more of the same: if it is successful, the new product will come to take its place, and in a short period we
will have a new dominant product. Only technological changes produce, during a short period, sufficient
instability for nobody to dominate clearly.

But the fact that there is a dominant product does not necessarily have to lead to the creation of abusiness
monopoly. For example, petrol isaproduct that almost dominatesthe fuel market for private cars, but (ina
free petrol market) there are many production companiesand distribution companiesfor that same product.
In reality, when we talk about software, what is worrying is what happens when a product manages to
dominate the market because that product has a sole possible supplier. Free software offers an alternative
to that situation: free products can be promoted by a specific company, but that company does not control
them, or at least not to the extent that proprietary software has us accustomed to. In the world of free
software, a dominant product does not necessarily entail the monopoly of one company. On the contrary,
irrespective of the product that dominates the market, many companies can compete in providing it,
improving it, adapting it to clients needs and offering services related to it.

Elements that favour dominant products

In computer software, it is common to have a clearly dominant product in each market segment. And this
isnormal for several reasons, among which we would highlight the following:

» Dataformats. In many casesthe dataformat isvery closely linked to an application. When a sufficiently
high number of people usesit, the dataformat becomes the de facto standard, and the pressures to adopt
it (and therefore, the application) are tremendous.

« Distribution chains. Normally, one of the problemswith starting to use aprogram is obtaining a copy of
it. And it isnormally difficult to find programs that are not leadersin their market. Distribution chains
are expensive to maintain, meaning that it is difficult for minority competitors to reach the computer
shop where the end user can buy them. However, for the dominant product it is easy: the first to be
interested in having it will be the computer shop itself.

» Marketing. The "free" marketing that a product obtains once a significant proportion of the population
usesit isenormous. "Word of mouth” also worksvery well when we ask and exchange information with
the people we know. But above all the impact from the media is enormous. computer magazines will
refer time and again to a product if it appears to be the one used the most; there will be training courses
around it, books describing it, interviews with users, etc.

* Investment in training. Once time and money has been spent on learning how atool functions, thereis
a high motivation not to change that tool. Also, that tool is usually the one that already dominates the
market, because it is easier to find people and materials to help teach how to use it.

» Pre-installed software. Receiving a machine with pre-installed software is certainly a great incentive
towards using it, even if it has to be paid for separately. And normally, the type of software that the
seller of the machine will be prepared to pre-install will only be the most used.

The world of proprietary software

In the world of proprietary software the appearance of adominant product in any segment is equivalent to
amonopoly on the part of the company that produces it. For example, we have these de facto monopoly

67

Free Software

situations (or almost) of a product and acompany in the market for operating systems, desktop publishing,
databases, graphic design, text processors, spreadsheets, etc.

And thisis so because the company in question has enormous control over the leading product, so much so
that only they can drive its evolution, the fundamental lines along which it will be developed, its quality,
etc. Usershave very little control, since they have very little motivation to consider other products (for the
reasons we have mentioned in the preceding section). In view of this, there is little that competition can
do, except to try and defy the product's dominant position by improving their own products, (to try and
counteract those very reasons), normally with limited success.

This situation places the entire sector in the hands of the dominant company's strategy. All of the actors
depend on it, and even the development of software technology in that field will be mediatised for the
improvements that it makes to its product. In general terms, this is a situation where the worst economic
effects of a monopoly arise, and in particular, the lack of motivation for the dominant company to tailor
products to the (always evolving) needs of its clients, as they have become a captive market.

The situation with free software

However, in the case of free software a dominant product does not automatically translate into a business
monopoly. If the product is free, any company can work with it, improve on it, adapt it to clients' needs,
andingeneral, helpit to evolve. Also, precisely dueto its dominant position, there will be many companies
interested inworking withit. If the"original" producer (the company that originally devel oped the product)
wishes to remain in the business, it will have to compete with all of them and will therefore be highly
motivated to make its product evolve precisely along the lines that users want. Of course, it will have the
advantage of better knowledge of the program, but that isn't all. They will haveto competefor every client.

Therefore, the appearance of dominant products in the world of free software, translates into more
competition between companies. And with it users recover control: companies in competition cannot do
anything but listen to them if they want to survive. And this is precisely what will make sure that the
product improves.

68

Free Software

Example 1.27. Free productsthat are dominant in their sector

For along time, Apache has been the leader in the market for web servers. But there are many companies
behind Apache, from some very large ones (like IBM) to other much smaller ones. And al of them have
no other choice but to compete by improving it and normally by contributing to the project with their
improvements. Despite the fact that Apache is amost amonopoly in many fields (for example, it isalmost
the only web server considered on the GNU/Linux or *BSD platform), it does not depend on a single
company, but rather on literally dozens of them.

The distributions of GNU/Linux are also an interesting case. GNU/Linux is not, certainly, a monopoly,
but is possibly the second choice in the market for operating systems. And this has not forced a situation
whereby one company has control over it. On the contrary there are tens of distributions made by different
companies, which freely compete in the market. Each one of them tries to offer improvements, which its
competitors have to adopt at the risk of being left out. Moreover, they cannot stray too far from what isthe
"GNU/Linux standard", since thiswould be regjected by usersasa"departurefrom the norm”. The situation
after several years of a growing market share for GNU/Linux shows us tens of companies that compete
and allow the system to evolve. And once again, all of them pursue satisfying users requirements. This
isthe only way that they can stay in the market.

GCC isadominant product in the world of C and C++ compilersfor the GNU/Linux market. And yet, this
has not led to any company monopoly situation, even though Cygnus (now Red Hat) was responsible for
along time for coordinating its development. There are many companies that make improvements to the
system and all of them compete, each in their specific niche, to satisfy their users demands. In fact, when
a specific company or organisation has failed in the task of coordinating (or some users have perceived
this to be the case) there has been room for the project to fork, with two products running in parallel for a
while, until they have come back together again (asis now happening with GCC 3.x).

Strategies for becoming a monopoly with free software

Despite the fact that the world of free software is much more hostile to business monopolies than the
world of proprietary software, there are strategies that acompany can use to try to approach a situation of
monopolistic dominance of a market. These practices are common in many other economic sectorsand in
order to prevent them we have bodies that regulate competition, which iswhy we will not go into too much
detail about them. However, we will mention onethat, up to a point, is specific to the software market, and
which hasalready been experienced in certain situations: the acceptance of third party product certification.

When acompany wishesto distribute asoftware product (free or proprietary) that functionsin combination
with others, itiscommon to "certify" that product for a certain combination. The manufacturer undertakes
to offer services (updates, support, problem-solving, etc.) only if the client guarantees that the product is
being used in a certified environment. For example, the manufacturer of a database management program
can certify its product for acertain GNU/Linux distribution, and no other. Thisimpliesthat its clientswill
haveto usethat GNU/Linux distribution or forget having the manufacturer's support (which, if the product
is proprietary may be impossible in practice). If a particular manufacturer manages to achieve a clearly
dominant position as a third-party certified product, users are not going to have any other choice than
to use that product. If in that segment certification is important, we will once again be facing a business
monopoly situation.

Example 1.28. Note

Up to a point, in the market for GNU/Linux distributions we are starting to see a few cases of situations
tending towards a de facto monopoly through certification. For example, there are many manufacturers of
proprietary products that only certify those products on a given GNU/Linux distribution (very commonly
Red Hat Linux). For the time being this is not resulting in a monopoly situation for any company,
which may be due to the fact that certification is not so relevant for users in the market for GNU/Linux
distributions. But only the future will tell if at some point this situation approaches a de facto monopoly.

69

Free Software

Nonetheless, it isimportant to bear in mind two comments in relation to the above. The first is that these
monopoly positions will not be easy to achieve, and in any case will be achieved through "non-software”
mechanismsin general (unlike the dominant product situation, which aswe have seenisrelatively normal,
reached through mechanisms purely related to IT and its patterns of use). The second is that if all the
software used is free, that strategy has limited chances of succeeding (if any at all). A manufacturer may
manageto get lots of companiesto certify for its products, but clientswill alwaysbe abletolook to different
companiesfor services and support other than those that have certified for it, if they consider it appropriate.

Free software and public administrations

"[...] for software to be acceptable for the State, it does not only need to be technically
capable of performing atask, but aso its contracting conditions need to meet a series
of requirements regarding licensing, without which the State cannot guarantee to its
citizensthat their datais being adequately processed, with due regard for confidentiality
and accessibility over time, because these are highly critical aspects of itsnormal duty."

Edgar David VillanuevaNufiez (letter of reply to the general manager of Microsoft Peru,
2001)

Public institutions, both those with the capacity to legislate and those dedicated to administrating the State
(the "public administrations"), play a very important role where adopting and promoting technologies
is concerned. Although until the year 2000 these institutions showed practically no interest in the free
software phenomenon (with some exceptions), the situation started changing as of then. On the one hand,
many public administrations started using free software as part of their IT infrastructure. On the other
hand, in their role as promoters of the information society, some started to promote directly or indirectly
the development and use of free software. Also, some legidative bodies have started paying attention (bit
by bit) to free software, sometimes favouring its devel opment, sometimesimpeding it, and sometimes just
taking its presence into consideration.

Before going into detail, it is important to remember that for a long time free software was developed
without explicit backing (or even interest) from public institutions. For this reason, the recent attention
that it is drawing from many of them is not without controversy, confusion and problems. Also, in the last
few yearsinitiatives related to open standards are gaining momentum, often resulting in measures (more
or less directly) associated to free software.

In this chapter we will try to describe the current situation and the peculiarities of free softwarein relation
to the "public" sphere.

Impact on the public administrations

Severa studies have been madefocusing on the use of free softwarein public administrations (for example,
"Open source softwarefor the public administration”, 2004 [159]; " Open source softwarein e-Government,
analysis and recommendations drawn up by aworking group under the Danish board of technology", 2002
[180]; "Free software/ open source; information society opportunities for Europe?’, 1999 [132], and "The
case for government promotion of open source software”, 1999 [213]). Next, we will discuss some of the
most notable ones (both positive and negative).

Advantages and positive implications

Some of the advantages of using free software in public administrations and the main new prospects that
it offersare asfollows:

1) Developing local industry

70

Free Software

One of the major advantages of free software is the possibility of developing alocal software industry.
When we use proprietary software, everything spent on the licences goes directly to the product's
manufacturer, and the purchase strengthens the manufacturer's position, which is not necessarily negative,
but is not very efficient for the region to which the public administration is associated when we consider
the alternative of using afree program.

In this case, local companies will be able to compete in providing services (and the program itself) to the
public administration, under very similar conditions to any other company. Let's say that somehow the
public administration islevelling the playing field and making it easier for anyoneto competeon it. And of
course, that "anyone" includeslocal companies, who will have the opportunity to exploit their competitive
advantages (better knowledge of the client's needs, geographical proximity, etc.).

2) Independence from a supplier and market competition

Obviously, any organisation will prefer to depend on a competitive market than on a single provider
capable of imposing the conditions under which it suppliesits product. However, intheworld of the public
administration, this preference becomes a basic requirement, and even alegal obligation in some cases. In
general, the public administration cannot choose to contract a given supplier, but rather must specify its
requirements in such away that any interested company that fulfils certain characteristics and that offers
the required product or service, can opt for a contract.

Once again, in the case of proprietary software, each product hasjust one supplier (even if it uses anumber
of intermediaries). If aparticular product is specified, then the public administration will also be deciding
what provider to award the contract. And in many cases it is virtually impossible to avoid specifying a
particular product, when we are dealing with computer programs. Reasons of compatibility within the
organisation or savingsin training and system administration, or many more, make it common for apublic
body to decide to use a certain product.

The only way out of this situation is by making the specified product free. This way, any interested
company will be able to supply it and also any type of service related to it (subject only to the company's
capabilities and knowledge of the product). Also, in the case of this type of contracting, the public
administration can change supplier in the future if it wishes, and without any technical problems, since
even if it changes company, it will still be using the same product.

3) Flexibility and adaptation to specific requirements

Although adaptation to specific requirements is something that any organisation using computers needs,
the peculiarities of the Administration make this a very important factor in the successful implantation of
asoftware system. In the case of free software, the adaptation is made much easier, and more importantly,
can rely on a competitive market if contracting it is necessary.

When the public administration buys a proprietary product, modifying it normally involves reaching an
agreement with the manufacturer, who is the only party that can legally (and often technically) do it.
Under these circumstances, it is difficult to negotiate, especialy if the manufacturer is not excessively
interested in the market offered by that particular administration. However, by using a free product, the
Administration can modify it asit wishes, if it employs capable personnel, or outsource the modification.
In principle, this outsourcing is possible with any company that has the skills and knowledge to do so,
meaning that several companies can be expected to compete. Naturally, thistends to make the cost cheaper
and improve the quality.

71

Free Software

Example 1.29. The case of GNU/Linux distributions

In the last few years in Spain, it has become common for certain regional governments to create their
own GNU/Linux distributions. This trend started with GNU/Linux, but nowadays there are many more.
Although some experts have criticised the existence of these distributions, it is a clear example of the
flexibility that free software allows. Any public administration, by spending relatively moderate resources,
can contract a GNU/Linux adaptation adapted to its needs and preferences, without practically any limits.
For example, it can change the desktop appearance, choose the set of default applications and language,
improve the applications localisation, etc. In other words: if wanted, the desktop (and any other software
element that works on the computer) can be adapted to precise requirements.

Of course, this adaptation will involve some expenditure, but experience shows that it can be achieved
relatively cheaply, and the trend appears to indicate that it will be increasingly easier (and cheaper) to
make customised distributions.

4) Easier adoption of open standards

Given their very nature, free programs commonly use open or non-proprietary standards. In fact, almost
by definition, any aspect of a free program that we may care to consider can be reproduced easily and,
therefore, is not proprietary. For example, the protocols used by a free program in order to interact with
other programs can be studied and reproduced, meaning that they are not proprietary. But aso, quite
commonly and in the interest of the projects themselves, we try to use open standards.

Inany case, irrespective of themoative, itisafact that free programs normally use non-proprietary standards
for data exchange. The advantages of this for public administrations are more far-reaching than for any
other organisation, since the promotion of proprietary standards (even indirectly, by using them) is much
more of a concern in their case. And in at least one aspect, the use of non-proprietary standards is
fundamental, where interaction with citizensis concerned, since they should not be forced to purchase any
product from a particular company in order to be able to interact with the public administration.

5) Public scrutiny of security

For apublic administration, being able to guarantee that its computer systems only do what they havetois
afundamental obligation, and in many countries, alegal requirement. Often these systems handle private
data, which third parties could beinterested in (for example tax data, criminal records, census or electoral
data, etc.). If aproprietary application isused, without source code available, itisdifficult to guarantee that
the application will process the data in the way that it should. But even if it does provide its source code,
the possibilities of a public institution ensuring that it does not contain strange code will be very limited.
Only if thetask can be habitually and routinely commissioned to third parties, and plus any interested party
can scrutiniseit, can the Administration be reasonably sure that it is complying with its fundamental duty,
or at least taking the measures within its power to do so.

6) Availability in the long term

Much of the data processed by the administrations, and the programs used to calculate them, need to be
available within decades and decades. It is very difficult to guarantee that any proprietary program will
be available after thistime, especially if theideaisfor it to work on the usual platform at that time in the
future. Onthe contrary, it is possibl e that the manufacturer may havelost interest in the product and has not
ported it to new platforms, or isonly prepared to do so for alot of money. Once again, we need to remember
that only the manufacturer can port the product, meaning that negotiations will be difficult. In the case of
free software, however, the application is available, with certainty, so that anyone can port it and leave
it functioning according to the needs of the Administration. If this does not happen spontaneously, the
Administration can always|ook for several companiesto make the best offer to do thejob. Thisguarantees
that the application and the data that it processes will be available when needed.

72

Free Software

7) Impact beyond use on the part of the Administration

Many applications used or promoted by the public administrations are also used by many other sectors of
society. For this reason, any public investment in the development of a free product benefits not only the
Administration itself, but also al its citizens, who will be able to use the product for their computer tasks,
perhaps with the improvements made by the Administration.

Readers interested in a report on the advantages of free software for the Administration, written in the US context of
1999, can consult "The case for government promotion of open source software" (Mitch Stoltz, 1999) [213].

Example 1.30. Note

A very particular case, but one with enormousimpact, which displays this better use of public resourcesis
program localisation (adaptation to a community's uses and customs). Although the most visible aspect of
localisation is the trandation of the program and its documentation, there are others that are also affected
by it (from use of thelocal currency symbol to presenting the date and timein the formats of the community
in question, to the use of examplesin the documentation and ways of expression adapted to local customs).

In any case, obvioudly if a public administration uses funds to localise a particular application tailoring
the application to its needs, it is more than likely that those needs coincide with those of its citizens,
meaning that it will generate, not only a program that satisfies its own requirements, but also, one that
can be made available to any citizen able to make the most of it at no additional cost. For example, when
an administration finances the adaptation of a computer program to a language that is used within its
community, it will not only be able to use that program within its own offices, but also offer it to citizens,
with everything that thisinvolvesin terms of devel oping the information society.

Difficulties of adoption and other problems

However, athough there are many advantages for the administration using free software, there are also
many difficulties that need to be faced when it comes to putting it into practice. Of them, we would
particularly mention the following:

1. Lack of knowledge and political commitment

The first problem that free software encounters for entering the Administration is one that other
organisations undoubtedly share: free software s still unknown for the people who make the decisions.

Fortunately, thisisaproblem that is gradually being solved, but in many spheres of the Administration,
free software is still perceived as something strange, so decisions about using it still involve certain
risks.

In addition to this, we tend to come across a problem of political decision-making. The main advantage
of free software for the Administration is not the cost (since the cost, in any case, is high, especially
when we are talking about aroll-out for alarge number of workstations), but as we have already said,
benefits are above all strategic. And therefore, the decision falls within the political, rather than the
technical sphere. Without the political will to change software systems and the philosophy with which
they are contracted, it isdifficult to progress with the deployment of free softwarein the Administration.

2. Poor adaptation of contracting mechanisms

The contracting mechanisms that the Administration uses nowadays, ranging from the usual public
tender models to cost itemising, are fundamentally designed for the purchase of IT products and
not so much for the purchase of services related to programs. However, when we use free software,
normally there is no product to be bought, or its price is negligible. In contrast, to take advantage of
the opportunities provided by free software, it is convenient to be able to contract services around it.

73

Free Software

Thismakesit necessary, before free software can be seriously used, to design bureaucratic mechanisms
that facilitate contracting in these cases.

3. Lack of deployment strategy

Often an administration may start to use free software simply because the purchase cost islower. It is
common in these cases for the product in question to be incorporated into the computer system with
no further planning, and in general, without aglobal strategy for using and making the most of the free
software. This causes most of its benefits to be lost along the way, since everything boils down to the
use of a cheaper product, whereas we have already seen that, in general, the major benefits are of a
different type.

If added to this, the transition is not properly designed, the use of free software can incur considerable
costs, and wewill seethat in certain isolated cases, outside of aclear framework, the use of free software
in the Administration can be unsuccessful and frustrating.

4. Scarcity or lack of free software products in certain segments

The deployment of free software in any organisation can encounter the lack of free quality alternatives
for certain types of applications. For these cases, the solution is complicated: all that we can do is try
to promote the appearance of the free product that we need.

Fortunately, public administrations are in a good position to study seriously whether they may be
interested in promoting or even financing or co-financing, the devel opment of that product. We should
remember that its objectivesnormally include providing its citizenswith better accessto theinformation
society, for example, or promoting the local industrial fabric. Certainly, the creation of many free
programs will have a positive influence on both objectives, meaning that we should add to the mere
direct cost/benefit calculation, the indirect benefits that such a decision will have.

5. Interoperability with existing systems

It is not common for a full migration to free software to be made with the entire system at the same
time. Therefore, it isimportant for the part that we want to migrate to continue functioning correctly
in the context of the rest of the software with which it will have to interoperate. Thisis a well-known
problem with any migration (even if it is a proprietary product), but it can have a particular impact in
the case of free software. In any case, it will be something to be taken into account when studying the
transition. Fortunately, we can often adapt the free software that needs to be installed to interoperate
adequately with other systems, but if thisisneeded, thispoint will haveto be considered when budgeting
the migration costs.

6. Datamigration

This is a generic problem of any migration to new applications that use different data formats, even
if they are proprietary. In fact, in the case of free software this problem is often mitigated, sinceiit is
usual to make a special effort to foresee as many formats and data exchange standards as possible. But
normally the data has to be migrated. And the cost of doing thisis high. Therefore, in calculating the
cost of a potential migration to free software, this factor needs to be carefully considered.

Actions of the public administrations in the world of free
software

Public administrations influence the world of softwarein at least three ways:

* By buying programs and services related to them. Administrations, as large users of software, are
fundamental playersin the software market.

74

Free Software

» By promoting different ways of using (and purchasing) certain programs by individuals or companies.
Thispromotion issometimes achieved by offering financial incentives (tax deductions, direct incentives,
etc.), sometimes through information and advice, sometimes by "follow my example”...

e By financing (directly or indirectly) research and development projects that design the future of
software.

In each of these spheres free software can offer specific advantages (in addition to those already described
in the preceding section) of interest to both the Administration and to society in general.

How to satisfy the needs of the public administrations?

Public administrations are large consumers of IT. Where software is concerned, they normally buy
off-the-shelf products as well as customised systems. From this point of view, they are fundamentally
large purchasing centres, similar to those of big companies, but with their own peculiar features. For
example, in many spheres, the purchasing decisions of the public administrations are supposed to take
into consideration not only cost versus functionality parameters, but also others, such as the impact of
the purchase on the industrial or social welfare or long term strategic considerations, which can also be
important.

In any case, the usual nowadays with off-the-shelf software is to use market leader proprietary products.
The amount of public money spent by municipalities, regional and national governments, and international
(such as European Union) public administrations on purchasing Windows, Office or other similar product
licencesiscertainly considerable. But gradually free solutions are starting to enter the market. Increasingly,
solutions based on free software are being considered for servers, and products such as OpenOffice.og,
and GNU/Linux with GNOME or KDE are increasingly used for the desktop.

What is there to be gained from this migration to free software? To illustrate just what, |et's consider the
following scenario. Let's suppose that with a fraction of what is spent on two or three "star" proprietary
products by all the European administrations (or probably those of any medium-sized devel oped country),
we could convene a public tender for one company (or two, or three, or four) to improve and adapt the
currently available free programs so that within one or two years they would be ready for massive use, at
least for certain standard tasks (if they are not aready). Let's imagine for example, a coordinated effort,
on anational or European scale, whereby all the administrations participated in a consortium responsible
for managing these tenders. In a short period of time there would be a "local” industry speciaised in
making these improvements and adaptations. And the administrations could choose between the three or
four free distributions produced by that industry. In order to promote competition, each company could
be compensated according to the number of administrations that chose to use their distribution. And the
entire result of this operation, because it would be free software, would also be available for companies
and individual users, which in many cases would have similar needs to the administrations.

In the case of customised software, the normal process currently involves contracting the necessary
programs from a company under a proprietary model. Any development made at the Administration's
request isthe property of the company that developsit. And usually, the contracting administration istied
to the supplier in everything related to improvements, updates, and support, in avicious circle that makes
competition difficult and slows down the process of modernising public administrations. Even worse is
that often the same program is sold time and again to similar administrations, applying in each case the
costs incurred for making the devel opment from scratch.

Let's consider again how things could be different. A consortium of public administrations needing a
particular type of customised software could demand that the obtained result be free software. This
would allow other administrations to benefit from the work and in the medium term may interest them
in collaborating in the consortium so that their particular requirements could be taken into consideration.
Because the resulting software would be free, there would be no obligation to contract the improvements
and adaptationsto the same supplier, meaning that competition would enter the market (which at present is

75

Free Software

almost captive). In all the aforementioned situations, the final cost for any of the administrationsinvolved
would never be more than if a proprietary model had been adopted.

Are these scenarios science fiction? As we will see later, there are timid initiatives in similar directions
to the ones described. In addition to helping to create and maintain an industry within the sphere of the
purchasing public administration, free software offers more specific advantagesin the public domain. For
example, it isthe most efficient way of having software devel oped in minority languages (abasic concern
of many public administrations). It can also help alot towards maintaining strategic independence in the
long term and ensuring the accessibility of the datain public administrations' custody for along time. For
all of these reasons, public bodies are increasingly interested in free software as users.

Example 1.31. Some casesrelated to German administrations

In July 2003 the first stable version of Kolab was released, a product of the Kroupware project. Kolab
isafree IT help system for group work (groupware) based on KDE. The reason for mentioning this
project is that originally it was a tender by the German government's Bundesamt fur Sicherheit in der
Informationstechnik (BSI - translated as the Federal Office for Information Security). This tender sought
a solution that would interoperate with Windows and Outlook on the one hand, and GNU/Linux and
KDE on the other. Of the submitted bids, the joint proposal of three companies, Erfrakon, Intevation and
Klardvdalens Datakonsult, was awarded the contract, with their proposal to provide afree solution partly
based on software aready developed by the KDE project, completed with its own free developments,
resulting in Kolab.

In May 2003, the Town Hall of Munich (Germany) approved the migration to GNU/Linux and free office
suite applications for all desktop computers, about fourteen thousand in total. The decision to do this
was not purely financial: strategic and qualitative aspects were aso taken into consideration, according
to the authorities. In the comprehensive analysis that was carried out prior to making the decision, the
solution that was finally chosen (GNU/Linux plus OpenOffice.org, fundamentally) obtained 6,218 points
(from amaximum of ten thousand) as opposed to the little more than five thousand points obtained by the
"traditional" solution based on Microsoft software.

In July 2003, the Koordinierungs-und Beratungsstelle der Bundesregierung fir Informationstechnik in der
Bundesverwaltung (KBSt), under the German Ministry of the Interior, made public the document Leitfaden
fur die Migration von Basi ssoftwarekomponenten auf Server- und Arbeitsplatzsystemen [107] (‘Migration
guidefor the basic software components of servers and workstations'), which offers German public bodies
a set of guidelines on how to migrate to solutions based on free software. These guidelines are designed
for the decision-making party to evaluate whether a migration to free software is appropriate and how to
carry out the migration if that decision is made.

Promotion of the information society

Public bodies spend a lot of resources on incentives to encourage I T spending. Thisis aformidable tool,
which can help new technologies to expand in society. But it is also adangerous tool. For example, it may
not be a very good idea to promote society's use of the Internet by recommending a particular navigator
encouraging one company's de facto monopoly position, because in the long term this could be negative
for the society that we are trying to benefit.

Once again, free software can helpinthese situations. Inthefirst place, it isneutral towards manufacturers,
since nobody has the exclusivity over any free program. If an administration wishes to promote the use
of afamily of free programs, it can convene a tender, which any company in the sector can hid for, to
manage its delivery to citizens, itsimprovement or extended functionality, etc. Secondly, it can help alot
in economic aspects. For example, in many cases the same amount of funds can be spent on purchasing
a certain number of licences for proprietary programs as for purchasing one free copy and contracting
support or adaptationsfor it; or even on negotiating with a proprietary software manufacturer for therights
to convert its product into free software.

76

Free Software

In a separate field, we could imagine dedicating part of the amount allocated for the computerisation of
schoolsto creating a GNU/Linux distribution adapted to primary schools' teaching requirements. And with
therest of the funds contracting support for maintaining the software in those schools, so that the software
is not merely "for show" but rather people are genuinely responsible for ensuring that it works correctly.
This not only covers educational requirements but also generates a market for companies, usually local
ones, capabl e of providing maintenance services. And of course, it leavesthe path to the future completely
open: the software will not become obsolete in just a few years meaning that we need to start over from
scratch, rather it can be updated incrementally, year after year, maintaining the program's benefits with
asimilar investment.

Example 1.32. Note

Readers who are familiar with public initiatives in respect of free software will recognise the case of
gnuLinEx in this example. Towards the end of 2001, the Regional Government of Extremadura (Spain)
decided to use a GNU/Linux distribution in order to computerise all of the public schools in the region.
To do s0, it financed the construction of gnuLinEx, a GNU/Linux distribution based on Debian that
was announced in spring 2002, and made sure that it was a requirement in all tenders for purchasing
schools' computer equipment. Also, it started training programs for teachers, creating teaching materials
and expanding the experience into other fields. In mid- 2003, it seemed that the experience was a success,
as it expanded institutionally to other regions (for example, to Andalucia, also in Spain, through the
Guadalinex project).

Research promotion

Free software also provides noteworthy benefitswhere R+D policiesare concerned. Public money isbeing
used to finance a large amount of software development that society does not end up benefiting from,
even indirectly. Usually, public research and development programs finance, wholly or in part, projects
to create software without really worrying about the rights that the public will have over them. In many
cases the results, without an adequate commercialisation plan, are simply filed and left to gather dust. In
others, the same people who financed a program through taxes end up paying for it again if they wish to
useit (since they need to buy licences for use).

Free software offers an interesting choice, which the authorities responsible for innovation policies in
many administrations are gradually starting to consider with care. Especially when the research is pre-
competitive (most common in the case of public funding), the fact that resulting programs are free allows
industry as awhole (and consequently society) to benefit enormously from the public money spent on R
+D in the software field. Where one company may see aresult that isimpossible to sell, another may see
a business opportunity. This way, on the one hand, the results of research programs are maximised, and
on the other, competition between companies wishing to use the results of a project increases, since al of
them will compete on the basis of the same programs resulting from the project.

This model is not new. To a great extent it is the one that has allowed the Internet to develop. If public
administrations demand that the results of research carried out with its fundsis distributed in the form of
free software, it would not be surprising for similar casesto appear, on different levels. Either the outcome
of that research will be poor or useless (in which case the way of selecting funding projects needs to be
reviewed), or the dynamic generated by leaving them ready for any company to be able to convert them
into a product would allow simply unforeseeable devel opments.

Examples of legislative initiatives

In the following sections we look at some specific legidative initiatives relating to the use and promotion
of free software by public administrations. Of course, the list we provide does not intend to be exhaustive,
and has focused on the initiatives that have been pioneering in some way (even if they were not finally

7

Free Software

approved). Interested readers can completeit by consulting "GrULIC. Legidation regarding the use of free
software by the State" [133], which cites many more similar cases. Also, in one appendix (appendix D)
we include for illustrative purposes the full text or the most relevant parts of several of these initiatives.

Draft laws in France

In 1999 and 2000 in France two draft laws related to free software were presented, which were pioneers
in along series of legislative debates over the issue:

 Draft law of 1999-495, proposed by Laffitte, Trégouet and Cabanel, was made available on Senate
of the French Republic's web server in October 1999. Following a process of public debate over the
Internet (http://www.senat.fr/consult/loglibre/index.htm) [102] which lasted two months, the draft was
modified. The result was Draft Law number 2000-117 (L affitte, Trégouet and Cabanel, Proposition de
Loi numéro 117, Senate of the French Republic, 2000) [162], which advocated the obligatory use of
free software by the Administration, contemplating exceptions and transition measures for cases where
it was not yet technically possible, in the more general context of expanding the use of the Internet and
free software across the French administration.

* In April 2000, members of parliament Jean-Y ves Le Déaut, Christian Paul and Pierre Cohen proposed
anew law whose objective was similar to that of Laffitte, Trégouet and Cabanel's draft: to reinforce the
freedoms and security of consumers, in addition to improving the equality of rightsin the information
society.

However, unlike the draft law of Laffitte, Trégouet and Cabanel, this second one did not make it
compulsory for the Administration to use free software. This draft law centred on the fact that the
software used by the Administration should have the source code available, but without forcing it to be
distributed with free software licences.

In order to achieve their objectives, the legidlators aimed to guarantee the software's "right to
compatibility", by providing mechanismsthat put into practice the principle of interoperability reflected
in EC Directive related to the legal protection of computer programs (Council Directive 91/250/EEC,
of 14" May 1991, regarding the legal protection of computer programs, 1991) [111].

Neither of the two French drafts was passed into law, but both have served to inspire most subsequent
initiatives worldwide, which is why they are particularly interesting to study. The second one (proposed
by Le Déaut, Paul and Cohen) pursued the compatibility and interoperability of the software, emphasising
the availability of the source code for the software used by the Administration. However, it did not require
developed applicationsto be free software, understood as meaning software distributed under licences that
guarantee the freedom to modify, use and redistribute the program.

Later on (section D.1 and section D.2 of appendix D) we reproduce almost in full the articles and
explanatory memorandums of both draft laws. The explanatory memorandums are particularly interesting,
as they highlight the problems currently threatening the public administrations regarding the use of
software in general.

Draft law of Brazil

In 1999, parliament member Walter Pinheiro presented adraft |aw on free software to the Federal Chamber
of Brazil (Proposi¢éo pl-2269/1999. Dispde sobre a utilizagdo de programas abertos pel os entes de direito
publico e de direito privado sob controle acionario da administracéo publica, Chamber of Deputies of
Brazil, December 1999) [185]. This project concerned the use of free softwarein the public administration
and in private companies with the State as majority shareholder.

It recommends the use of free software by these bodies with no restrictions in terms of lending,
modification or distribution. The articles of the law describe in detail how free software is defined and

78

http://www.senat.fr/consult/loglibre/index.htm

Free Software

how the licences that come with it should be. The definitions coincide with the classical definition of
free software by the GNU project. The explanatory memorandum reviews the history of the GNU project,
analysing its advantages and achievements. It also refers to the current situation of free software, using
the GNU/Linux operating system as an example.

One of the most interesting parts of article one, defines very clearly the sphere in which the use of free
software is proposed (bearing in mind that the definition provided in later articles for "open program” is,
as aready mentioned, the same as free software):

"The Public Administration at all levels, the powers of the Republic, State and mixed
public-private enterprises, public companies and al other public or private bodies
subject to the control of the Brazilian State are obliged to use preferably, in their
computer systems and equipment, open programs, free of proprietary restrictions with
regardsto their cession, modification and distribution."

Draft laws in Peru

In Peru, several draft projects have been proposed on the use of free software by the public administration
("GNU Peru. Draft laws on free software in the public administration of the Peruvian government”,
Congress of the Republic) [184]. The first and most renowned was proposed by congressman Edgar
Villanueva NUfez in December 2001 (Draft law on free software number 1609, December 2001) [222].
It defines free software according to the classical definition of the four freedoms (adding perhaps more
legal precision, with a definition that specifies six characteristics to be a free program) and proposes its
exclusive use in the Peruvian administration:

"Article 2. The executive, legidative and judicial authorities, decentralised bodies
and companies where the State is the majority shareholder, will use exclusively free
programs or software in their computer systems and equipment.”

Nevertheless, later on, articles 4 and 5 include certain exceptionsto thisrule.

In its day this draft law had a global repercussion. On the one hand, it was the first time that an
administration's exclusive use of free software had been proposed. But even more importantly for the
repercussion of thisnovelty, wasthe epistolary exchange between congressman Villanuevaand Microsoft's
representation in Peru, which made allegations against the proposal. This draft law is also interesting in
relation to the position adopted by the US embassy, which even sent through official channelsanatification
(attaching a report prepared by Microsoft) to the Peruvian Congress expressing its "concern over recent
proposals by the Congress of the Republic to restrict purchases of the Peruvian Government to open source
software or free software" ("L etter to the president of the Congress of the Republic", 2002) [147]. Among
other motives, the all egations of both Microsoft and the US Embassy tried to provethat the draft law would
discriminate between different compani es making impossible theinvestments required in order to generate
a national industry of software creation. Villanueva argued back that the draft law did not discriminate
or favour any particular company in any way, since it did not specify who the Administrator's supplier
could be, but rather how (in what conditions) the software would have to be provided. This reasoning is
very clear for understanding how the Administration's promotion of free software does not in any way
prejudice free competition between providers.

Later on, Peruvian congressmen Edgar Villanueva NUfiez and Jacques Rodrich Ackerman presented a
new draft law, number 2485, of 8" April 2002 (Draft Law on the Use of Free Software in the Public
Administration number 2485, 2002) [223], which in August 2003 was still in parliamentary proceedings.
This draft law was an evolution of Draft Law 1609 [222], from which it draws several comments making
several improvements, and may be considered a good example of a draft law that proposes the exclusive
use of free software in the public administrations, save for certain exceptional cases. Given its relevance,
we include its full text (section D.3 of appendix D). In particular, its explanatory memorandum is a good

79

Free Software

summary of the characteristics that the software used by the public administrations should have and how
free software complies with these characteristics better than proprietary software.

Draft laws in Spain

In Spain there have been several legidative initiatives related to free software. Below, we cite a few of
them:

 Decree of Measures to Promote the Knowledge Society in Andalucia

One of the most important legislative initiatives in Spain (because it has come into force) has been
unquestionably the one adopted by Andalucia. The Decree of Measures to Promote the Knowledge
Society in Andalucia (Decree 72/2003, of 18" March of Measuresto Promote the K now edge Society in
Andalucia, 2003) [99] dealswith the use of free software, fundamentally (but not only) in the educational
context.

Among others, it promotes the preferable use of free software in public educational centres, obliging all
of the equipment purchased by these centres to be compatible with free operating systems, and likewise
for the Regional Government centres that provide public Internet access.

» Draft law on Free Software in the context of the Public Administration of Catalonia

Other communities have debated more ambitious proposals, but without obtai ning the majority vote that
they required. The most renowned of them is probably the one debated in the Parliament of Catalonia
(Proposicioé de llei de programari lliure en el marc de I'Administracié publica de Catalunya, 2002)
[221], very similar to the one that the same party (Esquerra Republicana de Catalunya) presented to the
Congress of Deputies, which we will talk about next. This proposal was unsuccessful when submitted
for voting.

 Draft Law of Puigcercos Boixassain the Congress of Deputies

Therewasalso aninitiativein the Congress of Deputiesproposed by Joan Puigcercds Boixassa (Esquerra
Republicana de Catalunya) (Draft Law of Measures for the Implantation of Free Software in the State
Administration, 2002) [188]. This initiative proposed the preferable use of free software by the State
Administration, and in this sense is similar to other initiatives that share this objective. However, it
has the interesting peculiarity of emphasising the availability of localised free programs for the co-
officia languages (in the autonomous communities that have them). The initiative was not approved
in parliamentary proceedings.

Free software engineering

"The best way to have agood ideaisto have many of them."
Linus Pauling

In previous chapters we have shown why free software's challenge is not the one of a competitor that
generates software more quickly, more cheaply and of better quality: free software is different from
"traditional" software in more fundamental aspects, starting with philosophical reasons and motivations,
continuing with new market and economic model s, and ending with adifferent way of generating software.
Software engineering cannot be unaffected by all of the aforementioned factors; so, for alittle more than
over ten years research on how free software is devel oped has been targeted in greater depth. This chapter
aims to discuss the most significant studies and the evidence that they provide, with a view to offering
the reader a vision of the state of the art and the future prospects of what we have decided to call free
software engineering.

80

Free Software

Introduction

Although free software has been developed for several decades now, itisonly in recent yearsthat we have
started to pay attention to its devel opment models and processes from a software engineering perspective.
In the same way asthereisno single model for proprietary software development, thereisno single model
for free software development, but even so we can find interesting characteristics that most of the projects
under study share and that could stem from the properties of free programs.

In 1997, Eric S. Raymond published the first broadly disseminated article The cathedral and the
bazaar. Musings on Linux and open source by an accidental revolutionary, O'Reilly & Associates http://
www.ora.com, 2001) [192], describing some of the characteristics of free software development models,
making special emphasison what distinguished these modelsfrom those of proprietary development. Since
then, this article has become one of the most renowned (and criticised) in the world of free software, and
up to a point, the sign of the starting devel opment of free software engineering.

The cathedral and the bazaar

Raymond makes an analogy between the way of building mediaeval cathedrals and the classical way
of producing software. Arguing that in both cases there is a clear distribution of tasks and functions,
emphasising the existence of a designer who oversees everything and has to control the development of
the activity at all times. At the same time, planning is strictly controlled, giving rise to detailed processes
where ideally each participant in the activity has a clearly defined role.

What Raymond takes asthe model for building cathedral snot only hasroom for the heavy processesthat we
canfindinthe softwareindustry (the classical waterfall model, the different aspects of the Rational Unified
Process, etc.), but also for free software projects such as GNU and NetBSD. For Raymond, these projects
arehighly centralised, sincejust afew peopleareresponsiblefor the software's design and i mplementation.
The tasks carried out by these people, in addition to their functions, are well defined, and anyone wishing
to form part of the devel opment team needs to be assigned atask and a function according to the project's
requirements. On the other hand, releases of this type of programs are spaced in time according to afairly
strict schedule. This means having few software releases and long cycles, consisting of severa stages
between releases.

The opposite model to the cathedral isthat of the bazaar. According to Raymond, some of the free software
programs, particularly the Linux kernel, have been developed following a similar scheme to that of an
oriental bazaar. In a bazaar there is no maximum authority to control the processes that are developed or
to strictly plan what has to happen. At the same time, participants roles can change continuously (sellers
can become clients) and with no outward indication.

But what is most novel about "The cathedral and the bazaar” is how it describes the process by which
Linux has become a success; it isalist of "good practices’ to make the most of the opportunities offered
by the source code being available, and of interactivity through the use of telematic systems and tools.

A free software project tends to appear as a result of a purely personal action; the cause can be found
in a developer who finds his ability to resolve a problem limited. The developer needs to have enough
knowledge to start solving it, at least. Once he has obtained something usable, with some functionality,
simple, and if possible, well designed or written, the best he can do isto share that solution with the world
of free software. Thisiswhat is known as release early, which helpsto draw the attention of other people
(usually developers) who have the same problem and who may be interested in the solution.

One of the basic principles of thisdevelopment model isto think of users as co-developers. They need to be
treated with care, not only because they can provide "word of mouth” publicity but also because they will
carry out one of the most costly tasksthat thereisin software generation:; testing. Unlike co-devel opment,

81

Free Software

which is difficult to scale, debugging and tests have the property of being highly parallelisable. The user
will be the one to take the software and to test it on his machine under specific conditions (an architecture,
certain tools, etc.), atask that multiplied by alarge number of architectures and environments would entail
an enormous effort for the devel opment team.

If we treat users as co-developersit could happen that one of them finds a bug and resolves it by sending
a patch to the project developers so that the problem can be solved in the following version. It can also
happen, for example, that someone other than the person who discovers the bug eventually understands it
and correctsit. In any case, all of these circumstances are beneficial for the development of free software,
i.e. it isbeneficial to enter adynamic of thistype.

This situation becomes more effective with frequent releases, since the motivation to find, notify and
correct bugsishigh becauseit is assumed that they will be attended immediately. Also, secondary benefits
are achieved such asthe fact that frequent integration - ideally once or more times aday - does not require
afina phase of integrating the modules comprising the program. This has been called release often and
allowsagreat modularity (Alessandro Narduzzo and Alessandro Rossi, "Modularity in action: GNU/Linux
and free/open source software development model unleashed", May 2003) [176], at the same time as it
maximises the propaganda effect provided by the publication of the software's latest version.

Note

New version management depends, logically, on the size of the project, since the problems that need to be dealt with
are not the same when the devel opment team has two members as when it has hundreds. Whereas, in general,
for small projectsthis processis more or lessinformal, the management of releasesfor large projectstendsto
follow adefined process, which is not exempt from a certain degree of complexity. Thereisan article called
"Release management within open source projects’ (Justin R. Ehrenkrantz, 2003) [110] which describes in
detail the sequence followed with the Apache web server, the Linux kernel and the Subversion versioning
system.

In order to prevent "release often” from frightening users with a priority for the stability of the software
over the speed with which the software evolves, some free software projects have several development
branches running in parallel. The most renowned case of this is the Linux kernel, which historically has
had directed at those who value its reliability and another unstable one designed for developers with the
latest innovations and novelties.

Leadership and decision-making in the bazaar

Raymond suggests that all free software projects should have a benevolent dictator, a sort of leader who
is normally the founder of the project to guide the project and aways have the last word when it comes
to decision-making. The skills that this person must have involve mainly knowing how to motivate and
coordinate a project, understanding users and co-devel opers, seeking consensus and integrating everyone
who has something to contribute. As you can see, we have not mentioned technical competence among
the most important requirements, although it is never superfluous.

As the size of projects and the number of developers involved with them have grown, new ways of
organising decision-making have emerged. Linux, for example, hasahierarchical structure based on Linus
Torvalds delegating responsibilities, the "benevolent dictator”. And, we will see that there are parts of
Linux that havetheir own "benevolent dictators", although their power will belimited by the fact that Linus
Torvaldshasthelast word. Thiscaseisaclear example of how ahigh level of modularity in afree software
project has given rise to a specific way of organising things and making decisions (Alessandro Narduzzo
and Alessandro Rossi, "Modularity in action: GNU/Linux and free/open source software development
model unleashed", 2003) [176].

82

Free Software

Example 1.33. Note

Some people claim that the way free software projects are organised is similar to a surgical team, as
proposed by Harlan Mills (of IBM) in the early seventies popularised by Brooks in his famous book
The mythical man-month (Frederick P. Brooks Jr., 1975) [150]. Although there may be cases where the
development team of a particular free software application consists of a designer/devel oper (the surgeon)
and many co-developers who perform auxiliary tasks (systems administration, maintenance, specialised
tasks, documentation) thereis never such astrict and defined separation as the one suggested by Millsand
Brooks. All in al, as Brooks points out in the case of the surgical team, in free software the number of
developers that need to communicate in order to create a big and complex system - the most active ones
- ismuch lower than the total number of developers.

In the case of the Apache Foundation, we have a meritocracy, since this institution has a directors
committee consisting of people who have contributed in a notable way to the project. In redlity, it is not
a strict meritocracy in the sense of those who most contribute govern, since the directors committee is
elected demacratically and regularly by the Foundation's members (responsible for managing various free
software projects, like Apache, Jakarta, etc.). To become amember of the Apache Foundation, you need to
have contributed in an important and continuous way to one or several of the Foundation's projects. This
system is also employed by other large projects, such as FreeBSD or GNOME.

Another interesting case of formal organisation is the GCC Steering Committee. It was created in 1998 to
avoid anyone obtaining control over the GCC project (GNU Compiler Collection, GNU'scompiler system)
and backed by the FSF (promoter of the GNU project) afew monthslater. In acertain sense, thiscommittee
continues the tradition of a similar one that the EGCS project had (which for a time ran in paralel to
the GCC project, but later joined it). Its fundamental mission isto ensure that the GCC project fulfils the
project's mission statement. The committee's members are membersin a private capacity, and are selected
by the project itself in such away as to faithfully represent the different communities that collaborate in
the GCC's devel opment (support developersfor several programming languages, devel opersrelated to the
kernel, groups interested in embedded programming, etc.).

The same person does not have to be the leader of a free software project forever. Basicaly, there can
be two circumstances in which the project leader stops being so. The first is lack of interest, time or
motivation to continue. In this case, the baton must be passed to another developer who will assume
therole of project leader. Recent studies (Jesis M. Gonzalez Barahona and Gregorio Robles, 2003) [87]
show that, in general, project leadership frequently changes hands, in such away that we can see several
generations of developers over time. The second case is more problematic: it involves a forking. Free
software licences allow code to be taken, modified and redistributed by anybody without requiring the
project leader's approval. This does not normally tend to happen, except in cases where the idea is to
deliberately avoid the project leader (and the leader's potential veto against acontribution). Thisis similar
on the one hand to a sort of "coup d"etat”, which on the other hand is totally licit and legitimate. For this
reason, one of a project leader's objectivesin keeping co-devel opers satisfied isto minimise the possibility
of aforking.

Free software processes

Although free software is not necessarily associated with a specific software development process, there
is a broad consensus about the processes that it most commonly uses. This does not mean that no free
software projects have been created using classical processes, such as the waterfall model. In generd, the
development model of free software projects tends to be moreinformal, due mostly to the fact that alarge
share of the development team performs these tasks voluntarily and in exchange for no financia reward,
at least directly.

The way of capturing requirements in the world of free software depends as much on the "age" as on
the size of the project. In the early stages, the project's founder and the user tend to be the same person.

83

Free Software

Later on, and if the project expands, the capture of requirements tends to take place through electronic
mailing listsand aclear distinction tendsto be reached between the devel opment team, or at |east, the more
active developers and the users. For large projects, with many users and many devel opers, requirements
are captured using the same tool as the one used for managing the project's bugs. In this case, instead of
dealing with bugs, they refer to activities, although the mechanism used for managing them is identical
to the one for debugging (they will be classified in order of importance, dependency, etc., and it will be
possible to monitor whether they have been resolved or not). The use of this planning tool isfairly recent,
so we can see how the world of free software has evolved somewhat from a total lack, to a centralised
system for managing these activities in engineering terms, even if it is certainly more limited. All inall, it
isnot usual to find adocument that gathersthe requirements, asisnormally the casein thewaterfall model.

Asfor the system's global design, only large projectstend to have it documented in comprehensive detail.
For the rest, the main developer (or group of main developers) is most likely the only one to haveiit, in
their head; sometimes, thisis even not the case, and the system takes shape as the software evolves. The
lack of a detailed design not only imposes limitations regarding the possible reuse of modules, but also
is a large obstacle when it comes to giving new developers access, since they will have to face a costly
and slow learning process. Having a detailed design is not very common either. The lack of it means that
many opportunities for reusing code are lost.

Implementation is the phase where free software devel opers concentrate most effort, among other reasons
because in their view it is clearly the most fun. To do this, the classical programming model of trial and
error isnormally observed until the desired results are achieved from the programmer's subjective point of
view. Historically, itisrarethat unit testsareincluded with the code, even if they would make modification
or inclusion of subsequent code by other developers easier. In the case of certain large projects, such as
Mozillafor example, there are machines exclusively dedicated to downl oading repositories containing the
most recent code and to compile it for different architectures ("An overview of the software engineering
process and tools in the Mozilla project”, 2002) [193]. Detected bugs are notified to a mailing list of
developers.

However, automatic tests are not an entrenched practice. In general, usersthemselves, with their enormous
range of uses, architectures and combinations, will carry them out. This has the advantage of running them
in parallel at a minimum cost for the development team. The problem with this model is how to obtain
feedback from users and organise it as efficiently as possible.

Asfar as software maintenance in the world of free software is concerned, understood as the maintenance
of previous versions, having this task will depend on the project. For projects that need stability, such
as operating system kernels, previous versions are maintained, since changing to a new version can be
traumatic. But in general, for most free software projects, if abugisfoundinapreviousversion, developers
will usually ignore it and recommend the use of the latest version in the hope that the bug has disappeared
with the software's evolution.

Criticism of "The cathedral and the bazaar"

"The cathedral and the bazaar" suffersfrom not being systematic and alack of rigour given itsjournalistic
rather than scientific nature. The most frequent criticisms refer to the fact that it basically explains the
particular case of the Linux experience and aims to extend those conclusionsto all free software projects.
Inthissense, in"Cave or community? An empirical examination of 100 mature open source projects’ [160]
we can seethat the existence of acommunity aslarge asthe community of the Linux kernel isan exception
rather than therule.

Even more critical are those who believe that Linux is an example of the cathedral development model.
They argue that obviously there is a driving force, or at least a person with maximum authority, and
a hierarchical system that delegates responsibility down to the labourers/programmers. Also, there is a
distribution of tasks, albeit implicitly. "A second look at the cathedral and the bazaar" [91] goes beyond

Free Software

and maintains, not without a certain level of hitterness and arrogance in its reasoning, that the metaphor
of the bazaar isinternally contradictory.

Another of the most criticised points of "The cathedral and the bazaar" isits assertion that the Brooks law,
which statesthat "adding devel opersto adelayed software project delaysit even more" (The mythical man-
month. Essays on software engineering, 1975) [150], is not valid in the world of free software. In [148]
we can read how what happensin reality is that the environmental contexts are different and that what in
principle appearsto beincongruent with Brooks' law, after amore comprehensive analysis, isjust amirage.

Quantitative studies

Free software makes it possible to go deeper into the study of code and other parameters that intervenein
its generation thanks to having access to many public information sources. This allows areas of traditional
software engineering such as empirical software engineering to be fostered due to the existence of ahuge
amount of information that can be accessed without the need to heavily intrude in the development of
free software. The authors are convinced that this vision can contribute enormously to the analysis and
comprehension of the phenomena associated with free software (and software in general), and that it may
even, among other possibilities, manage to produce predictive software model s with feedback in real time.

Theideabehind it isvery simple: "given that we have the opportunity to study an immense number of free
software programs, let's do so." And in addition to a project's present status, its past evolution is public,
meaning that all of this information, duly extracted, analysed and packaged, can serve as a knowledge
base that allows usto evaluate a project's state of health, hel ping towards decision-making and foreseeing
current and future complications.

The first quantitative study of any importance in the world of free software dates back to 1998, although
it was published in early 2000 ("The Orbiten free software survey™) [127]. Its purpose was to find out in
empirical terms the participation of developersin free software. To do so they statistically processed the
authorship assignments that authors tend to place in the heading of source code files. The results showed
that participation was consistent with the Pareto law ("Course of Political Economy", Lausana, 1896)
[182]: 80% of the code corresponds to the most active 20% of devel opers, whereas the remaining 80% of
developers contribute 20% of the total code. Many subsequent studies have confirmed and extended the
validity of thisresult to different ways of participating in the contribution of source code (mailing lists, bug
notifications or even the number of downloads, as we can see in http://www-mmd.eng.cam.ac.uk/people/
fhh10/Sourceforge/Sourcef orge%20paper.pdf [145]).

Note

gift economy. The fact that many economic terms appear in the study of free software engineering is a result of
the interest some economists have shown in learning about and understanding what motivates volunteers to
produce high value goodswithout usually obtaining adirect benefit in exchange. The most well-known article
is"Cooking pot markets: an economic model for the trade in free goods and services on the Internet” [125],
which introduces the idea of the gift economy on Internet. At http://www.wikipedia.org/wiki/Pareto [232]
we can obtain further details on the Pareto principle and its generalisation to the Pareto distribution. The
Lorenz curve (http://www.wikipedia.org/wiki/Lorenz_curve) [231], which graphically shows developers
participation in a project, is also interesting as well as the Gini coefficient (http://www.wikipedia.org/wiki/
Gini_coefficient) [230], calculated on the basis of the Lorenz curve and which produces anumber that shows
the system's inequality.

The tool used to conduct this study was published by its authors under a free licence, meaning that its
results can be reproduced and it can be used to conduct new studies.

Inalater study, Koch ("Results from software engineering research into open source development projects
using public data, 2000) [158] went further and also analysed the interactions in a free software project.

85

http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www.wikipedia.org/wiki/Pareto
http://www.wikipedia.org/wiki/Lorenz_curve
http://www.wikipedia.org/wiki/Gini_coefficient
http://www.wikipedia.org/wiki/Gini_coefficient

Free Software

The information sources were mailing lists and the repository of versions of the GNOME project. But
the most interesting aspect of the Koch study was the economic analysis. Koch focuses on checking the
validity of classical cost forecasts (function points, COCOMO model...) and shows the problemsinvolved
in applying them, although it does admit that the results obtained have to be taken with due reserve do
partly match reality. He concludes that free software requires its own models and methods of study, since
known ones are not adapted to its nature. However, obviously being able to obtain much of the datarelated
to the development of free software publicly, allows us to be optimistic about achieving these objectives
in the near future. Koch's can be considered the first full quantitative analysis, although it certainly lacksa
clear methodology, and especially some ad hoc tools that would have made it possible to verify its results
and to study other projects.

In the year 2000, Mockus et al. presented the first study of free software projects encompassing a full
description of the devel opment process and organi sational structures, with both qualitative and quantitative
evidence ("A case study of open source software development: the Apache server") [172]. To do so, they
used the software changelog and bug reports to quantify aspects of developers' participation, core group
size, code authorship, productivity, fault density, and problem-solving intervals. In a way, this study is
till a classical software engineering study, save for the fact that the data has been integrally obtained
from the semi-automatic inspection of the data that the projects offer publicly on the net. Asin the case
of "Results from software engineering research into open source devel opment projects using public data",
2000 [158], this article did not provide any tool or automatic process that could be reused in future by
other research teams.

In "Estimating Linux's size", 2000 [227], and "More than a gigabuck: estimating GNU/Linux's" [228]
we find a quantitative analysis of the lines of code and programming languages used in the Red Hat
distribution. Gonzdlez Barahona et al. have followed these steps in a series of articles on the Debian
distribution (vid. for example"Anatomy of two GNU/Linux distributions' [88]). All of these provide asort
of X-ray of these GNU/Linux distributions on the basis of data provided by atool that counts a program's
sourcelinesof code (SLOC, linesof codethat are not blank lines or comments). Aside from the spectacular
result intotal lines of code (Debian 3.0 known as Woody, has more than one hundred million lines of code),
we can see how the number of linesis distributed for each programming language. Being able to study the
evolution of the different Debian versions over time has thrown up someinteresting results[88]. It isworth
noting that in the last five years the average package size has remained practically constant, meaning that
the natural tendency to grow has been neutralised by the inclusion of smaller packages. At the sametime,
we can see how theimportance of the C programming language, though still predominant, isdeclining over
time, whereas script languages (Python, PHP and Perl) and Javaare experiencing an explosive growth. The
"classical" compiled languages (Pascal, Ada, Modula...) areclearly receding. Finally, these articlesinclude
a section that shows the results obtained if we apply the classical COCOMO effort estimate model dating
from the early eighties (Software Engineering Economics, 1981) [93] and which is used by proprietary
software to estimate effort, project schedules and costs.

Although precursors, most of the studies presented in this section are fairly limited to the projects under
analysis. The methodology employed has been adapted to the analysed project, is partly manua and
occasionally the automated part can be used generally with other free software projects. This means that
the effort required to study anew project is much greater, since the method needs to be readapted and the
manual tasks will have to be repeated.

For thisreason, thelatest efforts (" Studying the evol ution of libre software projectsusing publicly available
data", in: Proceedings of the 3 Workshop on Open Source Software Engineering, 25" |nternational
Conference on Software Engineering, Portland, USA [196] or "Automating the measurement of open
source projects’, 2003 [124]) focus on creating an analysis infrastructure that integrates several tools so
that the process can be automated to a maximum. There are two fairly obvious reasons for doing this; the
firstisthat oncealot of time and effort has been invested in creating atool to analyse a project with special
emphasis on making it generic, the effort involved in using it for other free software projectsis minimal.
The second is that analysis using a series of tools that study programs from different and sometimes

86

Free Software

complementary points of view, at times does not allow us to obtain a broader vision of the project. In the
Libre Software Engineering Web Site [86] we can follow these initiatives in more detail.

Future work

Having described the brief but intense history of software engineering research on free software, we can
say that it is still taking its first steps. Many important aspects are still pending analysis and detailed
examination until we can find a model that at least partly explains how free software is generated. The
issues that will need to be tackled in the near future include the classification of free software projects,
the creation of a methodology based inasmuch as possible on automated analysis and the use of acquired
knowledge to build models that help us to understand how free software develops at the same time as
facilitating decision-making on the basis of acquired experience.

Another aspect that should not be overlooked and that is starting to be considered now is the validity of
classical engineering methodsin thefield of free software across all software engineering intensifications.
Hence, for example, the laws of software evolution postulated by Lehman ("Metrics and laws of software
evolution - the nineties view" [165]) at the beginning of the nineteen seventies and updated and expanded
in the eighties and nineties appear not to be fulfilled unconditionaly in the development of some free
software projects (" Understanding open source software evolution: applying, breaking and rethinking the
laws of software evolution”, 2003 [199]).

Currently, one of the most serious deficiencies is the lack of a strict classification so that free software
projects can be classed into different categories. At present, the classification criteria are too broad, and
projects with very disparate organisational, technical or other characteristics are all put into the same bag.
The argument that Linux, with an extensive community and large number of developers, has a different
nature and does not behave in the same way as a much more limited project in numbers of developers and
users, isvery true. All in all, amore detailed classification would make it possible to reuse the experience
acquired in other similar projects (in other words, with similar characteristics), making it easier to make
forecasts, and making it possible to foresee risks, etc.

The second important aspect that free software engineering needs to tackle, closely connected to the
preceding point and current trends, is the creation of a methodology and tools to support it. A clear and
concise methodology will make it possible to study all projects on an equal footing, discover their current
status, learn how they have evolved, and of course, classify them. Tools are essential when it comes to
dealing with this problem, since once created they make it possible to analyse thousands of projects with
minimum additional effort. One of the objectives of free software engineering is to make it possible to
study aproject in depth on the basis of alimited set of parameters showing whereinformation on the project
can be found on the Net (the address of the software versions repository, the place where the mailing list
archivesare stored, thelocation of the bug management system, and aminimum survey). Project managers
would then bejust abutton away from acompleteanalysis, asort of clinical analysisthat hel ped to diagnose
aproject's state of health including at the same time indications on areas for improvement.

Once we have acquired methods, a classification and models, the opportunities arising from simulation,
and to be more precise, intelligent agents, could be enormous. Considering that our starting point is a
notoriously complex system, it would be interesting to create dynamic models on which the different
entities participating in software generation could be modelled. Obviously, the more we know about the
different elements, the more adapted to reality our model will be. Although several proposals for free
software simulation are known, they are fairly simple and incomplete. To some extent, this is due to
the fact that there is still an enormous lack of knowledge with regards to the interactions that take place
in the generation of free software. If we manage to correctly package and process projects’ information
throughout their history, the agents could become crucia for knowing what their future evolution will be.
Although there are many proposal s as to how to approach this problem, one of the most advanced for now
can be found at http://wwwai.wu-wien.ac.at/~koch/oss-book/ [82].

87

http://wwwai.wu-wien.ac.at/~koch/oss-book/

Free Software

Summary

In summary, we have tried to show in this chapter that free software engineering is still a young and
unexplored field. Its first steps are due to journalistic essays that proposed, not without a certain lack
of scientific rigour, a more efficient development model, but gradually progress has been made towards
a systematic study of free software from an engineering perspective. Currently, following several years
of reports and quantitative and qualitative analysis of free projects, an enormous effort is being made to
achieve a global infrastructure that makes it possible to classify, analyse and model the project within a
limited space of time and in apartly automated manner. When analysing free software projects stops being
so costly in time and effort as it is now, it is likely that a new stage in software engineering will begin,
with a different type of techniques appearing on the scene designed mainly to predict software evolution
and foresee potential complications.

Development environments and technologies

"Thetools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities.”

Edsger W. Dijkstra, "How do we tell truths that might hurt?"

Down the years free software projects have created their own (also free) tools and systems to contribute
to the development process. Although each project follows its own rules and uses its own set of tools,
there are certain practices, environments and technol ogies that can be considered usual intheworld of free
software development. In this chapter we will look at the most common ones and discuss their impact on
projects management and evolution.

Description of environments, tools and systems

Before explaining about specific tools, wewill definetheir general characteristicsand propertiesaccording
to the task to be performed and the way devel opers are organised.

Firstly, although it is not necessarily adetermining factor, it is common for the environment, development
tools (and even the target virtual machine, when there is one), also to be free. This has not always been
the case. For example, the GNU project, with the objective of replacing Unix, had to be developed in and
for proprietary Unix systems until Linux and the free BSDs appeared. Nowadays, especially when free
software is developed as part of a business model, the tendency is that the target machine can also be a
proprietary system, often through interposed virtual machines (Java, Python, PHP, etc.). In any case, the
environment and the virtual machine need to be sufficiently common and cheap to bring together enough
co-devel opers having the same tools.

Secondly, also in order to attract the largest possible number of co-developers, the tools need to be simple,
well known and capable of functioning on economical machines. Perhaps for these reasons the world of
free software isfairly conservative when it comes to languages, tools and environments.

In the third place, the free software development model tends to be eminently distributed, with many
potential collaborators spread all around the world. For this reason generally asynchronous collaboration
tools are necessary, which at the same time allow the development to progress easily, irrespective of the
amount and rhythm of work of each collaborator, without delaying anyone.

Finally, itisadvisableto provide devel operswith various different architectures on which they can compile
and test their programs.

88

Free Software

Associated languages and tools

Most free software is written in C language, not only because C is the natural language of any Unix
variant (the usual free software platform), but also because it is widespread, both in people's minds and
in the machines (GCC is a standard compiler installed by default in aimost every distribution). Precisely
for these reasons and for its efficiency, Stallman recommends its use in GNU projects ("GNU coding
standards") [203]. Other fairly similar languages are C++, also supported by default by GCC, and Java,
which has certain similarity and is popular because it allows developments for virtual machines available
in a wide range of platforms. Generaly, software engineering reasons are not taken into account: in
SourceForge (vid. section 8.9.1), in 2004, for every one hundred and sixty projectsin C there was onein
Ada, although the latter is supposedly a more appropriate language for developing quality programs. At
the same time, English isthe lingua franca of free software devel opers, despite the fact that Esperantoisa
much easier language to learn with amuch more logical structure. Interpreted languages designed for the
rapid prototyping of normal applications and web services such as Perl, Python and PHP are also popular.

Just as C is the standard language, make is the standard program building tool, given its source code files.
A free programmer will normally use the GNU version (GNU make) [36] rather than BSD's incompatible
one (Adam de Boor, "PMake - atutorial") [100]. They can be used to specify dependency trees between
files, and rules for generating dependent files from those that they depend on. Thus, we can specify that
an object file x.o depends on source files x.c and x.h and that to build it we need to execute gcc -c x.c.
Or that our program's executable depends on a collection of objects and is linked in a certain way. When
we modify source code and then execute make, only the affected moduleswill be recompiled and the final
object will be linked again. Thisisavery low level tool, since, for example, it isincapable of finding out
for itself when a module needs to be recompiled in C, despite the fact that it could do so by examining
the chains of includes. It is also very powerful, because it can combine al the file transformation tools
available in order to build very complex targets of a multi-language project. But it is very complicated
and very dependent on Unix-type environments. Other supposedly better alternatives, such as jam (Jam
Product Information) [41], aap (Aap Project) [1] or ant (The Apache Ant Project) [7] arerarely used (the
latter is gaining popul arity especially in the world of Java).

Given the heterogeneity of existing systems even in the world of Unix, we also use tools designed
to help make our programs portable. The GNU tools autoconf (http://www.gnu.org/software/autoconf)
[10], automake (http://www.gnu.org/software/automake) [32] and libtool (http://www.gnu.org/software/
libtool) [35] make these tasks easier in C and Unix environments. Given the diversity of languages,
character sets and cultural contexts, C programmers (and programmers using many other languages)
often use gettext (http://www.gnu.org/software/gettext) [31] and the internationalisation options of the
standard C library (http://www.gnu.org/software/libc) [34] for programming applicationsthat can be easily
localised to any cultural environment at runtime.

Thus, when we receive a source package, it is most likely written in C, packaged with tar, compressed
with gzip, made portable with autoconf and associated tools, and can be built and installed with make. Its
installation will be carried out in avery similar processto the following one:

tar xzvf package-1.3.5.tar.gz
cd package-1.3.5

./configure

make make instal

Integrated development environments

An IDE (integrated development environment) is a system that makes software developer's work
easier by solidly integrating the language oriented edition, the compilation or interpretation, debugging,
performance measurements, incorporation of source code to a source control system, etc., normally in a
modular fashion.

89

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/libtool
http://www.gnu.org/software/gettext
http://www.gnu.org/software/libc

Free Software

Not all free software devel operslikethesetoals, although their use has gradually expanded. In theworld of
free software, thefirst one to be extensively used was GNU Emacs (http://www.gnu.org/software/emacs/)
[33], star work of Richard Stallman, written and extensible in Emacs Lisp, for which there are lots of
contributions.

Eclipse (Eclipse - An Open Development Platform) [23] can be considered today's reference IDE
in the world of free software, with the disadvantage that it works better (around May 2007) on a
non-free virtual Java machine (Sun's which is hoped to become free soon anyway). Other popular
environments are Kdevelop (http://www.kdevel op.org [http://www.kdevelop.org/]) [42] for KDE, Anjuta
(http://www.anjuta.org [http://www.anjuta.org/]) [6] for GNOME, Netbeans (http://www.netbeans.org
[http://www.netbeans.org/]) [51] of Sun for Java and Code::Blocks (http://www.codeblocks.org [http://
www.codeblocks.org/]) [18] for C++ applications.

Basic collaboration mechanisms

Free software is a phenomenon made possible by the collaboration of distributed communities and that,
therefore, requirestool sto make that collaboration effective. Although for along time magnetic tapeswere
physically posted, the speedy development of free software began once it became possible to communicate
rapidly with many people and to distribute program code to them or reply with comments and patches.
For convenience, rather than sending code, messages could be used to send information on the site from
which the code could be collected. In fact, right in the beginning of the seventies, e-mail was an extension
of the ARPANET file transfer protocol.

In the world of Unix, in the mid-seventies, uucp, the Unix file transfer protocol, was developed for
communicating machines through dial-up and dedicated lines, and on which electronic mail was built,
and in 1979, thefirst USENET link over UUCP. USENET news, a hierarchically structured forum system
distributed by flooding to hierarchically arranged sites, played a fundamental role in the development of
free software, sending the source code of complete programs to the comp.sour ces groups.

Simultaneously, mailing lists were developed, among which the BITNET (1981) mailing list managers
deserve mention. Nowadays the tendency is to prefer mailing lists over USENET-type newsgroups.
The main reason has been the abuse for commercial purposes and intrusion of "absentminded" people,
interfering with noise in the discussions. Also, mailing lists provide more control and can reach more
people. Recipients need to subscribe and any e-mail address is valid, even if there is no direct Internet
access. Themailing list administrator can choose to know who subscribes or to unsubscribe someone. The
contributions can be restricted to members only or the programmer may choose to moderate the articles
before they appear.

Traditionally, mailing list administration has been done by e-mail, using special messageswith apassword,
allowing theadministrator not to have permanent I nternet access, although thisisbecoming anincreasingly
rare phenomenon, meaning that the most popular mailing lists manager nowadays (Mailman, the GNU
Mailing List Manager) [46] cannot be administrated by e-mail, but rather necessarily via the web. The
mailing lists play acrucial rolein the world of free software and in many cases they may be the only way
to contribute.

Currently, with theweb's popularity, many forums are pure web forums or weblogs, with no other interface
than the one provided by the navigator. They can be generic, like the popular SlashDot (Slashdot: News
for Nerds") [58] or the spanish Barrapunto (http://barrapunto.com [http://barrapunto.com/]) [11], where
new free software is announced or discussed. Or they can be specialised in a specific program; in this case
they are often integrated with several additional tools in collaboration sites (see section 8.6.2). There are
also web interfaces to newsgroups and traditional lists.

Another collaboration mechanism that has become popular at the same time, is based on wikis, especially
when the ideaisto build ajoint document, such as the specification for a program, amodule or a system.
We discuss thisin section 8.6.2.

90

http://www.gnu.org/software/emacs/
http://www.kdevelop.org/
http://www.kdevelop.org/
http://www.anjuta.org/
http://www.anjuta.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.codeblocks.org/
http://www.codeblocks.org/
http://www.codeblocks.org/
http://barrapunto.com/
http://barrapunto.com/

Free Software

Finally, we should mention the interaction mechanisms used by developers to converse in real time. For
free software it does not tend to be a practical mechanism, because with all the developers distributed
around the world it is not easy to find a convenient time for everyone. Nonetheless, there are several
projects that use these text chat tools, either regularly or at virtual conferences on set dates. The
most commonly used tool is the IRC (Internet Relay Chat, http://www.ietf.org/rfc/rfc2810.txt) [151],
which normally communicates people through themed "channels" established on the basis of a series of
collaborating servers. It is not common for multimediatoolsto be used (sound, image.,) probably because
quality connections are required which not everyone may have and that can entail problems with the free
softwareavailable, and thedifficulty of registering and editing theresults of conversationsfor documenting
purposes.

Source management

It is advisable for any program development project to archive its history, because a modification could
produce a hidden error discovered later for example, and the original needs to be recovered, at least in
order to analyse the problem. If the project is devel oped by several people, the author of each change will
also need to be recorded, for the same reasons as explained above. If versioned releases of a project are
made, we need to know exactly which versions of each module form part of each release. Often, aproject
will keep one stable version and another experimental version; both need to be maintained, debugged, and
corrected errorstransferred from one version to the other. Thiscan all be done by saving and labelling each
and every version of the files correctly, which has generally been considered an excessive cost, although
with current drives this is becoming less true. What a source control system, also known as a version
management system, normally does, is to save the file history as a set of differences against a version,
normally the most recent one, for efficiency, also labelling each difference with the necessary metadata.

But we also want asystem of these characteristicsto servefor many programmersto collaborate effectively
without stepping on each other's toes, but without impeding each other's progress. Therefore, we need to
be ableto allow several programmersto work concurrently, but with acertain level of control. This control
can be optimistic or pessimistic. With pessimistic control, aprogrammer can reserve some filesto himself
to improve for a time, during which nobody else can touch those files. Thisis very safe, but will block
other programmers and may delay the project, especially if the programmer that has locked the files is
busy with other things or has even forgotten about them. Allowing others to progress is more dynamic,
but more dangerous, since incompatible modifications can occur. An optimistic system allows progressto
be made, but warns us when there have been conflicts and gives us tools to resolve them.

CVS

CV'S (Concurrent Version System) is an optimistic source management system designed towards the end
of the eightiesand used by the vast majority of free projects (Concurrent Version System [20], Open source
code development with CVS, 2" edition [113],Version Management with CV'S [95]). It uses a central
repository accessed through a client/server system. The site administrator decides who has access to the
repository, or to which parts of the repository, although normally, once a developer has been admitted
within the circle of trust, he will have acess to all files. Anonymous access, in read-only mode, may also
be allowed for anyone.

The anonymous collaborator

The anonymous CVS isavital toal for fulfilling the "release early and often” concept advocated by Eric
Raymond. Any user anxious to try the latest version of a program can extract it from the CVS, discover
bugs and report them, even in the form of patches with the correction. And it can examine the full history
of the development.

Let'slook abit at the mechanics. An advanced user wishesto obtain the latest version of the module mod
from an anonymously accessible repository in progs.org, directory /var/lib/cvs and protocol pserver. The
first time he will declare hisintention to enter:

91

http://www.ietf.org/rfc/rfc2810.txt

Free Software

cvs -d: pserver:anonynous@rogs.org:/var/lib/cvs login

If apassword isrequested, it will be anonymous user (usually the carriage return), which will be registered
inalocal file (thisoperationisnot really necessary for anonymous access, but the program will complain if
the file with the password does not exist). Next, the important thing is obtain the first copy of the module:

cvs -d: pserver:anonynous@rogs.org:/var/lib/cvs co nod

Thiswill create adirectory mod with all of the module's files and directories and some metadata (contents
in subdirectories called CVS), which will allow, among other things, not having to repeat the information
already provided. Our advanced user will enter the created directory, generate the package and test it:

cd nod

./ configure
make

make install...

When he wishes to obtain anew version, he will simply update his copy within mod.

cd nod

cvs update

./ configure
make

make install...

If he finds a bug, he can correct it in place and then send a patch via e-mail to the program's maintainer
(individual or mailing list):

cvs diff -ubB | mail -s "My patches” nod-mai nt @r ogs. org
The normal developer

The normal developer will have an account on the server. He can use the same mechanism and the same
protocol as the anonymous user, replacing anonymous for his account name.

Note

For security reasons, for accounts with write permissions, ssh tends to be used, as it provides an
authenticated and encrypted channel.

Once he has aworking copy of the module, he can make the necessary changes, and when he considers
that they have been stabilised, commit the changes to the repository. For example, if he modifies the files
part.h and part.c, he will commit them like this:

cvs ci part.h part.c

Before completing the operation, the CVS will ask him for an explanation of what he has done, which
will be attached to both files' log. Also the revision number of each file will be increased by one unit.
This number identifies every important moment in the history of afile and can be used to recover each
one of those moments.

When should a developer do a commit? Thisis a question of methodology that project members need to
agree, but it seems obvious that changes that do not compile should not be committed. But it is preferable
to pass also a minimum test battery. In many projects the approval of a project or sub-project supervisor
who examines the modification is also required.

92

Free Software

In devel oping the modification, someone may have altered other files, or even the same ones. Therefore
it is advisable for developers to do arelatively frequent update of their copy (cvs update). If other files
have been modified, the environment may also have changed and tests that were previously passed may
now befailed. If the same files have been modified, it could be that these changes have occurred either in
places or routines that we have not touched or in code that we have modified. In the first case there isno
conflict (at least not apparent) and the modification operation "merges" our version with the repository's,
generating combined files, with all of the changes. Otherwise thereis a conflict, in which case we need to
discuss with the developer who has made the other changes and agree to afinal version.

For better identification of each project component, it isadvisablefor it to carry directly associated revision
information. CVS can label source codes and objects automatically, on condition of following a certain
discipline. For example, if in a source code comment we write the key word $1d$, every time thefileis
committed to the repository, the word will be replaced with an identification chain that will show the file
name, the revision number, the date and time of the commit and its author:

$ld: part.c,v 1.7 2003/07/11 08:20:47 joaquin Exp $

If we include this keyword in a string of the program, when compiled the string will appear in the object
and in the executable, making it possible to identify it with atool (ident).

The administrator

Obviously, administrators are responsible of the most complicated part of maintaining the repository. For
example, they need to register the program, issue permissions for developers and coordinate them, 1abel
delivered versions, etc.

It is common practice for all projects to have a stable version and an experimental version. To do this
we create branches. Whereas those dedicated to maintenance correct errors on the stable branch, new
developments are made on the experimental branch. When the experimental branch stabilises, it is passed
onto stable, but not without previously applying the corrections made to the former stable branch. This
operation is called merging, it is delicate and supported by CV'S, although in a somewhat primitive way.
This idea can be extended to the concept of experimental branches which evolve in different directions,
which may or may not come to a good end, and that in any case, unless they are dead ends, will have to
be fully or partly integrated into the stable product, with appropriate merges.

A right that free software gives us is to modify a program for private use. Although it is desirable to
contribute all improvementsto the common pool, often the modifications we wish to make are too specific
and uninteresting for the public at large. But we areinterested in incorporating the evolution in the origina
program. This can be done with a special type of branching and merging (vendor branches).

The administrator can also facilitate team coordination through automated mechanisms, such as by
generating e-mail messages when certain events occur, like commits, or forcing certain automatic actions
to be carried out before a commit, such as automatic checks of style, compilations, or tests.

Other source management systems

Despite being the most extensively used version control system, CV S has some notabl e disadvantages:

Example 1.34. Note

In 2007 Subversion is aready the clear successor of CV'S, and many free software developments have
migrated to it.

1. CVSdoesnot support either renamings or file directory changes, or metadata (owner, permissions, etc.)
or symbolic links.

93

Free Software

2. Becauseitis an evolution of aversion control system for individual files, it naturally does not support
version control for complete groups.

3. CVS does not support sets of coherent changes. Indeed, adding a feature or correcting an error can
involve changing severa files. These changes should be atomic.

4. In CVS the use of branches and merges is fairly complicated. In fact, if we create an experimental
branch of a project and wish to include the corrections made to the stable version, we need to know in
detail which corrections have been made aready and which not, so as not to do them several times over.

5. CV S depends on a centralised server, and although it is possible to work without a connection, we do
need one for generating versions, comparing and merging them.

6. CV S does not generate, without the help of separate tools, the file changel og, which shows the global
history of a project's changes.

7. CVSdoesnot support well projectswith avery large number of files, asin the case of the Linux kernel.

Andyet, thereare other free systemswhich solve several of these problems. Wewould highlight the already
mentioned successor of CVS, Subversion (http://subversion.tigris.org [http://subversion.tigris.org/]) [62],
(http://svnbook.red-bean.com/) [96], which strictly solves the basic problems of CVS and can use HTTP
extensions (WebDAYV) in order to bypass aggressive security policies.

The development model based on a centralised repository, although suitable for cooperative work, does
not satisfy all expectations, since being able to create our own development branches depends on the one
hand on the server's accessibility and good functioning and on the other on the administrators of that server.
Sometimes distributed repositories are required that allow anyone to have a repository with a private or
public branch that can be merged or not with the official one. This is how GNU arch (Arch Revision
Control System) [8] or bazaar (Bazaar GPL Distributed Version Control Software) [12] work, as well
as the proprietary system BitKeeper (Bitkeeper Source Management) [14], chosen by Linus Torvalds to
maintain Linux since February 2002, since according to him therewasno appropriatefreetool. Itissaid that
using Bitkeeper doubled the pace of development of Linux. Nonetheless, the decision came under heavy
criticism because it was proprietary, with alicence that allowed free projects to obtain it free of charge on
condition that all commit changes with their metadata were logged on a public server designated by the
owners and accessi ble to everyone, and always on condition that the licensee did not try to devel op another
source control system to competewith it. It was precisely the attempt to devel op a compatible free product
by an employee of the same company where Linus Torvalds worked that detonated the change in source
management system. Linus rapidly developed a provisiona replacement, git ("Git manual page") [218],
which soon became definitive, condensing all of the experience of Linux's cooperative and decentralised
development: it supports large-size projects in a decentralised fashion, facilitating to a great extent the
development of tentative branches and their merging with others or with the main one, with cryptographic
security mechanisms that prevent altering the log. As of April 2005, Linux is maintained using git or its
wraps (for example, cogito "Cogito manual page" [90].

Documentation

Intheworld of free software, WY SIWY G text processors and other office suite toolsthat are so successful
in other environments are barely used, even though there are already free tools such as OpenOffice.org.
Thisis due to several important factors:

* It isadvisable to maintain documentation under source control, and source control systems, like CV'S,
athough they admit binary formats, prefer transparent text formats that can be edited with anormal text
editor and processed with tools developed for programs that allow us to see the differences between
versions easily, to generate and apply patches based on those differences, and to carry out merges.

94

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com/

Free Software

Note

In Unix the most common tools for these operations are diff, diff3, patch and merge.

» Some free documentation licences, especially the GFDL (vid. section 10.2.1), demand transparent
formats, especially because they make the job easier for those who prepare derived documents.

» The WY SIWY G tools ("what you seeiswhat you get") generally do not contain any information other
than the strict visualisation, making it very difficult, if not impossible, to identify authors, or titles, or
conversion to other formats. Even if they do allow conversion to other formats, this tends to be done
interactively, and is often impossible to automate (using make, for example).

* In generd, office applications generate sizeable file formats, which is an undesirable feature for both
developers and repositories.

For all of the above, free programmers, accustomed to programming and compiling, prefer transparent
document formats, in many cases pure simple text and in many others processable document formats.

The processable formats in use are not many. Traditionally, in the world of Unix programs have been
documented in the formats expected by the family of processors roff, with a free version (GNU troff)
[37] by Norman Walsh. Nevertheless, this practice has been gradually abandoned, except for traditional
manual pages, since it is amost obligatory to prepare manual pages for the system's most basic tools.
Because many manual pages have grown so much so that it is barely appropriate to call them pages, it
was necessary to prepare an alternative hypertext format that allowed documents structured with indexes
and cross-references to be followed. The GNU project designed the texinfo format (Texinfo - The GNU
Documentation System) [63] and made it its standard. This format allows navigable documents to be
obtained with the info tool or within the emacs editor, and in turn, to obtain quality document printouts
using the TeX text processor, of Donald Knuth (The TeXbook) [156].

Thetexinfo format can be trandated into multipage HTML if required, and many people prefer to view the
information with a web navigator, but the capacity to search for words in adocument is lost. Thisis one
of the unwanted results of the popularity of HTML, since the navigators do not implement the concept of
multipage document , despite the fact that there are link elements that allow parts to be interlinked.

There is overwhelming demand for being able to view complex documents as easily navigable multipage
web pages. There are people who write documentation in LaTeX (LaTeX user's guide and reference
manual) [163], also a TeX application, very popular among scientists, more expressive than Texinfo and
convertible to multipage HTML with certain tools (The LaTeX Web Companion) [130], on condition a
certain discipline is maintained. Indeed, TeX applications are sets of macros that combine very low level
typographic operators to convert them into abstract languages that work with high level concepts (author,
title, summary, chapter, section, etc.). If we only use the basic macros, conversion is simple. But since
nobody prevents the use of low level operators and, additionally, there are enormous quantities of macro
packages beyond the maintenance capacity of conversion tool maintainersit is difficult to achieve good
conversions.

DocBook

The problem stemsfrom the fact that thereisno distinction between content and presentation, either in TeX
or in nroff, sincethe abstractionisbuilt in layers. Thisdistinctionis made by SGML applications (standard
generalised markup language) [81] and XML (extensible markup language) [224], where the presentation
is specified with completely separate style sheets. Soon very simple SGML applications started to be
used, such as linuxdoc and debiandoc, but due to their limited expressive capacity, DocBook was chosen.
(DocBook: the definitive guide) [225].

DocBook is an SGML application originally developed for technical IT documentation and now has an
XML variant. Currently, DocBook is the standard free documentation format for many projects (Linux

95

Free Software

Wikis

Documentation Project, KDE, GNOME, Mandriva Linux, etc.) and agoal to be reached for others (Linux,
*BSD, Debian, etc).

However, DocBook isacomplicated language, plagued by tags, which meansthat it isuseful to havetools
to help with the editing, even if they are very basic and rare; one of the most popular tools of thistypeis
the psgml mode of emacs. It isalso heavy to process and free processors still generate anot very attractive
quality of documents.

Many peoplefind it too complicated to write documentation with such complex languages as DocBook and
collaboration mechanisms like CVS. Thisiswhy a new mechanism of collaboration for online document
preparation viathe web has become popular, called wiki, and invented by Ward Cunningham ("Wiki design
principles*) [97]. It was first put into service in 1995 and is now extensively used in a wide range of
variants for preparing very dynamic documents, not designed for printing and often with a short life (for
example, conference organisation).

Unlike DocBook, awiki has avery simple and concise markup language which is reminiscent of the final
presentation, without being exactly likeit. For example, paragraphs are separated by ablank line, elements
of alist are started with a hyphen if not numbered and with a zero if they are numbered, and table cells
are separated by vertical and horizontal bars.

Neither does the concept of a "full document" exist, rather a wiki is more a set of small interlinked
documents created as and when it is necessary to explain a new concept or subject. The documents are
created almost automatically, asthe editing tool showsvery clearly that we have entered aconcept (through
a WikiName, almost always two joined words with the first letter capitalised). Hardly any wiki allow
hyperlinks within the same page.

Unlike CV'S, anyone can write in a wiki, although it is advisable for the author to identify himself by
previously registering. When we visit awiki we can seethat all pages have a button that allows them to be
edited. If pressed, the navigator will show us a form with the document's source code, which we will be
able to change. Thisisnot aWY SIWY G edit, which discourages anyone just wanting to interfere, but is
simple enough for anybody interested to be able to modify documents with very little effort.

Wikis carry their own document version control, in such a way that all of their versions are generally
accessible, indicating who made them and when. They can also be easily compared. Plus, they tend to
include search mechanisms, at least per page name and word content.

Normally, the original author of a page will want to know what changes are made to it. To do so he can
subscribe to the changes and receive notifications of them by e-mail. Sometimes, the person seeing a
document will not dare to change anything, but may make a comment. Normally, all wiki pages have an
associated comments forum pasted at the end of the document, which either the original author or anybody
who assumes the role of editor can use to reform the original text, possibly by moving phrases from the
comments to the relevant places.

Example 1.35. Advice

The best way of understanding the wiki concept is to access one and experiment on a page designed for
this purpose, usually called SandBox.

Bug management and other issues

One of the strong points of the free development model is that the community contributes with bug
reports and feels that those reports or solutions are given attention. This requires a simple bug reporting
mechanism, so that developers can receive sufficient information, in a systematic way and containing all

96

Free Software

necessary details, either provided by the collaborator, with an explanation of what is happening, the level
of importance and possible solution, or through an automatic mechanism that determines, for example, the
program version and environment in which it functions. Errors should also be saved in a database that can
be consulted, to see whether abug has already been communicated, corrected, itslevel of importance, etc.

There are severa of these systems, with different philosophies. Some are via web, others via e
mail, through some intermediary program. They all have a web interface for consultation. Some allow
anonymous reports, while others require identification (avalid e-mail address) to prevent noise. Although
web procedureswould appear to be the most simple, they do not easily obtain automatic information on the
bug's environment. For example, the Debian system provides programs like reportbug, which after asking
for the name of the package that we wish to report on, consults the error server for the bugs reported to
it. If none of them refers to our problem, we will be asked for a description of it, its level of importance
("critical", "grave", "serious’, "important”, "cannot be regenerated from source codes’, "normal”, "minor"
or "suggestion") and labels about its category (for example, "security"). Following this, if we confirm the
request, it will automatically find out the version of the package and those on which it depends, in addition
to the kerndl's version and architecture. Obvioudly, it knows the e-mail address, so it sends to the correct
site areport similar to the following one:

Package: w3m ssl
Version: 0.2.1-4
Severity: inmportant

After reloading a page containing conplex tables several dozen tinmes, w3m had use
al |l physical menory and thrashing commenced. This is an Al pha nmachi ne.

--System I nformation
Debi an Rel ease: testing/unstable
Kernel Version: Linux romana 2.2.19 #1 Fri Jun 1 18:20: 08 PDT 2001 al pha unknown

Versi ons of the packages w3m ssl depends on:

ii libc6.1 2.2.3-7 G\U C Library: Shared libraries and Ti nezone data

ii libgch5 5.0.al pha4-8 Conservative garbage collector for C

ii libgpnmgl 1.19.3-6 General Purpose Muse Library [|ibc6]

ii libncurses5 5.2.20010318-3 Shared libraries for term nal handling

ii libssl0.9.6 0.9.6a-3 SSL shared libraries ii w3m0.2.1-2 WNW browsabl e pager w
t abl es/ frames support

This message generates a bug number which is returned to us, sent to the maintainer and saved in the
database. When the bug is solved, we will also receive a notification. Every bug has an e-mail address
assigned to it that can be used to provide additional information, for example. We can consult the bug
database http://bugs.debian.org [http://bugs.debian.org/] at any time.

Sometimes bug monitoring systems have mechanisms for assigning someone to solve them and setting
adeadline. There are also other issues, such as pending jobs, requested improvements, tranglations, etc.,
that require similar management mechanisms. With free software we cannot generaly use very rigid
mechanisms for managing the tasks that each developer has to do. After al, many collaborators are
volunteers and cannot be obliged to do anything. Nonethel ess, tasks can be defined and we can wait for
somebody to subscribeto the system and to take them on within adeclared period. Whether thereis control
over what certain people can do or not, it is always advisable to control all the tasks that need to be done,
who and what they depend on, their level of importance, and who is working on them. Many important
projects manage these aspects using Bugzilla (The Bugzlla guide) [89] or its derivatives.

Sometimes someone working on a project may discover a bug on a different project on which his work
depends, but that has a different bug management system to the one to which he is accustomed. Thisis
particularly true for users of distributions who wish to use a single tool for reporting and monitoring bug

97

http://bugs.debian.org/
http://bugs.debian.org/

Free Software

solving. To facilitate reporting and monitoring of those bugs, it may be advisable to federate different
systems, as done by Malone (The Malone Bug Tracker) [47].

Support for other architectures

The minimum support required for working with a portable program is access to compilation farms,
which allow the program to be compiled on different architectures and operating systems. For example,
SourceForge (vid. section 8.9.1) offered for atime Debian GNU/Linux environments for Intel x86, DEC
Alpha, PowerPC and SPARC, in addition to Solaris and Mac OS/X environments.

It is also useful to be able to test (not just compile) the program in those environments. But this
service requires more resources and more of the administrator's time. The compilation service can
already be problematic, because normally we need to provide compilation environments for several
languages, with alarge number of libraries. If what we want to do is to test any program, the difficulties
increase exponentially, not just because it is very difficult to have the necessary resources available,
but also for security reasons, which can make it extremely complicated to administrate those systems.
Notwithstanding, there are a few compilation farm services, with standard installations of various
architectures, which can allow us to test some things.

The abovementioned public farms are normally a service that requires manual use. The invited devel oper
copies his files onto one of those machines, compiles them and tests the result. He will probably have to
do it from time to time, prior to releasing an important version of the program. It could be much more
interesting for compilations and the execution of regression tests to be carried out systematically, in an
automated fashion, for example every night, if there have been changes in the source codes. Thisis how
some important projects operate, which provide their own infrastructure for external developers, which
tendsto be called atinderbox. Thisisthe case with Mozilla, financed by Netscape, whose tinderbox (http://
www.mozilla.org/tinderbox.html) [50] has aweb interface to the results of the compilation and tests of the
navigator's components on al of the architectures on which it operates. Thisinterfaceis closely related to
the CV S and shows those results for different states (between commits), identifying the one responsible
for the bugs, and facilitating progress, by overcoming the problem until it is resolved. Tinderboxes are
also used by the projects OpenOffice and FreeBSD, at |east.

Development support sites

Development support sites offer, in amore or less integrated fashion, all of the services described above
plus afew additional onesthat allow projects to be searched by categories and to classify them according
to some simple parameters of activity. This spares the developer having to set up and administer an entire
infrastructure for collaboration, allowing him to concentrate on the project.

SourceForge

With regards to this type of service, one of the first to become established, and the most popular, is
SourceForge (http://sourceforge.net [http://sourceforge.net/]) [61], managed by the OSDN (Open Software
Development Network), a subsidiary of VA Software, which in March 2007 hosted more than 144,000
projects. It is structured around a set of programs with the same name, and which up to version 2 were
free software.

SourceForge, as a prototype for this type of sites, offers a web interface or global access
portal (http://sourceforge.net/) and a subportal per project (http://proyecto.sourceforge.net [http:/
proyecto.sourceforge.net/]). The global interface shows news, advertisements, links, and an invitation to
become a member or to enter if we already are members. To collaborate on the site, it is advisable to
become amember, and it is compulsory if we want to create a new project or to participate in an existing
one. To be a spectator it is not necessary, and as such, we can see what are the projects experiencing most
active development or downloaded most frequently, and search for projects by category or descriptive

98

http://www.mozilla.org/tinderbox.html
http://www.mozilla.org/tinderbox.html
http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/
http://proyecto.sourceforge.net/
http://proyecto.sourceforge.net/
http://proyecto.sourceforge.net/

Free Software

word, and they will appear in order of activity level. For each project we can see its description, status
(alpha, beta, production), its descriptors (programming language, operating system, subject, type of users,
language, licence...), bugs and pending or reinstated aspects, activity levels over time..., or download it.
We can also take part in forums or report bugs, even anonymously, which is not very advisable (because,
for example, we may not get areply).

Any authenticated user can request to register a project, which the administrators will admit on condition
that it fulfils the site's policies, which in the case of SourceForge are fairly liberal. Once authorised, the
creator can register other users as additional administrators or as developers, with access to modify the
sources. Following authentication, there are not many more controls over the project, which means that
therearealot of dead projects. This does not confuse users too much though, because project searches sort
the projects by level of activity, meaning that low or nil activity projects are barely visible. These projects
run the risk of being eliminated by the site owners. The services that SourceForge offers a project, and
that we could expect from any other similar service are as follows:

» Hosting for the portal web pages of the project, at the address project.sour ceforge.net, for viewing by the
public. These pages can be static or dynamic (with CGI or PHP), in which case they can use a database
(MySQL). They are entered directly through remote copy commands and can be handled using remote
terminal interactive sessions (SSH).

» Optionaly, a virtual server that responds to addresses from a separately obtained domain, like
WWW.project.org or cvs.project.org.

» Asmany web forums and/or mailing lists as necessary in the administrator's opinion.
A news service where administrators announce advances concerning the project.

» Trackers for bug reporting and monitoring, requests for support, requests for improvements or
integration of patches. Administrators give the issue a priority level and assign a developer to find the
solution.

» Task managers, similar to trackers, that allow sub-projects to be defined with a series of tasks. These
tasks, in addition to a priority level, are given a deadline. From time to time, devel opers assigned these
tasks can show percentages of task completion.

» A CVSor Subversion with initial access rights for al developers.

 Uploading and downloading service for software packages. It registers entered versions when used and
interested parties can receive anatification when thisoccurs. Plus, theinitial upload involvesthecreation
of severa replicas worldwide, which facilitates distribution.

 Service for publishing documents in HTML format. Anyone can register them, but they will only be
visible following approval by an administrator.

» Back-up copy for disaster recovery, such as broken drive, not user bugs, like accidentally deleting afile.
* Integrated mechanism for donations to users, to projects and to SourceForge.

An authenticated user will have a personal page containing al relevant information, such as projects to
which the user is associated, themes or tasks pending, as well as forums and files that he has said he
wants to supervise. Plus, so that he does not have to be tending to his personal page, the user will receive
notifications to his e-mail about the things he wishes to control.

SourceForge heirs

In 2001, VA Software was about to go bankrupt, in the full swing of the dotcom crisis. Thenit announced a
new version of its SourceForge software with anon-freelicence, in an attempt to secure asource of revenue
by selling it to companies for their internal developments. At the same time, it eliminated mechanisms

99

Free Software

that allowed a project to be dumped for moving to ancther site. Both events were seen as athreat that the
thousands of projects hosted by SourceForge would become trapped in the hands of a single company,
which would use the platform for showing non-free software. In the face of this and the possibility of the
site closing, offspring of the free version were devel oped and portals based on it were opened, particularly
Savannah (http://savannah.gnu.org [http://savannah.gnu.org/]) [57], dedicated to the GNU project and
to other programs with copyleft-type licences, or BerliOS (BerliOS: The Open Source Mediator) [13],
conceived as a meeting point for free software developers and companies. However, thisisjust astepin
the direction of developing a distributed and replicated platform, where nobody has absolute control over
the projects (Savannah The Next Generation, 2001) [98].

Another example of afree software project management system is Launchpad (https://launchpad.net) [43],
used by Ubuntu for developing each version of the distribution. Launchpad is not a repository for source
code, it is designed rather to offer support for monitoring code, incidents and trandlations. To achieve this
it uses the already mentioned Malone tool, which allows incidents to be redirected to each code repository
of the affected modules.

Other sites and programs

Naturally, collaboration systems have been and continue to be developed, and some companies base
their business on maintaining and servicing those sites. For example, the Tigris project (Tigris.org: Open
Source Software Engineering Tools) [64], which not only maintains free software engineering projects, it
also uses a collaboration portal (SourceCast) maintained by a service company (CollabNet), which also
maintainsindividual projects sites, like OpenOffice.org. Emerging new sites adopt new free software, such
as GForce (http://gforge.org [http://gforge.org/]) [30], used by the Debian project (http://aioth.debian.org
[http://aioth.debian.org/]) [5]. We can see a detailed comparison of many sites in "Comparison of free/
open source hosting (FOSPhost) sites available for hosting projects externally from project owners® [202].

Case studies

"GNU, which standsfor 'Gnu's Not Unix', isthe name for the complete Unix-compatible
software system which | am writing so that | can give it away free to everyone who can
useit. Several other volunteers are helping me. Contributions of time, money, programs
and equipment are greatly needed."

Richard Stallman, "The GNU Manifesto" (1985)

This chapter provides a more in-depth study of some of the most interesting free software projects in
terms of the impact on the free software world, the results obtained, the management models, historical
development, etc. Of course, the number of projects that we can discuss here is much smaller than the
total number of free software projects (dozens of thousands), which means that this chapter should not be
thought of as comprehensive, and neither can it ever be. Nevertheless, we hope that readers, having read
the chapter, will at least have a basic understanding of how the theories that we have discussed throughout
this book have been put into practice.

The projects that we have chosen range from lower-level applications, the ones which interact more with
the computer's physical system rather than the user, to work environments designed for the end user. We
have aso included free software projects that, in principle, are not strictly development projects. This
mainly applies to the distributions, which tend to be used as integrating systems, as they mainly take an
extensive but limited set of independent applications and use them to create a system in which everything
interacts effectively, including the options for installing, updating and deleting applications, as desired
by the user.

The lowest-level projects that we will look at will be Linux, the kernel of today's most popular free
operating system and FreeBSD, which combines the kernel from the BSD family with a series of
applications and utilities made by third parties. The work environments for end users that we will study

100

http://savannah.gnu.org/
http://savannah.gnu.org/
https://launchpad.net
http://gforge.org/
http://gforge.org/
http://alioth.debian.org/
http://alioth.debian.org/

Free Software

will be KDE and GNOME, which are certainly the most widely-used and popular. For the servers, one
of the main aspects in free systems, we will look at Apache, the leader in the WWW servers market, in
this chapter. Likewise, we will introduce Mozilla, one of the WWW clients (it isin fact, much more than
that) that we can rely on in the free software world. The last project that we will look at in this chapter is
OpenOffice.org, afree Office IT (suite) package.

We thought it would be appropriate to study the details of two of the most popular distributions, Red Hat
Linux and Debian GNU/Linux, and to comparetheir sizesto other widely used systems, such as Microsoft
Windows or Solaris. Finally, the Eclipse multi-language software devel opment environment has also been
included.

After discussing the different case studies, we provide a table showing the most important characteristics
of each application or project. One of the elements that readers will probably find most surprising will be
the results of the cost and duration estimations and the number of developers required. We have obtained
these results using methods typically used in the field of software engineering, especially the COCOMO
Software Cost Estimation Model. The COCOMO model (Software Engineering Economics, 1981) [93]
takes the number of source code lines as the starting measurement and generates estimates of the total
cost, the development time and effort required to create the software. COCOMO is a model designed for
"classical" software generation processes (waterfall or V model developments) and for average-size or
large-scale projects; therefore, the figures that it will produce for some of the cases we analyse should be
taken with some reservations. In any event, the results can help to give us an idea of the sheer scale on
which we are working and of the amount of strenuous effort that would be necessary to achieve the same
results with a proprietary software development model.

In general, it isthe cost estimates that are most striking out of all the figures resulting from the COCOMO
model. Two factors are taken into account in this estimate: a devel oper's average salary and the overheads.
For calculating the estimated costs, the average salary for a full-time systems programmer is taken from
the year 2000 "Salary survey 2000" [235]. The overheads are the extra costs that all companies must pay
so that the product can be rel eased, independently of the salary paid to the programmers. Thisranges from
the salaries of the secretaries and the marketing team to the costs of the photocopies, lighting, hardware
equipment, etc. To summarise, the cost calculated by COCOMO is the total cost that a company would
have to incur in order to create software of the specified dimensions and it should be remembered that
only a part of this money would be received by the programmers for designing the software. Once thisis
factored in, the costs no longer seem so excessive.

Linux

The Linux kernel is, without a doubt, the star application of free software, to the extent that, whilst only
congtituting a small part of the system, its name is used to define the whole. Furthermore, it could even
be said that free software itself is confused with Linux on many occasions, which is a pretty big mistake
to make, given that there is free software that runs on systems not based on Linux (in fact, one of the
biggest aims of the movement and of many free software projectsisto create applications that can run in
numerous environments). On another note, there are also applications that work in Linux and that are not
actually free software (such as Acrobat Reader, the proprietary PDF documents reader, for which there
isaso alinux version).

Example 1.36. Note

There are actually various projects that integrate and distribute free applications that run on Windows
systems, to avoid free software becoming associated solely with Linux systems. One of the pioneersinthis
area (and the one that probably became most well-known and comprehensive) was GNUWin, which was
distributed on self-bootable CDs with more than a hundred free applications for Win32 systems. Most of
these applications are also available in common GNU/Linux distributions, which made GNUWin agood
tool for preparing for a gradual and easy transition from a Windows system to a GNU/Linux one. As at
early 2007, there are other similar systems available, such as WinLibre.

101

Free Software

A history of Linux

The history of Linux is one of the most well-known histories within the world of free software, most
probably because it hasthe traits of alegend rather than those of the history of a computer programme. In
1991, aFinish student called Linux Torvalds decided that he wanted to learn how to use protected mode
386 on a machine that his limited income had allowed him to purchase. At that time, there was a kernel
in the operating system called Minix, designed for academic purposes and for use in university courses
on operating systems; thisis still used today. Andrew Tanenbaum, one of the most prestigious professors
at the university, was the leader of the team working on the development of Minix, based on traditional
Unix systems. Minix was a limited system, but quite capable and well-designed, and was at the centre of
alarge academic and engineering community.

Minix had a free distribution license and could be used for academic purposes, but it had the big
disadvantage that people that did not work or study in the University of Amsterdam could not add
improvementsto it; instead these improvements had to be made independently, usually using patches. This
meant that in practice, there was an official version of Minix that everybody used and then a long series
of patchesthat had to be applied later to obtain additional functions.

In mid-1991, Linus, then an anonymous Finnish student, sent a message to the Minix newsgroup
announcing that he was going to start work on an operating system kernel based on Minix, from scratch,
rewriting code. At the time, although Linus did not explicitly say that he was going to publish it with a
free software license, he noted that the system that he was going to create would not have the barriersthat
Minix had; this would indicate that, unbeknown to him, and probably without actually wanting to, he was
taking the first step towards making the community that congregated around Minix at that time his.

Version 0.02, which dates from October 1991, despite being very limited, could already execute bash
terminals and the GCC compiler. Over the course of the following months, the number of external
contributions grew to the point that in March 1992, Linus could publish version 0.95, which was widely
acknowledged as almost stable. There was till quite a way to go, however, before version 1.0, which is
usually considered the first stable one. In December 1993, for example, version 0.99pl 14 was published
(which would make it the fourteenth corrected version of version 0.99); in March 1994, Linux 1.0 was
finally born. By this time, Linux was being published under the terms of the GPL license; according
to Torvalds himself, this was one of the best decisions he ever made, as it was extremely helpful in
distributing and popularising hiskernel. In "Evolution in open source software; a case study", [128] there
is an exhaustive analysis of the evolution of the different versions of the Linux kernel, focusing on the
scale and modularity.

Example 1.37. Note

Another significant event in the annals of free software was the debate that took placein late January 1992
on the Minix newsgroup between Andrew Tanenbaum and Linus Torvalds. Tanenbaum, who was probably
a bit annoyed by Torvalds' success with his "toy", attacked Linux and Linus in a rather disproportionate
manner. His essential point was that Linux was a monolithic system (the kernel integrates all the handlers
and the rest) and not a microkernel system (the kernel has a modular design, which means that it can be
much smaller and that modules can be loaded upon demand). The original argument can be read just asiit
occurred in "The Tanenbaum-Torvalds debate” newsgroup [214].

Linux's way of working

The way Torvalds worked was not very common at that time. The development was mainly based on a
mailing list. The mailing list was a place where people not only argued, but where devel opments al so took
place. And thiswas because Torvalds was extremely keen on having the whole life of the project reflected
on the mailing list, which is why he would ask people to send their patches to the list. Contrary to what
one might have expected (the patches sent as attachments), Linus preferred to have the code sent in the

102

Free Software

body of the message so that he and others could comment on the code. In any case, although many people
would provide their opinions and send corrections or new functions, the last word would always go to
Linus Torvalds, who would decide on what code would be incorporated into Linux. To alarge extent, this
is still how it worksin 2007.

Example 1.38. Note

The consolidation of Linus Torvalds as a "benevolent dictator” has given rise to a large number of
anecdotes within the project. For example, it issaid that if anideaisliked, it must be implemented. If itis
not liked, it must also beimplemented. The corollary, therefore, isthat good ideas are of no use whatsoever
(without code, of course). On another note, if theimplementation isnot well-liked, itisessential toinsist. A
well-known caseisthat of Gooch, for whom Saint Job was a mere learner. Gooch made up to one hundred
and forty six parallel patches until Linusfinally decided to integrate them into the kernel's officia branch.

Another one of Torvalds' innovative ideas was to devel op two branches of the kernel in paralel: the stable
one (the second number of the version is usualy even, such as 2.4.18) and the unstable one (the second
number of the version is odd, such as 2.5.12). Asever, Torvaldsis the person that decides what goes into
which branch (many of the most controversial decisions are related precisely to this point). In any case,
Linux does not have any planned deliveriesin fixed timeframes: it will be ready when it isready and in
the meantime welll just have to wait. Surely by now, most readers will have realised that the decision on
whether the system is ready or not will be made solely by Linus.

The development method used in Linux has proven to be very effective in terms of results: Linux is
very stable and any bugs are corrected extremely quickly (sometimes in minutes), as it has thousands of
developers. In this situation, when there is a bug, the probability that someone will find it is very high,
and if the person that discoversit isnot able to correct it, someone will appear who will hit on the solution
very quickly. To summarise, this shows how Linux has thousands of people working on its devel opment
every month, which iswhy its success is not altogether surprising.

It should be noted, however, that this way of working is very expensive where resources are concerned.
It is not unusual for there to be many mutually-exclusive proposals for a new function or that a dozen
patches are received for the same bug. In most cases, only one of the patches will finally be included in
the kernel, which means that the rest of the time and effort put into the patches by the other developers
will have all beeninvain. Linux's development model is, therefore, amodel that works very well in Linux
but which not all projects can permit themselves.

Linux's current status

In early 2007, Linux was at version 2.6, which included, in terms of improvements made to version 2.4,
NUMA (Non-Uniform Memory Access, used a lot in multiprocessors), new filesystems, improvements
to communication in wireless networks and sound architectures (ALSA) and many other improvements
(if you're interested in the details of the changes in respect of previous versions, you may consult "The
wonderful world of Linux 2.6" [186]).

Linux's development model has undergone some changes over recent years. Although the development
mailing list is still the soul of the project, the code no longer has to pass through the list, necessarily.
One of the things that have contributed to this in a large way is BitKeeper, a proprietary system
that performs revision control, developed by the company BitMover, strictly following Linus Torvalds
recommendations. The use of this proprietary tool generated alot of controversy, in which Linus, true to
form, demonstrated his pragmatism again, as for him and many others, the CVS version control system
was obsolete. The disagreements were brought to an end with the development of git, a revision control
system with similar featuresto BitK eeper that is currently used in Linux's devel opment. More specifically,
Linux's development process follows a pyramida hierarchy, in which the developers propose patches,
shared viamail between levels, which have to be accepted by the next level up, formed by controller and

103

Free Software

file maintainers. The subsystem maintainers are on a higher level, whereas Linus Torvalds and Andrew
Morton are on the top level and have the final say where the acceptance of patchesis concerned.

To summarise, the following table provides an x-ray picture of the Linux project, showing how it now has
more than five million lines of code and that it can therefore be included amongst the largest free software
projects (along with Mozillaand OpenOffice.org). Asto the estimates regarding the time it would take to
design such a project and the average number of developers that would be necessary, we should note that
the former is certainly much less than the time that Linux has been around. On the other hand, thisis more
than compensated by the latter detail, given that the average number of developers working full-time that
would be necessary for such a project is higher than the number ever available to Linux.

Note
The cost estimate that COCOMO shows is in the range of 215 Million US Dallars, a sum that,

if we put it in the context of everyday figures that we might think about, would be double what
the best football clubs might pay for agreat football star.

Table 1.4. Table 4. Analysisof Linux

Website http://www.kernel.org [http://www.kernel .org/]
Beginning of the project First message on news.comp.os.minix: August 1991
License GNU GPL

Analysed version 2.6.20 (stable version on 20/02/2007)

Source code lines. 5,195,239

Cost estimate (according to basic COCOMO) $ 215,291,772

Design time estimates (according to basic|8.83 years(105.91 months)
COCOMO)

Estimate of average number of developers|180.57
(according to basic COCOMO)

Approximate number of developers These are estimated in the thousands (although only
hundreds appear in the credits[219])
Development assistance tools Mailing list and git

Linux's composition in terms of programming languages shows a clear predomination of C, which is
considered to be an ideal language for designing speed-critical systems. When speed is such a strict
requirement that not even C can achieve it, assembly language is directly used for programming and this,
as we can see, happens with some frequency. The disadvantage of this assembly language, in comparison
with C, isthat it is not as portable. Each architecture hasits set of particular instructions, which means that
alot of code written for an architecture in assembly language has to be ported to the other architectures.
Theincidence of therest of the languages, as shown in the attached table, is marginal and they are limited
to installations functions and devel opment utilities. The version analysed for this book was Linux 2.6.20,
asit was published on 20" February 2007 (without including any subsequent patches).

Table 1.5. Table 5. Programming languages used in Linux

Programming language Codelines Percentage
C 4,972,172 95.71%
Assembler 210,693 4.06%

Perl 3,224 0.06%

104

http://www.kernel.org/
http://www.kernel.org/

Free Software

Programming language Codelines Percentage

Y acc 2,632 0.05%

Shell 2,203 0.04%
FreeBSD

Aswe have mentioned in the chapter on the history of free software, there are other types of free software
operating systems, apart from the popular GNU/Linux. A family of these are the "inheritors' of the
distributions of Berkeley University, in California (US): BSD type systems. The oldest and most well-
known BSD system is FreeBSD, which was created in early 1993, when Bill Jolitz stopped publishing
the unofficial updates to 386BSD. With the assistance of the company Walnut Creek CDROM, which
subsequently changed its name to BSDi, a group of volunteers decided to carry on creating this free
operating system.

The main objective of the FreeBSD project isthe creation of an operating system that can be used without
any typeof obligationsor ties, but that has all the advantages of code availability andis carefully processed
to guarantee the quality of the product. The user hasthe liberty to do whatever they like with the software,
either by modifying it according to their wishes or by redistributing it in an open form or evenin aclosed
form, under the terms that they wish, with or without modifications. As the name itself indicates, the
FreeBSD project is based, therefore, on the philosophy of BSD licenses.

History of FreeBSD

Version 1.0 appeared towards the end of 1993 and was based on 4.3BSD Net/2 and 386BSD. 4.3BSD
Net/2 had code that was created in the seventies, when Unix was being developed by AT& T, which, as
it turned out, involved a series of legal problems that were not resolved until 1995, when FreeBSD 2.0
was published without the original code developed by AT& T but based on 4.4BSD-L.ite, alight version
of 4.4BSD (in which many of the modules had been eliminated for legal reasons, apart from the fact that
the port for Intel systems was still incomplete) that was released by the University of California.

The history of FreeBSD would not be complete if we neglected to mention its "sister" distributions,
NetBSD and OpenBSD. NetBSD appeared as version 0.8 in the middle of 1993. The main aim was for
it to be very portable (although at the beginning it was only an adaptation for i386); consequently, the
product's motto was: " Of courseit runsNetBSD". OpenBSD arose from the division of NetBSD caused by
philosophical differences (as well as personal differences) between developersin mid-1996. The focusis
mainly on security and cryptography and they say that it isthe safest operating system that exists, although,
asit isbased on NetBSD, it isaso highly portable.

Development in FreeBSD

The development model used by the FreeBSD project is based mainly on two tools: The CVS version
control system and the GNATS bug-tracking software. The whole project is based on these two tools, as
is confirmed by the fact that a hierarchy has been created on the basis of these tools. In effect, it is the
committers (the devel opers with write-access to the CV S repository) who have the most authority for the
project, either directly or indirectly through the choice of the core group, aswe shall seein the next section.

You do not have to be a committer in order to make bug reports in GNATS, which means that anyone
who wishes to can report a bug. All the (open) contributions in GNATS are evaluated by a committer,
who may assign the (analysed) task to another committer or request moreinformation from the person that
originally made the bug report (feedback). There are situations in which the bug has been solved for some
recent branches, which will then be specified with the suspended status. In any case, the goal is that the
report should be closed, once the error has been fixed.

105

Free Software

FreeBSD distributes its software in two forms: on the one hand, the ports, a system that downloads the
source codes, compiles them and installs the application in the local computer, and on the other, the
packages, which are simply the source codes of the precompiled ports and, therefore, in binary. The most
important advantage of the ports over the packages is that the former allow the user to configure and
optimise the software for their computer. On the other hand, in the package system, as they are already
precompiled, it takes much lesstime to install the software.

Decision-making process in FreeBSD

The board of directors of FreeBSD, famously called the core team, isin charge of defining the direction
of the project and ensuring that the objectives are met, as well as mediating in cases in which there are
conflicts between committers. Until October 2000, it was a closed group, which could only be joined by an
expressinvitation from the core teamitself. As of October 2000, the members are elected periodically and
democratically by the committers. The most important rule for the election of the coreteamisasfollows:

1. The committersthat have made at least one commit over the last year have the right to vote.

2. The Board of Directorswill be renewed every two years.

3. The members of the board of directors may be "expelled” by avote of two thirds of the committers.
4. If the number of members of the board of directorsisless than seven, new elections will be held.

5. New elections are held when athird of the committers vote for this.

6. Any changesin the rules require a quorum of two thirds of the committers.

Companies working around FreeBSD

There are numerous companies that offer services and products based on FreeBSD, which FreeBSD lists
on the project's website. In this presentation of FreeBSD we will learn more about the most significant
aspects. BSDi and Walhut Creek CDROM.

FreeBSD was born partly due to the foundation of the company BSDi in 1991 by the people from CSRG
(Computer Systems Research Group) of the University of Berkeley, which would provide commercial
support for the new operating system. Apart from the commercia version of the FreeBSD operating
system, BSDi also devel oped other products, such as an Internet server and a gateway server.

Walnut Creek CDROM was created with the aim of commercialising FreeBSD as the final product, in
such away that it could be considered as a distribution in the style of those that exist for GNU/Linux, but
with FreeBSD. In November 1998, Walnut Creek broadened its horizons with the creation of the FreeBSD
Mall portal, which would commercialise all types of products based on FreeBSD (from the distribution
itself to t-shirts, magazines, books, etc.), and announce third-party products on its website and provide
professional FreeBSD support.

In March 2000, BSDi and Walnut Creek merged under the name BSDi to work together against the Linux
phenomenon, which wasclearly leaving BSD systemsin general and FreeBSD particularly, standinginthe
shadows. A year later, in May 2001, Wind River purchased the part that was dedicated to generating the
BSDi software, with the clear intention of boosting the development of FreeBSD for its use in embedded
systems and intelligent devices connected to the Network.

Current status of FreeBSD

According to the latest data from the poll that Netcraft performs periodically, the number of web servers
that run FreeBSD is approximately two million. A new user who wished to install FreeBSD could

106

Free Software

choose between version 6.2 (which could be considered as the "stable" version) or the more advanced or
"development” branch. Whilst the former provides more stability, especially in areas such as symmetric
multiprocessing, which has been completely redeveloped in the newer versions, the latter allows users
to enjoy the latest developments. It is also important to bear in mind that the devel oped versions tend to
include test code, which dlightly affects the system'’s speed.

One of the star features of FreeBSD iswhat isknown asthejails. Thejails minimise the damage that might
be caused by an attack on basic network services, such as Sendmail for the emails or BIND (Berkeley
Internet Name Domain) for name management. The services are placed in a jail so that they run in an
isolated environment. The jails can be managed using a series of utilitiesincluded in FreeBSD.

X-ray picture of FreeBSD

As we have mentioned in this last section, FreeBSD's functions are not restricted solely to developing
an operating system kernel, but also include the integration of a multitude of utilities that are distributed
together in the style of the GNU/Linux distributions. The fact that the devel opment process of FreeBSD is
very closely linked to the CV S versions control system means that by studying the system, we can obtain
agood idea of what FreeBSD consists of. The figures shown below correspond to the FreeBSD analysis
performed on 21% August 2003.

One of the most interesting aspects of FreeBSD is that the figures are very similar to the ones of in KDE
and GNOME: the size of the software easily exceeds five million lines of code, the number of filesis
approximately 250,000 and the total number of commits is approximately two million. However, it is
interesting to observe that the main difference between GNOME and KDE with respect to FreeBSD isthe
age of the project. FreeBSD recently made to its tenth year and it has been around for amost twice as
long as the desktop environments with which we are comparing it. That the size should be similar, despite
the fact that the devel opment period must have been longer, is partly due to the fact that FreeBSD did not
attract as many developers. Thereisalist of approximately four hundred devel opers with write-access to
the CV'S (committers), whereas the number of developerslisted in the FreeBSD manual is approximately
onethousand. Thisiswhy the activity registeredin FreeBSD's CV Sislower than the average (five hundred
commits per day) than that registered in both GNOME (nine hundred) and KDE (one thousand seven
hundred, including the automatic commits).

We have considered as the basic system of FreeBSD all that is placed in the src/src directory of the root
module of the CVS. The activity that has been registered in the basic system over the last ten yearsis that
of more than half a million commits. There are more than five million lines of code, although we should
remember that this does not only include the kernel, but many additional utilities, including games. If we
take only the kernel into account (which is in the subdirectory sys), the scale is of 1.5 million of source
code lines, predominantly in C.

It isinteresting to consider how the time estimate given by COCOM O corresponds exactly to the FreeBSD
project's real time, although the estimate of the average number of developers is much higher than the
effective number. We should also point out that in the last year, only seventy five committers have been
active, whereas COCOMO supposes that over the ten years of development, the number of developers
should be 235.

Finally, we must remember, as we have mentioned, that FreeBSD's main activity isbased around the CVS
repository and the bug control system GNATS activities.

Table 1.6. Table 6. Analysisof FreeBSD

Website http://www.FreeBSD.org [http://
www.FreeBSD.org/]
Beginning of the project 1993

107

http://www.FreeBSD.org/
http://www.FreeBSD.org/
http://www.FreeBSD.org/

Free Software

License Of BSD type

Analysed version 4.8

Source code lines. 7,750,000

Lines of source code (kernel only) 1,500,000

Number of files 250,000

Cost estimate $ 325,000,000

Runtime estimate 10.5 years (126 months)

Estimate of average number of developers 235

Approximate number of developers 400 committers (1,000 collaborators)
Number of committers activein the last year 75 (less than 20% of the total)
Number of committers active in the last two years | 165 (approximately 40% of the total)
Number of commitsin the CVS 2,000,000

Average number of commits (total) per day Approximately 500

Development assistance tools CVS, GNATS, mailing list and news site

C isthe predominant language in FreeBSD and it keeps a greater distance from C++ than the other case
that we have studied in this chapter. It is interesting to note that the number of lines of code in the
assembly language contained in FreeBSD, matches, in terms of the scale, those of Linux, although those
corresponding to the kernel are only twenty five thousand, in total. To summarise, we could say that in
FreeBSD, the more classical languages within free software, C, Shell and Perl predominate, and that the
other languages that we have looked at in other applications and projects, such as C++, Java, Python, have
not been integrated.

Table 1.7. Table 7. Programming languages used in FreeBSD

Programming language Codelines Per centage
C 7,080,000 92.0%
Shell 205,000 2.7%

C++ 131,500 1.7%
Assembler 116,000 1.5%

Perl 90,900 1.20%
Yacc 5,800 0.75%

Academic studies on FreeBDS

KDE

Despite certainly being a very interesting project (we can look at its history by analysing the versions
system, going back up to 10 years!), FreeBSD has not inspired that much interest in the scientific
community. There is, however, one research team that has shown interest in the FreeBSD project,
from various points of view ("Incremental and decentralised integration in FreeBSD") [149], which has
especially focused on how software integration problems are resolved in an incremental and decentralised
fashion.

Although it was not the first solution in terms of user-friendly desktop environments, the dissemination
of the Windows 95 operating system in mid-1995 caused a radical change in the way non-specialised

108

Free Software

usersinteracted with computers. From the one-dimensional systems of lines of instructions (theterminals),
the metaphor of the two-dimensional desktop environment was born, where the mouse began to be used
more than the keyboard. Windows 95, more than atechnological innovation, must be credited as being the
system that managed to cover al the personal and office environments, setting the standards that would
be followed in the future (technical and social rules that, we are still, in some cases, suffering from in the
early 21% Century).

Before desktop systems were created, each application managed its own appearance and manner of
interacting with the user, autonomously. On desktops, however, the applications must have common
properties and an appearance that is shared by the applications, which eases the pressure on the user,
who can reuse the way of interacting learnt whilst using one application, when using another. This also
eased the pressure on the application devel opers, as they did not have to deal with the problem of creating
the interactive elements starting from zero (which is always a complicated task), but could start from a
predefined framework and predefined rules.

History of KDE

Unix followers were quick to notice the outstanding success of Windows 95 and, given that Unix-like
environments did not have systems that were as intuitive whilst still being free, they decided to get to
work. The KDE K Desktop Environment project was born from this effort in 1996; it was designed by
Matthias Ettrich (creator of LyX, an editing program in the TeX typeset) and other hackers. The KDE
Project proposed the following aims:

Note

Originally, the name KDE stood for Kool Desktop Environment, but it was subsequently changed
simply to K Desktop Environment. The official explanation was that the letter K is just before
the L, for Linux, in the Roman al phabet.

» To provide Unix-like systems with a user-friendly environment that was, at the same time, open, stable,
trustworthy and powerful.

» Todevelop aset of libraries for writing standard applications on a graphical system for Unix X11.

» To create a series of applications that would allow the user to achieve their objectives effectively and
efficiently.

A controversy was created when the members of the newly-created KDE project decided to use an object-
oriented library called Qt, belonging to the Norwegian firm Trolltech, which was not covered under any
free software license. It turned out that, although the KDE applications were licensed under GPL, they
linked with thislibrary, which meant that it was impossible to redistribute them. Consequently, one of the
four freedoms established by Richard Stallman in the Free Software Manifesto was being violated [117].
As of version 2.0, Trolltech distributes Qt under a dual license that specifies that if the application that
uses the library operates under the GPL, then the license valid for Qt is the GPL. Thanks to this, one of
the most heated and hot-tempered debates in the world of free software had a happy ending.

Development of KDE

KDE isone of the few free software projects that generally follows a new version launch schedule (et us
remember, for example, that there will be a new Linux version "when it is ready", whereas, as we shall
discusslater, GNOME has aways suffered significant delayswhen it cameto releasing new versions). The
numbering of the new versions follows a perfectly defined policy. The KDE versions have three version
numbers: ahigher one and two lower ones. For example, in KDE 3.1.2, the higher number isthe 3, whereas
the 1 and 2 arethelower numbers. Versions with the same higher number have binary compatibility, which

109

Free Software

means that it is not necessary to recompile the applications. Until now, the changes in the higher number
occurred in parallel with the changes in the Qt library, which shows how the developers wanted to take
advantage of the new functionalitiesin the Qt library in the imminent version of KDE.

Where the lower numbers are concerned, the versions with one single lower number are versionsin which
they have included both the new functionalities and in which the bugs that have been discovered, have
been corrected. The versions with a second lower number do not include new functionalities in respect
of the versions with the first lower number, and only contain the bug corrections. The following example
will explain this better: KDE 3.1 is a third-generation version of KDE (higher number 3) to which new
functionalities have been added, whereas KDE 3.1.1 isthe previous version with the same functionalities,
but with al the bugs that have been found corrected.

KDE was built, shortly after the project began, in an association registered in Germany (KDE e.V.) and,
as such, the articles of association meant that there has to be a managing committee. The influence of this
managing committee on the development is nil, as its main task is the administration of the association,
especially where the donationsthat the project receives are concerned. In order to promote and disseminate
KDE, the KDE League, which includes all interested companies, was created, as we shall discuss below.

The KDE League

The KDE League is a group of companies and individuals from KDE that have the objective of enabling
the promoation, distribution and development of KDE. The companies and individuals that participate in
the KDE League do not have to be directly involved in the development of KDE (although the members
are encouraged to get involved), but simply represent an industrial and social framework that is friendly
to KDE. The aims of the KDE League are as follows:

e Promoting, providing and facilitating the formal and informa education of the functionalities,
capabilities and other qualities of KDE.

 To encourage corporations, governments, companies and individuals to use KDE.

 To encourage corporations, governments, companies and individual s to participate in the development
of KDE.

 To provide knowledge, information, management and positioning around KDE in terms of its use and
development.

» To foster communication and cooperation between KDE devel opers.

e To foster communication and cooperation between KDE developers and the general public through
publications, articles, websites, meetings, participation in conferences and exhibitions, press articles,
interviews, promotional materials and committees.

The companies that participate in the KDE League are mainly distribution designers (SUSE, now part of
Novell, Mandriva, TurboLinux, Lindows and Hancom, a Korean free software distribution), development
companies (Trolltech and Klardlvdalens Datakonsult AB), plusthe giant IBM and acompany created with
the aim of promoting KDE (KDE.com). Of all these, we must especially mention Trolltech, Novell and
Mandriva Software, whose involvement has been essential and whose business models are very closely
linked to the KDE project:

 Trolltech is a Norwegian company based in Oslo that develops Qt, the library that can be used as
a graphic interface for the user and an API for developers, although it can also work as an element
embedded in PDA (such as the Sharp Zaurus). The importance of the KDE project for Trolltech is
evidenced by two basic elementsin its commercial strategy: on the one hand, it recognises KDE as its
main promotion method, encouraging the devel opment of the desktop and accepting and implementing

110

Free Software

the proposed improvements or modifications; on the other hand, some of the most important KDE
developers work professionally for Trolltech; the most well-known example is that of Matthias Ettrich
himself, who founded the project, which doubtlessly benefits both the KDE project and the company
itself. Trolltech'sinvolvement in the KDE project isnot exclusively limited to the Qt library, asisproven
by the fact that one of the main developers of KOffice, KDE's office software package, currently has
a part-time contract with them.

» SUSE (now part of Novell) hasaways shown its specia predilection for the KDE desktop system, partly
due to the fact that most of its developers are of German or Central European origin, asis the company
itself. SUSE, aware of the fact that the better and easier the desktop environment that its distribution
offers, the greater its implementation and, therefore, the sales and support requests, has always had a
very active policy in terms of the budget allocated to professionalising key positions within the KDE
project. As an example, the current administrator of the version control system and another two of
the main developers are al on SUSE's payroll. Likewise, within SUSE's workforce there are a dozen
developers that can spend some of their working time on developing KDE.

e The Mandriva distribution is another one of the biggest backers of KDE and a number of the main
developerswork for it. Itsfinancial situation, which hasincluded bankruptcy from 2003, has meant that
it has lost influence over the last few years.

Current status of KDE

After the publication of KDE 3 in May 2002, the general opinion is that the free desktops are on a
par with their proprietary competitors. Some of its greatest achievements include the incorporation of a
components system (KParts) that makes it possible to embed some applications in others (a piece of a
K Spread spreadsheet in the KWord word processor) and the development of DCOP, a simple system for
processes to communicate with each other, with authentication. DCOP was the project's commitment that
acted in detriment to the CORBA technol ogies, awidely-debated subject within the world of free desktops,
especialy for GNOME, where it was decided that CORBA would be used. History seems to have put
each technology in its place, as can be seen from the DBUS proposal (an improved type of DCOP) from
FreeDesktop.org, a project interested in promoting the interoperability and the use of joined technologies
in free desktops, which is, coincidentally, led by one of the most well-known GNOME hackers.

The following table summarises the most important characteristics of the KDE project. The licenses that
the project accepts depend on whether they are for an application or alibrary. Thelibrary licenses provide
greater "flexibility" for third parties; in other words, they make it possible for third parties to create
proprietary applicationsthat are linked to the libraries.

The latest KDE version is, as at early 2007, version 3.5.6 and the fourth generation, KDE 4, which will
be based on Qt4, is expected to arrive in mid-2007. The generation change involves a lot of effort on
adapting the version, which is a tedious and time-consuming task. However, this does not mean that the
"old" applicationswill nolonger work. Generally, in order to having them still working, the older versions
of the libraries on which they were based are aso included, although this means that various versions of
the libraries have to be loaded simultaneously in the memory, with the ensuing waste of system resources.
The KDE developers view this effect as an inherent part of the development of the project and, therefore,
as alesser evil.

X-ray picture of KDE

Where the scale of KDE is concerned, the figures that we will now discuss correspond to the status of
CVS in August 2003, which means that they should be taken with the usual reservations that we have
already discussed, plus one more: some of the modules that have been used in this study are still under
development and do not fulfil the criteria of being afinished product. This shouldn't really have any effect
for our purposes, as we are more interested in the scale of the results than the exact numbers.

111

Free Software

The source code included in KDE's CVS is in the total sum of six million lines of code in different
programming languages, aswe shall show below. Thetimerequired to create K DE would be approximately
nine and a half years, which is more than the project's seven years, and the estimated average number
of developers working full-time would be two hundred. If we take into account the fact that KDE had
approximately eight hundred people with write-access to CV S in 2003 (of which half have been inactive
over the last two years) and the fact that the number of KDE developers with full-time contracts has not
been more than twenty at any given time, we can seethat KDE'slevel of productivity ismuch, much higher
than the estimate provided by COCOMO.

Example 1.39. Note

A company that wanted to develop a product of this scale starting from zero would have to invest more
than 250 million dollars; for comparative purposes, this sum would be equivalent to an investment of a
car manufacturer in the creation of a new production plant in Eastern Europe or what a well-known oil
company is planning to spend in order to open two hundred petrol stationsin Spain.

It isalsointeresting to seethat alarge part of the effort, almost half of that expended on the devel opment of
the KDE project, would correspond to thetrandl ation of the user interface and the documentation. Although
very few (approx. one thousand) of the programming lines are concerned with thistask, the number of files
dedicated to this purpose is seventy five thousand for translations (a sum that increases to one hundred
thousand if weinclude the documentation in the different formats), which comprisesamost afourth (third)
of the 310,000 files that there arein CV'S. The combined activity of CVSis of one thousand two hundred
commits per day, which means that the average time between commits is approximately one minute.

Where the tools, the information |ocations and the development assistance events are concerned, we will
see that the range of possibilities offered by KDE is much wider than that used in Linux. Apart from
the version control system and the mailing lists, KDE has a series of websites providing information and
technical and non-technical documentation on the project. Thereisalso anewssiteamong these siteswhere
new solutions are presented and proposals are debated. The news site, however, cannot be considered as
areplacement for the mailing lists, which, as occurs with Linux, is where the real debates take place and
the decisions are made and the future strategies devised; the news site is really more of a meeting point
for the users. Finally, KDE has been organising regular meetings for three years, in which the developers
and the collaborators meet for approximately aweek to present the latest innovations, devel op, debate and
get to know each other and have a good time (not necessarily in that order).

Table1.8. Table 8. KDE Analysis

Website http://www.kde.org [http://www.kde.org/]
Beginning of the project 1996

License (for applications) GPL, QPL, MIT, Artistic

License (for libraries) LGPL, BSD, X11

Analysed version 3.13

Source code lines. 6,100,000

Number of files (code, documentation, etc.) 310,000 files

Cost estimate $ 255,000,000

Runtime estimate 9.41 years (112.98 months)

Estimate of average number of developers 200.64

Approximate number of developers Approximately 900 committers

Number of committers active in the last year Around 450 (approximately 50% of the total)
Number of committers active in the last two years | Around 600 (approximately 65% of the total)

112

http://www.kde.org/
http://www.kde.org/

Free Software

Approximate number of trandlators (active) Approximately 300 translators for more than 50
languages (including Esperanto).

Number of commits (by developers) inthe CVS | Approximately 2,000,000 (estimated figure not
including automatic commits)

Number of commits (by translators) in the CVS Approximately 1,000,000 (estimated figure not
including automatic commits)

Average number of commits (total) per day 1,700

Tools, documentation and development assistance| CVS, mailing lists, website, news site, annua
events meetings

Where the programming languages used in KDE are concerned, C++ predominates. Thisis mainly dueto
the fact that this is the native language of Qt, although a great effort is expended on providing bindings
to alow developments in other programming languages. Certainly, the number of lines of code in the
minority languages corresponds almost integrally to those bindings, although this does not mean that they
are not used at all, as there are numerous projects external to KDE that use them.

Table 1.9. Table 9. Programming languages used in KDE

Programming language Codelines Per centage
C++ 5,011,288 82.05%

C 575,237 9.42%
Objective C 144,415 2.36%

Shell 103,132 1.69%

Java 87,974 1.44%

Perl 85,869 1.41%

GNOME

The main objective of the GNOME project isto create a desktop system for the end user that is complete,
free and easy to use. Likewise, the idea is for GNOME to be a very powerful platform for developers.
The initidls GNOME stand for GNU Network Object Model Environment. From its name, we see that
GNOME is part of the GNU project. Currently, all the code contained in GNOME must be under a GNU
GPL or aGNU LGPL license. We can also see that the networks and the object-orientated modelling are
extremely important.

History of GNOME

Whilst the freedom of KDE was till being argued about, in the summer of 1997, as fate would have it,
Miguel de Icaza and Nat Friedman met at Redmond during some workshops organised by Microsoft. It
is probable that this meeting caused aradical turnaround in both, resulting in the creation of GNOME by
Miguel de Icazawhen he returned to Mexico (along with Federico Mena Quintero) and his admiration for
distributed object technologies. De Icaza and Mena decided to create an environment that would be an
alternative to KDE, as they understood that a reimplementation of a proprietary library would have been
atask destined to failure. And thus GNOME was born.

Since those ancient timesin 1997, GNOME has gradually grown and continues to grow, with its repeated
publications. Version 0.99 waslaunched in November 1998, but thefirst really popular version, distributed
practically with any GNU/Linux distribution, would be GNOME 1.0, published in March 1999. It should
be noted that the experience of this first stable version of GNOME was not very satisfactory, as many

113

Free Software

considered it to befull of critical bugs. For thisreason, GNOME October (GNOME 1.0.55) istreated asthe
first version of the GNOM E desktop environment that wastruly stable. Aswe can observe, with GNOME
October, the devel opers did not use numerated publication version so asto avoid entering a"versionsrace”
against KDE. The first GUADEC, the GNOME users and devel opers European conference, was held in
Parisin 2000 and narrowly missed coinciding with the publication of the new version of GNOME, called
GNOME April. It wasthe last version to be named after amonth, asiit turned out that this system created
more confusion than anything else (for example, GNOME April was launched after GNOME October,
although one could be forgiven for assuming the opposite). In October of that year, after numerous debates
over the monthsin different mailing lists, the GNOME Foundation, which we shall discuss in subsequent
sections, was created.

GNOME 1.2 was a step forward in terms of the architecture used by GNOME, an architecture that
continued to be used in GNOME 1.4. This era was characterised by the second GUADEC, which took
place in Copenhagen. What had begun as a small meeting of a few hackers, became a great event that
captured the attention of the whole software industry.

In the meantime, the argument about the freedom of KDE wasresolved with Trolltech's change of position,
when it ended up licensing Qt under adual license, which wasfor free software for applications that work
with free software. Today, thereis no doubt that both GNOME and KDE are free desktop environments,
which means that we can say that the development of GNOME has encouraged the creation of not just
one free desktop environment, but two.

The GNOME Foundation

The most difficult problem to take on board when you hear about GNOME for the first time is the
organisation of the more than one thousand contributors to the project. It is paradoxical that a project with
a structure that tends toward the anarchic, should be this successful and achieve complex objectives that
only afew multinationalsin the IT sector would be able to achieve.

Although GNOME was created with the clear aim of providing a user-friendly and powerful environment,
to which new programs would gradually be added, it soon became apparent that it would be necessary to
create abody that would have certain responsibilities that would allow them to promote and boost the use,
development and dissemination of GNOME: consequently, the GNOM E Foundation was created in 2000;
its headquarters are situated in Boston, US.

The GNOME Foundation isanon-profit organisation and not an industrial consortium; it hasthefollowing
functions:

 Coordinating the publications.
 Deciding which projects are part of GNOME.

* Itistheofficial spokesperson (for the pressand for both commercia and non-commercial organi sations)
of the GNOME project.

» Promoting conferences related to GNOME (such as the GUADEC).
* Representing GNOME in other conferences.

 Creating technical standards.

» Promoting the use and development of GNOME.

In addition, the GNOME Foundation receives financia funds for promoting and boosting the functions
mentioned above, as this was impossible to do in atransparent manner before the foundation was created.

114

Free Software

Currently, the GNOME Foundation has one full-time employee that is in charge of solving all the
bureaucratic and organisational tasks that have to be done in a non-profit organisation that holds regular
meetings and conferences.

In general terms, the GNOME Foundation is divided into two large committees: a managing committee
and an advising committee.

The managing committee (the Board of Directors) is formed, at the most, by fourteen members elected
democratically by the members of the GNOME Foundation. A "meritocratic* model is followed, which
means that, in order to be a member of the GNOME Foundation, one has to have cooperated in one way
or another with the GNOME project. The contribution does not necessarily have to involve source code;
there are also tasks that require translation, organisation, dissemination, etc., which one could perform and
then apply for membership of the GNOME Foundation, in order to have the right to vote. Therefore, it
is the members of the Foundation that can put themselves forward for the board of directors and it is the
members that, democratically, choose their representatives on the board from the persons that have put
themselves forward. Currently, voting is by email. The duration of the term as member of the board of
directorsis one year, after which elections are held again.

There are some basic regulations for guaranteeing the transparency of the board of directors. The most
remarkable oneis the limitation on the number of members affiliated to the same company, which cannot
exceed four employees. It is important to emphasise that the members of the board of directors are
always so in their personal capacity, and never in representation of a company. Nevertheless, after along
discussion, it was agreed that this clause would be included to avoid any mistrust.

The other committee within the GNOME Foundation is the advising committee, which has no authority to
make decisions but that serves as avehicle for communicating with the managing committee. It isformed
by commercia companies working in the software industry, as well as non-commercial organisations.
Currently, its members include Red Hat, Novell, Hewlett-Packard, Mandrake, SUN Microsystems, Red
Flag Linux, Wipro, Debian and the Free Software Foundation. All companies with more than ten
employees are required to pay afeein order to be part of the board of advisors.

The industry working around GNOME

GNOME has managed to enter the industry substantially, in such a way that various companies have
participated very actively in its development. Of all of these, the most important cases are those of Ximian
Inc., Eazel, the RHAD Labsby Red Hat and, morerecently, SUN Microsystems. Wewill now describe, for
each case, the motivations of the companies as well as their most important contributions to the GNOME
desktop environment:

e XimianlInc. (originally called Helix Inc.) isthename of the company that wasfoundedin 1999 by Miguel
de Icaza, the cofounder of GNOME, and Nat Friedman, one of GNOME's hackers. The main objective
was to bring together the most important GNOME developers under the same umbrella to maximise
development, which iswhy it isnot surprising that its current and past employees have included around
twenty of the most active GNOME developers. The application that Ximian put the most effort into
from the very start was Evolution, a complete personal information management system in the style of
Microsoft Outlook, which included an email client, agenda and a contacts address book. The products
that Ximian sold were the Ximian Desktop (a version of GNOME with more corporate purposes), Red
Carpet (mainly, although not limited to, a GNOME software distribution system) and finally MONO (a
reimplementation of the .NET development platform), although the latter project is not, as yet, related
in any way to GNOME. Ximian also developed an application that permits Evolution to interact with
an Exchange 2000 server. This application, whilst being quite small, was very controversial because it
was published with a non-free license (subsequently, in 2004, this component was also licensed as free
software). In August 2003, Novell, as part of its strategy for entering the GNU/Linux desktop, bought
Ximian.

115

Free Software

» Eazel was founded in 1999 by a group of people who used to work for Apple, with the aim of making
the GNU/Linux environment as easy as the Macintosh environment. The application on which they
concentrated their efforts was called Nautilus and it was supposed to be the file manager that would
definitively retire the mythical Midnight Commander, developed by Miguel de Icaza. The lack of a
business model and the dotcoms crisis, which caused risk investors to remove all the capital that was
required for the company to carry on working, resulted in Eazel declaring bankruptcy on 15" May 2001
and closing its doors. It did have time to release Nautilus version 1.0 before this however, athough
the numbering was rather artificial, given that the stability that one would expect in a 1.0 version was
nowhereto be seen. Two yearsafter Eazel's bankruptcy, wewere ableto see how Nautilus had devel oped
and become acompl ete and manageabl e file manager integrated in GNOME; this meansthat the story of
Eazel and Nautilus can be considered asa paradigmati ¢ case of aprogram that survivesthe disappearance
of the company that created it; something that is almost only possible in the world of free software.

* Red Hat created the Red Hat Advanced Development Labs, RHAD, with the aim of ensuring that the
GNOME desktop would gain user-friendliness and power. In order to achieve this, Red Hat used half
adozen of the most important hackers from GNOME and gave them the freedom to develop whatever
they decided was appropriate. From the RHAD Labs we have ORBiIt, the implementation of CORBA
used by the GNOME project, known as "the fastest in the west". Another important aspect is the work
that was carried out on the new version of GTK+ and on GNOME's configuration system, GConf.

* SUN Microsystems became involved in the development of GNOME at alater stage, as GNOME was
a relatively mature product by September 2000. SUN's intention was to use GNOME as the desktop
system for the Solaris operating system. It therefore created ateam to work with GNOME, whose most
important merits include the usability and accessibility of GNOME. In June 2003, SUN announced that
it would distribute GNOME 2.2 with version 9 of Solaris.

GNOME's current status

GNOME, as at early 2007, is at version 2.18. Most of the key technologies on which it is based have
matured, as is evident from the version number. For example, the CORBA broker used now is ORBiIt2,
whilst the graphical environment and API, GTK+, underwent changes devised from the experience
accumulated during the previous versions of GNOME. One important novelty is the inclusion of an
accessihility library, proposed by SUN, which alows people with accessibility problems to use the
GNOME environment. A special mention should also go to Bonobo, the GNOME components system.
Bonobo eft its mark on an era within GNOME, whilst the personal information management program
Evolution was being developed. However, time has proven that the expectations raised by Bonobo were
too high and that the reuse of the effort expended on it by employing its components has not been as
extensive aswas initially expected.

Example 1.40. Note

The ATK library isalibrary of abstract classes that makes applications accessible. This meansthat people
with some form of disability (the blind, the colour-blind, people with eye problems, those who cannot use
amouse, a keyboard, etc.) may still use GNOME. SUN's interest on ensuring accessibility is due to the
fact that if it wishesto offer its services to the government of the United States, it has to meet a series of
accessibility standards. They have taken this work so seriously that there is even a blind programmer in
the GNOM E development team working at SUN. In September 2002, GNOME's accessibility architecture
was given the Helen Keller Achievement Award.

X-ray picture of GNOME

The data and figures shown in table 10 bring us to the end of our presentation of GNOME. The figures
correspond to the status of GNOME's CVS as at 14 August 2003. On that date, there were more than
nine million lines of code hosted in the CV S repository owned by the GNOME project. Even though the

116

Free Software

most natural thing would be to compare GNOME to KDE, we must warn readers that the differencesin
terms of how these projects are organised make this unadvisable if we wish to make the comparison in
equal conditions. Thisis due, for example, to the fact that GNOME's CV S includes GIMP (a program for
creating and handling graphics), which, on its own, represents more than 660,000 lines of code, or the
GTK+ library, on which GNOME's devel opment focuses, and which, on its own, has 330,000 lines. If we
add to this the fact that GNOME's CV S repository is more inclined to open new modules for programs
(it has atotal of seven hundred) than KDE's (which has less than one hundred), we can understand why
GNOME has more linesthan KDE, despite being ayear and ahalf younger. The GNOME repository hosts
more than 225,000 files, which have been added and modified almost two million times (see the number
of commits some rows below, in the table).

Example 1.41. Note

A company that wanted to create software of the size of GNOME's software, would have to contract
an average of approximately two hundred and fifty developers for more than eleven years, in order to
obtain a product with asimilar extension, according to the COCOMO model used throughout this chapter.
The associated cost would be approximately 400 million dollars, a figure similar to that which a well-
established mobile telephone company invested in 2003 to reinforce its network capacity, or similar to the
figure that a car manufacturing firm would pay in order to open a production plant in Barcelona.

GNOM E's human resourcesinclude almost one thousand devel operswith write-accessto the CV Srevision
control system, of which almost twenty work for GNOME professionally (full-time or part-time). Of these,
only 25% have been active in the last year and 40% have been active over the last two years. The average
number of commits per day, registered since the project began is amost one thousand. The development
assistance tool s used by the GNOME project are basically the same as those used by KDE, and so we will
not go into them in this section.

Table 1.10. Table 10. Analysisof GNOME

Website http://www.gnome.org [http://www.gnome.org/]

Beginning of the project September 1997

License GNU GPL and GNU LPGL

Analysed version 2.2

Source code lines. 9,200,000

Number of files (code, documentation, etc.) 228,000

Cost estimate $ 400,000,000

Runtime estimate 11.08 years (133.02 months)

Estimate of average number of developers Approximately 250

Number of subprojects More than 700 modulesin the CVS.

Approximate number of developers Almost 1,000 with write-access to the CVS.

Number of committers active in the last year Around 500 (approximately 55% of the total)

Number of committers active in the last two years | Approximately 700 (75% of the total)

Number of commitsinthe CVS 1,900,000

Average number of commits (total) per day Approximately 900

Development assistance tools CVS, mailing lists, website, news site, annual
meetings

Whereas in KDE, C++ is undoubtedly the most widely-used language, in GNOME, the language is C.
In GNOME, as occurs in KDE, thisis due to the fact that the main library is written in C, which means

117

http://www.gnome.org/
http://www.gnome.org/

Free Software

that the native language is C, whereas programmers wishing to use the other languages have to wait for
the corresponding bindings to appear. The most advanced language binding in GNOME isthe onethat is
included in gnome--, which is none other than C++, which iswhy it is not surprising that that is the second
language in the classification. Perl has always been widely accepted within the GNOME community and
an example of thisfact isthat in GNOME it is possible to program in many languages. Itsimplementation,
however, has not been as extensive as could have been expected and it is slightly more extensivethan Shell.
On another note, Python and Lisp were accepted fairly widely in GNOME, as is proven by the relative
importance of this classification, whereas Java has never really taken off probably due to an incomplete
link.

Table 1.11. Table 11. Programming languages used in GNOME

Programming language Codelines Per centage
C 7,918,586 86.10%
C++ 576,869 6.27%

Perl 199,448 2.17%
Shell 159,263 1.73%
Python 137,380 1.49%

Lisp 88,546 0.96%

Academic studies on GNOME

The most important studies on GNOME in the academic sphere are the following two: "Results from
software engineering research into open source development projects using public data' [158] and "The
evolution of GNOME" [123].

 [158] isone of thefirst large-scale studies of software in the sphere of free software. The authors of the
study took advantage of the fact that the details of the development are usually publicly accessible in
order to measure the efforts and compare them against the cost estimate models, and traditional time
and effort measurements. One of the classical models with which they compared them was the one used
in this chapter, model COCOMO.

* [123] briefly goes over the objectives of GNOME and its short history, aswell asthe GNOME project's
use of technology.

Apache

The HTTP Apache server is one of the star applications of the world of free software, as it is the web
server that is most widely used, according to the Netcraft real-time survey (http://news.netcraft.com/
archives/2003/08/01/august_2003 web_server_survey.html) [167]. For example, in May 1999, 57% of
web servers worked with Apache, whereas in May 2003, the percentage had increased to 68%. Apache
is available for al types of Unix (BSD, GNU/Linux, Solaris...), Microsoft Windows and other minority
platforms.

History of Apache

In March 1989, Tim Berners Lee, an English scientist that worked in the CERN (Switzerland) proposed a
new method for managing the huge amount of information from the CERN projects. The method would be
anetwork of hyperlinked documents (hypertext, as Ted Nelson had called it already in 1965); the WWW
was born. However, it was not until November 1990 that the first WWW software was unveiled: apackage
called the World Wide Web included aweb browser with agraphic interfaceandaWyY SIWY G ("what you

118

http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html

Free Software

see is what you get") editor. Two years later, the list of WWW servers had approximately thirty entries,
including NCSA HTTPd.

Thereal history of Apache began when Rob Mc Cool left the NCSA in March 1995. Apache 0.2 would be
born on 18" March 1995, based on the NCSA HTTPd 1.3 server, built by Rob McCool himself while he
was at NCSA. During those first months, Apache was a collection of patches applied to the NCSA server,
until Robert Thau launches Shambhala 0.1, an amost complete reimplementation that already included
the API for the modules that subsequently turned out to be so successful.

Example 1.42. Note

The name of the Apache project is based on its philosophy of development and organisation. As was the
case with the Apache tribe, the devel opers of Apache decided that their organisational method should be
based on the personal merits of the developers in comparison with the rest of the Apache community.
However, there is alegend that has spread that says that the name Apache really came from the fact that
intheinitial stages, it was simply a patched NCSA server, or a patchy server.

The first stable version of Apache did not appear until January 1996, when Apache 1.0 was released,
which included the loading of modules in test-mode runtime, as well as other interesting functions. The
first months of that year were especialy fruitful for the project, as version 1.1, which had authentication
modules that would be checked against the databases (such as MySQL) was published only two moths
later. From that time to today, the most important events for the project have been the introduction of
total compliance with the HTTP 1.1 standard (included in April 1997 in Apache 1.2), the inclusion of the
Windows NT platform (which began in July 1997 with the test versions of Apache 1.3), the unification of
the configuration files in one single file (which did not happen until October 1998, in Apache 1.3.3) and
the launch, still in the test stage, of the next generation of Apache, Apache 2.

Inthe meantime, in June 1998, IBM decided that, instead of developingitsown HTTP, it would use Apache
asthe engine of its product WebSphere. Thiswasinterpreted as a huge endorsement for the Apache project
from the Big Blue and for free software in general, although it would be necessary to modify the original
Apachelicense dlightly in order to make this work.

Development of Apache

The HTTP Apache server is the main project among the many that the Apache Software Foundation
manages. The modular design of Apache has made it possible for there to be a series of satellite projects,
based around Apache, some of which have even been bigger than Apache itself. For example, the HTTP
Apache server contains the kernel of the system with the basic functionalities, whereas the additional
functionalities are provided by different modules. The most well-known modules are mod_per! (a Perl
script language interpreter embedded in the web server) and Jakarta (a powerful applications server). In
the following paragraphs, we will only describe the development process followed for the HTTP server,
without taking into account the other modules, which may have similar processes or not.

The development of the HTTP Apache server is based on the work of a small group of developers called
the Apache Group. The Apache Group consists of the devel opers that have worked together on the project
for along period of time, generally more than six months. The devel oper, having been invited by amember
of the Apache Group to join, is voted in by all the other members. In the early stages, the Apache Group
consisted of eight developers; this number then increased to twelve and there are currently twenty five
members.

The Apache Group is responsible for the development of the web server and, therefore, for specific
decisionsregarding the development at any given moment. It isimportant to distinguish the Apache Group
from the developers in the core group, which is active at all times. The voluntary nature of the work
performed by most of the developers makesit unlikely that al the people that comprise the Apache Group

119

Free Software

will be active at all times, which means that the core is defined as the people who may take care of the
tasksin Apachein acertain period of time. In general, the decisionsthat have to be made by the devel opers
belonging to the core group are limited to voting for the inclusion or not of code, although in redlity thisis
reserved only for large-scale changes and questions of design. On another note, they usually have write-
access to the CV Srepository, which means that they act as guardians for the incoming code, ensuring that
it is correct and of good quality.

X-ray picture of Apache

The figures shown below correspond to the HTTP Apache server version that was available for download
from the CV S server of the Apache project as at 18" April 2003. None of the numerous modules that the
Apache project has, have been taken into account here. As we will see, the Apache project is relatively
small as compared with the other cases studied in this chapter. Although this has already been mentioned,
it isimportant to emphasise the modularity of Apache, which has the following specific advantages: the
kernel is small and manageable. The CV S repository of the Apache project, which contains the kernel of
the web server and many additional modules, hosts more than four million lines of source code, a figure
that is slightly lower than those of projects such as KDE and GNOME.

Version 1.3 of Apache had a little more than 85,000 lines of source code; according to the COCOMO
model, thiswould have required the work of an average of twenty developers working full-time for ayear
and a half. The total cost of the project would, at the time, be approximately 4 million dollars. In order
to prepare the Apache web server, up to sixty different committers would have been necessary, whereas
the number of developers providing input, according to the calculations, would have been approximately
four hundred.

Table1.12. Table 12. Analysis of Apache

Website http://www.apache.org [http://www.apache.org/]
Beginning of the project 1995

License Apache Free Software License
Analysed version 224

Source code lines. 225,065

Number of files 2,807

Cost estimate $7,971,958

Runtime estimate 2.52 years (30.27 months)

Estimate of average number of developers 234

Approximate number of developers 60 commiters (400 devel opers)
Development assistance tools CVS, mailing lists, bug report system

Apache 1.3 is written almost completely in C language and there are scarcely any other programming
languages, especially if we take into account the fact that most of the lines written in the second language,
Shell, correspond to configuration files and compilation assistance.

Table 1.13. Table 13. Programming languages used in Apache

Programming language Codelines Per centage
C 208,866 92.8%
Shell 12,796 5.69%
Perl 1,649 0.73%

120

http://www.apache.org/
http://www.apache.org/

Free Software

Programming language Codelines Percentage
Awk 874 0.39%
Mozilla

The Mozilla project works on a set of integrated applications for Internet, that are free and multiplatform,
and the most notable products are the Mozilla Firefox web browser and the Mozilla Thunderbird email
and news client. This set is also designed as a platform for developing other applications, which means
that there are many browsers that use Gecko, Mozillas HTML engine (such as Galeon).

The project is managed by the M ozilla Foundation, anon-profit organisation that creates free software and
is "dedicated to preserving choice and promoting innovation on the Internet”. For this reason, Mozilla's
products are based on three basic principles: they must be free software, respect the standards and be
portable to other platforms.

History of Mozilla

The history of Mozillaislong and convoluted but also very interesting, asit allows usto follow the history
of the WWW itself. The reason for thisis that if we trace all the persons and institutions that have been
involved in the development of Mozilla, then we arrive at the starting point of the Internet, with the launch
of the first complete Internet browser.

As was the case with Apache's predecessor, it was the NCSA where the first complete Internet browser,
Mosaic, was "born" in 1993. Many of the members of the development team, with Marc Andreessen
and Jim Clark at the helm, created a small company in order to write, starting from zero (as there were
problems with the copyright on the code of Mosaic and the technical design of the program had its
limitations, see Speeding the Net: the inside story of Netscape and how it challenged Microsoft [189]),
what would subsequently become the Netscape Communicator browser, which was, unarguably, the leader
of the market of Internet browsers until the arrival of Microsoft Internet Explorer. Apart from the purely
technological innovation that the Netscape browser represented, Netscape Inc. was also innovative in the
way it managed to corner the market. Completely contrary to what was held as common sense at the time,
its star application, the WWW browser, was available for free (and could even be distributed with certain
limitations). This approach, which was completely unheard of in the corporate world at the time, caused
a certain amount of surprise, but it turned out to be right for Netscape Inc.'s strategy, and it was only the
giant Microsoft that was able to outdo it with more aggressive (and probably detrimental to free market
competition) tactics.

Around 1997, Netscape's market share had dropped sharply due to the spread of Microsoft Explorer;
consequently, Netscape Inc. was studying new ways of recovering its previous dominance. A technica
report published by the engineer Frank Hecker (" Setting up shop: the business of open source software”,
1998) [142] proposed that the best sol ution to the problem wasto release the source code of the browser and
benefit from the effects of the free software community, as described by Eric Raymond in " The Cathedral
and the Bazaar". In January 1998, Netscape Inc. officialy announced that it would publicly release the
source code of its browser, marking an extremely important milestone within the short history of free
software: a company was going to publish the whole of the source code of an application that had been
acommercia product up until then, under a free software license. The date of the launch was scheduled
for the 31 March 1998.

In the two months between January and March, the people at Netscape were frenetically active, trying to
get everything ready. The list of tasks was enormous and complicated ("Freeing the source: the story of
Mozilla', 1999) [134]. On the technical level, it was necessary to contact the companies that made the
modules to ask them for their consent to the change of license; if the answer was negative, the module had
to be eliminated. In addition, all the partswritten in Java had to be reimplemented, asit was considered that

121

Free Software

Javawas not free. They then decided to call the free project Mozilla, just asthe devel opers of Netscape had
called their main component Mozilla, and the Mozilla.org domain was purchased to build a community
of developers and assistants based around this website. At the end of the process, more than one million
and a half lines of source code were released.

Example 1.43. Note

The name Mozillais a play on words, with alittle dose of humour from of the Netscape Inc. development
team. The Mozilla name came from adapting the name Godzilla, the monster that caused mayhem in
Japanese horror films from the fifties, to make it sound like Mosaic Killer, as the new browser, with more
advanced technology, was supposed to render M osaic obsolete.

On anacther note, there was the legal question. The free licenses existing at that time did not convince the
Netscape executives, who could not see how this could be "compatible" with the commercia nature of a
business. Netscape wanted a more flexible license, that would make it possible to reach agreements with
third parties so as to include their code regardiess of the license or whether other commercial developers
were to contribute to it, so that they could defend their financia interests howsoever they chose. And
although they had not initially planned to create anew license, they eventually reached the conclusion that
thiswasthe only way they could achieve what they wanted. Thisishow the Netscape Public License (NPL)
was created: alicense that was based on the basic principles of free software licenses, but that also gave
certain additional rights to Netscape Inc, which also made it a non-free license, from the perspective of
the Free Software Foundation. When the draft of the NPL was published for public discussion, the clause
providing additional rightsto Netscape was heavily criticised. Netscape Inc. reacted quickly in responseto
these criticisms and created an additional license, the Mozilla Public License (MPL), which was identical
to the NPL, except in that Netscape had no additional rights.

Thefinal decisionwasto release the Netscape code under the NPL license, which provided additional rights
to Netscape, and that any new code that was included would be issued under the MPL (or a compatible
license). Thecorrectionsto the original code (licensed with the NPL) would al so be covered by thislicense.

Example 1.44. Note

Currently, Mozilla accepts contributions under three licenses: the MPL, the GPL and the LGPL. Changing
the license was not at all easy, asthey had to find al the people that had contributed code at any point so
that they would give their consent to the changeover from the NPL/MPL to the MPL/GPL/LGPL. In order
to relicense the whole code, awebsite, which contained alist of three hundred "lost" hackers, was created
("Have you seen these hackers?") [38]. Asat May 2007, they are still looking for two of these devel opers.

Developing the original code of Netscape Communicator was, without a doubt, more complicated than
initially expected. The initial conditions were already bad to start with, because what was released was,
on occasions, incomplete (al the third party modules for which no consent had been given for the release
had been removed) and it hardly worked. Asif that were not enough, apart from the technical problem of
making Mozillawork on alarge number of operating systems and platforms, there were the flaws taken
from Netscape Inc., with rel ease cycles that were too long and inefficient for the world of Internet and that
did not distinguish between its own interests and the community formed around Mozilla. All of this came
to ahead exactly ayear later when one of the most active programmers from before and after the release,
Jamie Zawinsky, decided to throw in the towel in a bitter letter ("Resignation and post-mortem", 1999)
[237] in which he made clear his despair and desolation.

on 15" July 2003, Netscape Inc. (now the property of America On Line) announced that it was no longer
going to develop the Netscape browser and, therefore, was no longer going to actively take care of the
Mozilla project. As a kind of "redundancy settlement”" Netscape approved the creation of the Mozilla
Foundation, which it supported with a contribution of two million dollars. Likewise, all of the code that
was under the NPL (Netscape's public license) was donated to the Foundation and redistributed with the
licenses previoudly published by the Mozilla project: MPL, LGPL and GPL.

122

Free Software

On 10" March 2005, the Mozilla Foundation announced that it would not publish any more official
versions of the Mozilla Application Suite, which would be replaced by Mozilla SeaMonkey, that included
aweb browser, an email client, an address book, an HTML editor and an IRC client. On another note, the
Mozilla project hosts various independent applications, the most notable of which include Mozilla Firefox
(web browser), which is undoubtedly the most well-known, Mozilla Thunderbird (email and news client),
Mozilla Sunbird (calendar), MozillaNvu (HTML editor), Camino (web browser designed for Mac OS X)
and Bugzilla (web-based bug-tracker toal).

As time has progressed, despite the many doubts and the long periods in which it seemed that it was
destined to fail, the project now seems to be going well. Thanks to the versatility and portability of
its applications, despite requiring many runtime resources in many cases, they are used (generally, but
especialy Firefox) as the OpenOffice.org pair in the end user's desktop.

X-ray picture of Mozilla

The figures that we will discuss in this section correspond to a study of Firefox, the most well-known of
the project's applications. According to the estimates of the COCOMO model, a company that wished to
create software of this scale would have to invest approximately 111 million dollarsto obtain it. Thetime
it would take would be about seven years and the average number of programmers working full-time that
the company would have to use would be approximately one hundred and twenty.

Table 1.14. Table 14. Current status of Mozilla Firefox

Website www.mozilla-europe.org/es/products/firefox/
[http://www.mozilla-europe.org/es/products/
firefox/]

Beginning of the project 2002

License MPL/LGPL/GPL

Version 20

Source code lines. 2,768,223

Cost estimate $111,161,078

Runtime estimate 6.87 years (82.39 months)

Estimate of average number of developers 120

Approximate number of developers 50 committers

Development assistance tools CVS, mailing lists, IRC, Bugzilla.

C++ and C are the languages that are used the most, in that order of priority. Perl isused and thisismainly
due to the fact that the development assistance tools created by the Mozilla project, such as BugZilla
or Tinderbox, are designed in this language. What is surprising is the large amount of code lines in an
assembly language in an end user application. An inspection of the code in the repository shows that, in
effect, there are quite alot of files encoded in assembly language.

Table 1.15. Table 15. Programming languages used in M ozilla Fir efox

Programming language Codelines Percentage
C++ 1,777,764 64.22%

C 896,551 32.39%
Assembler 34,831 1.26%

Perl 26,768 0.97%

123

http://www.mozilla-europe.org/es/products/firefox/
http://www.mozilla-europe.org/es/products/firefox/
http://www.mozilla-europe.org/es/products/firefox/

Free Software

Programming language Codelines Percentage
Shell 16,278 0.59%
C# 6,232 0.23%
Java 5,352 0.19%
Python 3,077 0.11%
Pascal 459 0.02%

OpenOffice.org

OpenOffice.org is one of the star applications in the current free software scene. It is a multiplatform
office application suite that includes the key applicationsin an office desktop environment, such asaword
processor (Writer), aspreadsheet (Calc), apresentation program (Impress), agraphicseditor (Draw), atool
for creating and editing mathematical formulae (Math) and, finally, an HTML language editor (included
in Writer). The interface provided by OpenOffice.org is homogeneous and intuitive, with an appearance
and functionalities similar to those of other office applications, especially the onethat is most widely used
today, Microsoft Office.

Written in C++, OpenOffice.org includes Java's API and hasits own components for embedded systems,
which makes it possible to include, for example, tables from a spreadsheet in the word processor in a
very simple and intuitive way. One of its advantages is that it can handle a large amount of file formats,
including those of Microsoft Office. Its native file formats, unlike those of Microsoft's office suite, are
based on XML, which shows that they are clearly committed to versatility, the ease of transformation and
transparency. Currently, OpenOffice.org has been translated into more than twenty five languages and it
runs on Solaris (its native system), GNU/Linux and Windows. Versions for FreeBSD, IRIX and Mac OS
X are expected in the not-too-distant future.

OpenOffice.org took its definitive name (OpenOffice, as everybody knows it, plus the .org tag) after a
court case, in which it was accused of trademark violation by another company.

History of OpenOffice.org

In mid-1980s, the company StarDivision was founded in the Federal Republic of Germany, with the
principal aim of creating an office application suite: StarOffice. In summer 1999, SUN Microsystems
decided to purchase the company StarDivision and make a significant commitment to StarOffice, with the
clear intention of wresting away part of the market share conquered by Microsoft at that time. In June 2000,
the company launched version 5.2 of StarOffice, which could be downloaded gratis from the Internet.

However, StarOffice's success was limited, as the market was aready strongly dominated by Microsoft's
office package. SUN decided to changeits strategy and, as occurred with Netscape and the Mozillaproject,
decided to take advantage of free software to gain importance and implement its systems. Consequently,
the future versions of StarOffice (a proprietary product of SUN) would be created using OpenOffice.org
(afree product) as a source, respecting the application programming interfaces (API) and the file formats
and serving as the standard implementation.

Organisation of OpenOffice.org

OpenOffice.org aimsto have a decision-making structure in which all the members of the community feel
like participants. Consequently, a system was devised so that the decision-making process would have the
greatest consensus possible. The OpenOffice.org project is divided into a series of subprojects that are
taken on by project members, the assistants and one single leader. Of course, the members of a project
may work on more than one project, as can the leader. However, no one can lead more than one project
at atime. The projects are divided into three categories:

124

Free Software

 Accepted projects. These can be technical or non-technical. The leaders of each accepted project have
avote when it comes to making global decisions.

 Native-lang projects. These are all the internationalisation and localisation projects of OpenOffice.org.
Currently, as we have mentioned, there are more than twenty five teamsthat are working on translating
the OpenOffice.org applications to different languages and conventions. As a set, native-lang projects
have one single vote on global decisions.

* Incubating projects. These arethe projects promoted by the community (generally, they are experimental
or small). They may become accepted projects after aperiod of six months. In effect, the OpenOffice.org
community can guarantee that the accepted projects are based on area interest, as the mortality rate
of new projects in the world of free software is very high. In total, the incubating projects have one
vote on the decisions made.

X-ray picture of OpenOffice.org

The OpenOffice.org office suite comprises approximately four million lines of source code distributed
throughout forty five thousand files.

The COCOMO model estimatesthat thework required to build a"clone" of OpenOffice.org would haveto
be provided by one hundred and eighty programmers working full-time for almost eight years. According
to the COCOMO estimates, the development cost would be approximately 215 million dollars.

The results discussed in this section were obtained from a study of the source code of stable version 2.1
of OpenOffice.org.

Table 1.16. Table 16. Current status of OpenOffice.org

Website http://www.openoffice.org [http://
www.openoffice.org/]

Beginning of the project June 2000 (first free versions)

License LGPL and SISSL

Version 21

Source code lines. 5,197,090

Cost estimate $ 215,372,314

Runtime estimate 8.83 years (105.93 months)

Estimate of average number of developers 180

Approximate number of developers 200 commiters

Development assistance tools CVS, mailing lists

Where the programming languages used in OpenOffice.org are concerned, the most prevalent is C++. It
is interesting to note how Sun's purchase of the company resulted in the integration of alot of Java code
in the office suite, which even exceeded the amount of languagein C.

Table 1.17. Table 17. Programming languages used in OpenOffice.org

Programming language Codelines Per centage
C++ 4,615,623 88.81%
Java 385,075 7.41%

125

http://www.openoffice.org/
http://www.openoffice.org/
http://www.openoffice.org/

Free Software

Programming language Codelines Percentage
C 105,691 2.03%
Perl 54,063 1.04%
Shell 12,732 0.24%
Yacc 6,828 0.13%
C# 6,594 0.13%

Red Hat Linux

Red Hat Linux was one of the first commercial distributions of GNU/Linux. Today, it is probably one of
the most well-known, and certainly the one that can be considered the "canonical” of all the commercial
distributions. The work of the distributors is basically related to integration tasks and not so much to
software development. Of course, Red Hat and other distributions may have developers working for
them, but their work is secondary for the aims of a distribution. In generd, it is assumed that the task of
the distributions is to simply take the source packages (generally the files published by the developers
themselves) and bundle them so that they fulfil certain criteria (both technical and organisational). The
product of this process is a distribution: a series of properly organised bundles that make it possible for
the user to install, uninstall and update them.

Distributions are also responsible for the quality of the final product, which is a very important aspect if
we consider that many of the applications that are included have been developed by volunteers in their
free time. Consequently, the security and stability aspects are of the essence for a distribution.

History of Red Hat

Red Hat Software Inc. was founded by Bob Young and Marc Ewing in 1994. The main objective was
to compile and commercialise a GNU/Linux distribution that was called (and is till called) Red Hat
Linux [236]. Basicaly, it was a bundled version of what existed on the Internet at that time, including
documentation and support. Version 1.0 of thisdistribution wasbornin the summer of 1995. A few months
later, in autumn, version 2.0, which included RPM technology (RPM package manager was published.
The RPM package manager has become adefacto standards for packagesin GNU/Linux systems. In 1998,
version 5.2 of Red Hat was issued to the great public. For acomplete history of the names of the different
versions of Red Hat, please read "The truth behind Red Hat names" [201].

Example 1.45. Note

Asof version 1.1 of Linux Standard Base (a specification designed to achieve binary compatibility between
GNU/Linux distributions, which is taken care of by the Free Standards Group), RPM has been chosen
as the standard package manager. The Debian project continues with its own package format, as do
many distributions that depend on the Debian package management system, and they are adjusted to the
standardised format using a conversion tool called alien.

Before the RPM management system existed, aimost all of the GNU/Linux distributions offered the
possibility of instaling the software through a menu-based procedure, but making modifications to an
existing installation, especially adding new software packages after the installation, was not easy. RPM
made that step beyond the state-of-the-art possible by providing users with the ability to manage their own
packages ("Maximum RPM. Taking the Red Hat package manager to the limit", 1998) [83], which made
it possible to delete, install or update any software package existing in the distribution in a much easier
way. The RPM package system continues to be the most widely used package management system in the
different GNU/Linux distributions. The statistics of Linux Distributions, "Facts and figures', 2003 [92],
awebsite that contains qualitative and quantitative information on a large number of distributions, show

126

Free Software

that in May 2003, alarge majority (sixty five) of the one hundred and eighteen distributions used for the
calculations, used the RPM (approximately 55% of the total). In comparison, the Debian package format
(known as deb) was only used in sixteen distributions (approximately 14% of the total).

However, Red Hat Inc. was not only known for its software distribution based on Linux. In August 1999,
Red Hat went public and its shares achieved the eighth highest first day gain in the whole of Wall Street
history. Four years later, the value of Red Hat's shares had shrunk to a hundredth of the maximum value
they reached before the dotcom crisis. Nevertheless, its successful beginnings on the stock market put Red
Hat on the front pages of newspapers and magazines that did not specialise directly in IT matters. In any
case, it seems that Red Hat has managed to overcome the problems that other companies in the business
world have had with free software and the numbers it published in the last quarter of 2002 were in the
black for the first timein its history.

Another of the most important historical eventsinvolving Red Hat wasthe acquisition of Cygnus Solutions
in November 1999, acompany founded a decade before that had already proved how it was possibleto earn
money with an integral strategy based on free software ("Future of Cygnus Solutions. An entrepreneur's
account") [216]. Cygnus chose the complicated market of compilers to make its mark. Its commercial
strategy was based on the development and adaptation of GNU software development tools (basically
GCC and GDB) tailored to the client's needs.

In September 2003, Red Hat decided to concentrate its development work on the corporate version of its
distribution and delegated the common version to Fedora Core, an open source project independent of
Red Hat.

In June 2006, Red Hat purchased the company JBoss, Inc., becoming the company in charge of developing
the most important open source applications server, J2EE.

Current status of Red Hat.

Currently, Red Hat Inc.'s most important products are Fedora Core and Red Hat Network, an Internet
software update service. These types of services are designed more with the end user in mind and not so
much for the corporate environment, but they are good for Red Hat to advertise itself and to reinforce its
brand strategy.

Red Hat's "real" commercia strategy is based on the products it designs for the corporate world. These
types of products are much less well-known, but they constitute amajor part of Red Hat's turnover, much
greater than that of its most popular star productsin the literal sense.

Red Hat has adistribution that is corporate-orientated, integrated around an applications server called Red
Hat Enterprise Linux AS. Clients that purchase this software also receive support. The equivalent of Red
Hat Network for commercial users is Red Hat Enterprise Network, which includes system management
and the option of obtaining updates. On anther note, Red Hat also offers IT consultancy services and a
certification program similar to that offered by Microsoft in the world of Windows.

X-ray of Red Hat

Red Hat has recently passed the milestone of fifty million lines of code, which makesit one of the biggest
software distributions that have ever existed, exceeding, as we shall see later in this chapter, the size of
proprietary operating systems. Red Hat Version 8.1 consisted of 792 packages, so we can assume that the
latest version would have had more than eight hundred packages, if we consider that the number tends to
increase dlightly from version to version.

Asinour previous examples, the COCOMO model has been used to estimate the investment and effort that
would have been necessary in order to create a generation of software of the same scale. However, in Red

127

Free Software

Hat's case, we have taken into account the fact that it is a product prepared using a series of independent
applications. Consequently, an independent COCOMO estimate has been used for each one of Red Hat's
packages, and then we have added the estimated costs and personnel that would have been required. In
order to analyse the optimum design time for Red Hat, we have chosen the largest package, as, in theory,
all the packages are independent and could therefore be designed at the same time. For this reason, the
optimum design time for Red Hat is similar to that of the other projects presented in earlier sections of
this chapter.

According to COCOMO, approximately seven and a half years and ateam of developers, consisting of an
average of one thousand eight hundred devel opers, would have been necessary in order to design the Red
Hat Linux 8.1 distribution, starting from zero. The cost of the final development would be approximately
1,800 million dollars.

Example 1.46. Note

One thousand eight hundred million dollarsis the sum that the Spanish Ministry of Defence has allocated
to renewing its helicopter fleet in the latest budget. Out of that sum, half will be invested in buying twenty
four helicopters, so we could say that the price of Red Hat would be equivalent to that of forty eight combat
helicopters. Likewise, 1,800 million dollarsis the total global earning from the film Titanic.

Table 1.18. Table 18. Status of Red Hat Linux.

Website http://www.redhat.com [http://www.redhat.com/]
Beginning of the project 1993

License

Version 9.0

Source code lines. More than 50,000,000

Number of packages 792

Cost estimate $ 1,800,000,000

Runtime estimate 7.35 years (88.25 months)

Estimate of average number of developers 1,800

Approximate number of developers Red Hat employees (generaly integration only)
Development assistance tools CVS, mailing lists

Due to the fact that there are many packages, the languages in Red Hat are more diverse than the ones
we have seen in the most important free software applications. In general terms, C is very important, with
more than sixty per cent of the code lines. In second place, with more than ten million lines of code, we
have C++, followed by along distance by Shell. It isinteresting to note that after Perl we have Lisp (mainly
due to its use in Emacs), assembly language (of which a quarter corresponds to the language that comes
with Linux) and alanguage whose use is frankly declining, Fortran.

Table 1.19. Table 19. Programming languages used in Red Hat.

Programming language Codelines Percentage
C 30,993,778 62.13%
C++ 10,216,270 20.48%
Shell 3,251,493 6.52%

Perl 1,106,082 2.22%

128

http://www.redhat.com/
http://www.redhat.com/

Free Software

Programming language Codelines Percentage
Lisp 958,037 1.92%
Assembler 641,350 1.29%
Fortran 532,629 1.07%

Debian GNU/Linux

Debianisafree software operating system that currently usesthe Linux kernel for itsdistribution (although
it is expected that there will be Debian distributions based on other kernelsin the future, as is the case of
"the HURD"). It is currently (in 2007) available for various different architectures, including Intel x86,
ARM, Motorola, 680x0, PowerPC, Alphaand SPARC.

Debian is not only the largest existing GNU/Linux distribution, but also one of the most stable and it
has received various awards for the fact that it is preferred by users. Although its user base is difficult to
estimate, as the Debian project does not sell CDs or any other media with its software and the software
that it does have can be redistributed by anyone that wishes to, we can suppose, with a reasonable degree
of certainty, that it is an important distribution within the GNU/Linux market.

There is a categorisation in Debian that depends on the license and distribution requirements of the
packages. The kernel of the Debian distribution (the section called main that covers a great variety of
packages) consists only of free software in accordance with the DFSG (Debian Free Software Guidelines)
[104]. It can be downloaded from the Internet and many redistributors sell it on CDs or in other media.

Debian distributions are created by almost one thousand volunteers (generally IT professionals and
experts). The work of these volunteers consists of taking the source programs, in most cases from
the origina authors, configuring them, compiling them and bundling them so that an average Debian
distribution user only has to select the package and the system will install it with no further problems.
What may first appear as simple can become complex as soon as other factors, such as the dependencies
between the different packages (package A needs package B in order to work) and the different versions
of al these packages, are taken into account.

The work performed by the members of the Debian project is the same as that performed in any
other distribution: the integration of the software so that it all works together properly. Apart from the
adaptation and packaging work, the Debian developers are in charge of maintaining an Internet-based
services infrastructure (website, online files, bug management system, assistance mailing lists, support
and development, etc.), various translation and internationalisation projects, the development of various
tools specific to Debian and, generally, in charge of anything that isrequired in order to make the Debian
distribution work.

Apart from its voluntary nature, the Debian project has afeature that is especialy unique: Debian's social
contract (http://www.debian.org/social_contract.html) [106]. This document does not only describe the
Debian project's main goals, but also the means that will be used to achieve them.

Debian is also known for having a very strict packages and versions policy, designed to achieve the best
quality in the product (the "Debian policy manual™) [105]. In this way, there are three different types of
Debian at any given time: a stable version, an unstable version and a test version. As the name itself
indicates, the stable version is the one recommended for systems and users that require complete stability.
The software has to be subjected to a freeze period, during which any bugs are corrected. The general
rule isthat the stable Debian version must not have any known critical bug. On the other hand, this stable
version does not usually have the latest versions of the software (the newest additions).

There are another two versions of Debian that exist alongside the stable one for those that wish to have the
most recent software. The unstable version includes packages that are being stabilised, whereas the test

129

http://www.debian.org/social_contract.html

Free Software

version, as the name indicates, is the one that has a greater tendency to fail and that contains the newest
of the new in terms of the latest software.

When the first study was performed, the stable version of Debian was Debian 3.0 (also known as Woody),
the unstable one was nicknamed Sid and the test version was Sarge. However, Woody also went through
an unstable stage and, before that, a test stage. This is important, because what we will consider in this
articlewill comprisethe different stable versions of Debian, ever since version 2.0 was published, in 1998.
For example, we have Debian 2.0 (alias Hamm), Debian 2.1 (Slink), Debian 2.2 (Potato) and, finally,
Debian 3.0 (Woody).

Note

Toy story open source. The nicknames of the Debian versions correspond to the main characters in the animated film
Toy story, atradition that started, half-jokingly and half-serioudly, when version 2.0 was published and Bruce
Perens, the leader of the project at the time and subsequent founder of the Open Source Initiative and the
phrase open source, was working for the company that was designing the film. For more details regarding
Debian's history and the Debian distribution in general, we recommend "A brief history of Debian" [122].

X-ray picture of Debian

Debian GNU/Linux isprobably thelargest compilation of free software that worksin acoordinated manner
and, doubtlessly, one of the biggest software productsever built. Version 4.0, released in April 2007 (called
Etch), consists of more than ten thousand source packages, with more than 288 million lines of code.

The number of lines of code in Debian 3.0 is 105 million. According to the COCOMO model, a sum
of approximately 3,600 million dollars would have to be paid in order to obtain software similar to that
bundled with this distribution. As with Red Hat, the effort required to build each package separately has
been cal culated and the resulting figures have then been added to each other. For the same reason, thetime
it would have taken to develop Debian is only seven years, as the packages could have all been built at
the same time as each other. However, an average of approximately four thousand devel opers would have
had to have been mobilised during those seven years.

Example 1.47. Note
Three thousand six hundred million dollars is the budget allocated by the 6" EC Framework Programme

for research and development on theinformation society. It isalso the sum that Telefénicaintendsto invest
in Germany in order to deploy UMTS services.

Table 1.20. Table 20. Status of Debian

Website http://www.debian.org [http://www.debian.org/]
Beginning of the project 16/08/1993

License Those that fulfil the DFSG

Version used Debian 4.0 (alias Etch)

Source code lines. 288,500,000

Number of packages 10,106

Cost estimate $ 10,140 million

Runtime estimate 8.84 years

Approximate number of maintainers Approximately 1,500

Development assistance tools Mailing lists, bug report system

130

http://www.debian.org/
http://www.debian.org/

Free Software

The most commonly used language in Debian 4.0 is C, with more than 51% of the lines of code. However,
aswe shall show alittlelater inthis section, the importance of Cisdeclining with time, as 80% of the code
in the first versions of Debian, was in C. The second most commonly used language, C++, shares a fair
part of the "blame" for the decline of C; however, C has especially been influenced by the rise of scripting
languages such as Perl, Python and PHP. On the other hand, languages such as Lisp or Java (which is
underrepresented in Debian duetoitspolicy of not accepting code that depends on Sun's proprietary virtual
machine) sometimes manage to get in.

Table 1.21. Table 21. Programming languages used in Debian GNU/Linux 4.0

Programming language Lines of code (in millions) Per centage
C 155 51%

C++ 55 19%

Shell 30 10%

Perl 8.1 2.9%

Lisp 7.7 2.7%
Python 7.2 2.5%

Java 6.9 2.4%

PHP 35 1.24%

Table 22 shows how the most important languages developed in Debian.

Table 1.22. Table 22. L anguages most used in Debian

L anguage|Debian Debian Debian Debian
2.0 2.1 2.2 3.0

C 19,400,00076.67% |27,800,00 | 74.89% |40,900,00069.12% | 66,500,000 63.08%
C++ 1,600,000 |6.16% 2,800,000 | 7.57% 5,980,000 |10.11% |13,000,000 12.39%
Shell 645,000 |2.55% 1,150,000 |3.10% 2,710,000 |4.59% 8,635,000 |8.19%
Lisp 1,425,000 |5.64% 1,890,000 |5.10% 3,200,000 |5.41% 4,090,000 |3.87%
Perl 425,000 |1.68% 774,000 |2.09% 1,395,000 |2.36% 3,199,000 | 3.03%
Fortran {494,000 |1.96% 735,000 |1.98% 1,182,000 |1.99% 1,939,000 |1.84%
Python 122,000 |0.48% 211,000 |0.57% 349,000 |0.59% 1,459,000 |1.38%
Tcl 311,000 |1.23% 458,000 |1.24% 557,000 |0.94% 1,081,000 |1.02%

There are languages that we could consider to be in the minority that reach fairly high positions in the
classification. Thisis due to the fact that, whilst they are only present in a small number of packages, the
packages in question are quite big. Such is the case of Ada, which whilst only being in three packages
(GNAT, an Ada compiler; libgtkada, a link to the GTK library and ASIS, a system for managing Ada
sources) covers 430,000 of the total 576,000 lines of source code that have been counted in Debian 3.0
for Ada. Another similar caseisLisp, which only appearsin GNU Emacs and XEmacs, but has more than
1,200,000 lines of the approximately four million in the whole distribution.

Comparison with other operating systems

There is the proverb that says that al comparisons are odious; this is especially true when comparing
free software with proprietary software. The detailed x-ray pictures taken of Red Hat Linux and Debian

131

Free Software

were possible because they are examples of free software. Having access to the code (and to the other
information that has been provided in thischapter) isessential for studying thedifferent versions number of
lines, packages, programming languages, etc. But the advantages of free software go beyond this, because,
in addition, they make it easier for third parties, whether they are research teams or ssimply people that
are interested, to analyse them.

In proprietary systemsin general, astudy such as this would be completely impossible. In fact, the figures
provided below were obtained from the companies behind proprietary software devel opment themsel ves,
which means that we are not in a position to guarantee their truthfulness. To top this off, in many cases
we do not know whether they are talking about physical source code lines, as we have done during this
chapter, or whether they also include the blank lines and comments. Furthermore, neither do we know for
certain what they include in their software, which means that we do not know whether certain versions of
Microsoft Windows include the Microsoft Office suite or not.

In any case, considering all that we have discussed on this matter in previous paragraphs, we believe that
it isinteresting to include this comparison, asit helps usto see the position in which the different Red Hat
and Debian distributions are in, within a wider context. What is unquestionable is that both Debian and
Red Hat, but especially the former, are the largest collections of software ever seen by humanity to date.

Thefigurescited below comefrom Mark Lucovsky [168] for Windows 2000, SUN Microsystems[171] for

StarOffice 5.2, Gary McGraw [169] for Windows XP and Bruce Schneier [200] for al the other systems.
Table 23 provides a comparison, from smallest to greatest.

Table 1.23. Table 23. Comparison with proprietary systems

System Date of publication Lines of code (approx.)
Microsoft Windows 3.1 April 1992 3,000,000
SUN Solaris 7 October 1998 7,500,000
SUN StarOffice 5.2 June 2000 7,600,000
Microsoft Windows 95 August 1995 15,000,000
Red Hat Linux 6.2 March 2000 18,000,000
Debian 2.0 July 1998 25,000,000
Microsoft Windows 2000 February 2000 29,000,000
Red Hat Linux 7.1 April 2001 32,000,000
Debian 2.1 March 1999 37,000,000
Windows NT 4.0 July 1996 40,000,000
Red Hat Linux 8.0 September 2002 50,000,000
Debian 2.2 August 2000 55,000,000
Debian 3.0 July 2002 105,000,000
Eclipse

The Eclipse platform consists of an open and extensible IDE (integrated development environment). An
IDE is a program consisting of a set of tools that are useful for a software developer. The basic el ements
of an IDE include a code editor, a compiler/interpreter and a debugger. Eclipse is an IDE in Java and
provides numerous software development tools. It also supports other programming languages, such as C/
C++, Caobol, Fortran, PHP or Python. Plug-ins can be added to the basic platform of Eclipse to increase
the functionality.

132

Free Software

The term Eclipse also refers to the free software community that develops the Eclipse platform. This
work is divided into projects with the aim of providing a robust, scalable and quality platform for the
development of software with the Eclipse IDE. Thework is coordinated by the Eclipse Foundation, which
is a non-profit organisation created for the promotion and development of the Eclipse platform and that
supports both the community and the Eclipse ecosystem.

History of Eclipse

A lot of Eclipse's programming was carried out by IBM before the Eclipse project was created as such.
Eclipse's predecessor was VisualAge and it was built using Smalltalk in a development environment
called Envy. After Java appeared in the nineties, IBM developed a virtual machine that worked with
both Smalltalk and Java. The rapid growth of Java and its advantages with the focus on an Internet
that was expanding heavily forced IBM to consider abandoning this dual virtual machine and to build a
new platform based on Java from scratch. The final product was Eclipse, which had aready cost IBM
approximately 40 million dollarsin 2001.

Towards the end of 2001, IBM, along with Borland, created the non-profit Eclipse foundation, thereby
opening up to the open source world. This consortium was gradually joined by important global software
development companies: Oracle, Rational Software, Red Hat, SUSE, HP, Serena, Ericsson and Novell,
among others. There are two significant absences: Microsoft and Sun Microsystems. Microsoft was
excluded dueto its monopoly of the market and Sun Microsystems had its own | DE, constituting Eclipse's
main competition: NetBeans. In fact, the Eclipse name was chosen because the aim was to create an IDE
ableto "eclipse Visual Studio" (Microsoft) and to "eclipse the sun" (Sun Microsystems).

The latest stable version of Eclipse is available for the Windows, Linux, Solaris, AlX, HP-UX and Mac
OS X operating systems. All versions of Eclipse need to have a Java Virtual Machine (JVM) installed in
the system, preferably JRE (Java Runtime Environment) or JDK (Java Developer Kit) by Sun, which, as
at early 2007, are not yet free (although Sun has announced that their VM will be).

Current state of Eclipse

All the work prepared for the Eclipse consortium is organised into different projects. These projectsarein
turn divided into subprojects and the subprojectsinto components. The high-level projects are managed by
committees of the Eclipse Foundation (PMC, project management committees). The following list shows
the high-level projects:

* Eclipse. Base platform for the rest of the components. This platform will be free, robust, complete
and of a good quality for the development of rich client platforms (RCP) and integrated tools (plug-
ins). The Eclipse platform's runtime kernel is called Equinox and it is an implementation of the OSGi
specification (Open Services Gateway Initiative), which describes a services oriented architecture
(SOA) for applications.

» Tools (ETP, Eclipse tools project). Various tools and common components for the Eclipse platform.

» Web (WTP, web tools project). Toolsfor the devel opment of web applications and JEE (Java Enterprise
Edition).

» Test and performance tools project (TPTP). Testing tools and performance level measurers so that the
devel opers can monitor their applications and make them more productive.

» Web reports (BIRT, businessintelligence and reporting tools). Web report generation system.
* Modelling (EMP, Eclipse modelling project). Model-based development tools.

» Data (DTP, data tools platform). Support for data-handling technologies.

133

Free Software

» Embedded devices (DSDP, device software development platform). Tools for the development of
applications that are to be run on devices with limited hardware, in other words, embedded devices.

» Service oriented architecture (SOA). Tools for developing service-oriented projects.
« Eclipse Technology. Research, dissemination and development of the Eclipse platform.

The principlesthat guide the development of the Eclipse community are as follows:

Quiality. The software developed at Eclipse must meet the software engineering quality standards.

* Development. The Eclipse platform, and all the tools based on it, must develop dynamically in
accordance with the users' requirements.

» Maeritocracy. The more someone contributes, the more responsibilities he or she has.

» Eclipse Ecosystem. There will be resources donated by the open source community to the Eclipse
consortium. These resources will be employed in ways that benefit the community.

Eclipse's development process follows certain predefined phases. Firstly, there is a phase called the pre-
proposal phase, in which an individual or company declares their interest in establishing a project. If the
proposal is accepted, it is decided whether it will be a high-level project or a subproject. The next step is
to validate the project in terms of applicability and quality. After a phase in which the project isincubated,
there will be afinal revision. If the project passes this revision, it will have proved its validity before the
Eclipse community and it will pass into the implementation phase.

X-ray of Eclipse

Eclipseisdistributed under an EPL License (Eclipse Public License). Thislicenseis considered free by the
FSF and the OSl. Under the EPL License, it is possible to use, modify, copy and distribute new versions
of the licensed product. EPL's predecessor is the CPL (Common Public License). The CPL was written
by IBM, whereas the EPL is the work of the Eclipse consortium.

Estimating the investment and effort put into Eclipse is not an easy task. This is due to the fact that
the source code that comprises the Eclipse ecosystem is distributed in numerous projects and software
repositories.

Below are the results of applying the COCOMO model to the Eclipse platform, which is used as the base
for the rest of the plug-ins.

Table 1.24. Table 24. Analysis of Eclipse

Website http://www.eclipse.org [http://www.eclipse.org/]
Beginning of the project 2001

License Eclipse Public License

Analysed version 322

Source code lines. 2,163,932

Number of files 15,426

Cost estimate $ 85,831,641

Runtime estimate 6.22 years (74.68 months)

Estimate of average number of developers 102.10

134

http://www.eclipse.org/
http://www.eclipse.org/

Free Software

Approximate number of developers 133 commiters

Development assistance tools CV'S, mailing lists, bug-tracking system (Bugzilla)

The following table shows the programming languages used in Eclipse 3.2.2:

Table 1.25. Table 25. Programming languages used in Eclipse

Programming language Codelines Per centage
Java 2,066,631 95.50%
C 85,829 3.97%
Perl 3,224 0.06%
C++ 5,442 0.25%
JSP 3,786 0.17%
Perl 1,325 0.06%
Lex 1,510 0.03%
Shell 849 0.04%
Python 46 0.00%
PHP 24 0.00%

Other free resources

"If you want to make an apple pie from scratch, you must first create the universe.”
Carl Sagan

Can the ideas behind free programs be extended to other resources? We could consider that other
information resources that can easily be copied electronically are similar to programs and that the
same freedoms, rules, development and business models could apply to them. However there are some
differences and the implications of these differences have meant that they have not developed with the
same force as programs. The main difference isthat all one hasto do is copy the programs to make them
work, whereas when other types of information are copied, they have to pass through amore or less costly
process before they can begin to be useful in any way, which can go from learning a document to the
production phase of hardware described in the appropriate language.

The most important free resources

We already discussed the documentation of programs and other technical documentsin section 3.2.5. Here
we will look at other types of creations, which can also be textual, but which are not related to software,
but rather to scientific, technical and artistic fields.

Scientific papers

The way in which science evolves is, to a large extent, due to the fact that the researchers that make it
progress for the benefit of humanity publish the results of their work in journals that reach awide public.
Thanks to this dissemination, researchers develop a track record that allows them to progress towards
positions of higher standing and responsibility, whilst they receive income from research contracts that
they obtain thanks to their developing prestige.

135

Free Software

Thisway of disseminating papers represents a business model that has proved very fruitful. For this model
to work, the quality of the work has to be guaranteed and the papers must be widely disseminated. The
obstacle that prevents the dissemination is the large amount of existing journals, of a significant cost,
which can only be purchased with generous budgets. The quality is guaranteed by the fact that the papers
are reviewed by specialists or peers.

In relation to this, numerous online journals have emerged, among which we would mention the veteran
First Monday ("First Monday: peer reviewed journal onthelnternet") [26] or the Public Library Of Science
project (PL OS http://www.publiclibraryofscience.org [55]). The"Directory of Open AccessJournas’ [22]
cites many more. Should persons other than the authors be all owed to publish modificationsto these types
of papers? There are objections that range from the possibility of substandard quality or equivocation of
opinions or results, to the danger of people that can easily plagiarise the papers and rise in the ranks with
no effort, whilst denying the true authors of their hard-earned merits. However, the fact that all writers
are under the obligation of citing the original author and of submitting the paper to a peer-review for
publication in a prestigious journal can offset these problems (see section 10.2.2).

An analogy has been established between free software and science, as the development model of the
former requires the greatest amount of dissemination, peer-reviews (presumably experts) and the reuse of
results ("Free software/free science”, 2001) [154].

Laws and standards.

There are documents of a regulatory nature that define how things must be done, so as to improve
coexistence between people or so that programs or machines can operate together. These documents need
to be widely disseminated, which meansthat any obstacleswill be counterproductive. For thisreason, it is
understandabl e that they receive special treatment, as exemplified in the Spanish Intellectual Property Act:

"Legal or regulatory provisions and drafts thereof, judgements of jurisdictional bodies
and acts, agreements, deliberations and rulings of public bodies, and official translations
of al such texts, shall not be the subject of intellectual property".

The technological equivalent of these laws would be the norms or standards. In programming, the
communications protocols, either between remote machines or between modules in the same machine,
are especially important. It is obvious that we should not limit their dissemination, especialy if we want
free programs that operate with others to flourish, but, despite this, traditionally, the bodies that regulate
these matters, such as 1SO and ITU, sell their regulations and standards, even in electronic formats, and
prohibit their redistribution. Although this can be justified to an extent, claiming the need to cover part
of the costs, the free dissemination of the standards has been much more productive; this is the case of
the W3C guidelines and, especially where Internet standards are concerned, the documents called RFCs
(request for comments) that have existed since the beginning, in electronic formats that can be read using
any form of text editor.

However, the success of the Internet protocols is not due solely to their availability. Other factorsinclude
the development model, which is very similar to free software due to its openness to the participation of
any interested person and the use of mailing lists and similar elements. This processis described in "The
Internet standards process - revision 3" [94] and "The Tao of IETF: A Novice's Guide to the Internet
Engineering Task Force" [136].

Should modifying the texts of laws and regulations be allowed? Obviously not if it leads to confusion.
For example, an RFC should only be modified in order to explain it or add clarifying comments, whereas
not even this is allowed without an explicit authorisation for the recommendations of the W3C (http://
www.w3.0rg/Consortium/L egal/2002/copyright-documents-20021231) [65]. The licenses themselves are
also legal documents that cannot be modified. Should it be possible to create new regulations derived
from other existing ones using the original documents? This would probably lead to the effortless spread

136

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Free Software

of similar and incompatible regulations that would create confusion and could help the companies that
dominate the market to promote their own incompatible variations, as it is in fact occurring, especially
in the sphere of the Internet. Nevertheless, where State legislation is concerned, very often the laws have
been copied literaly from those of other countries and adapted with small modifications to the local
particularities.

Isthere abusinessmodel for lawsand regul ations? There are numerous professional sthat work on thelaws,
in charge of designing, interpreting and enforcing them (legislators, lawyers, solicitors, judges, etc). There
are laboratories that provide compliance certificates for the regulations. The regulatory bodies subsist, or
should subsist, on the contributions of their memberswho wish to promote standards, for example, because
their business is based on products that interoperate.

In the same way that it is convenient to have a definition of free software or open software, it is also
necessary to have aworking definition of open standards. Bruce Perens (http://perens.org/OpenStandards)
[15] proposed the following definition based on the following principles:

1. Availability: if possible, open standards must be available for all to read and implement.
2. Maximise end user choice.

3. Open standards must be free for all to implement with no royalty or fee (certifications of compliance
may involve a fee, although Bruce Perens advises that there should be free self-certification tools
available).

4. No discrimination to favour one implementer over another.
5. Extension or subset permissions (non-certifiable).

6. Avoidance of predatory practices by dominant manufacturers. All proprietary extensions must have an
open standard implementation.

Encyclopaedias

In 1999, Richard Stallman proposed the idea of a free encyclopaedia ("The free universal encyclopaedia
and learning resource", 2001) [210] as a mechanism for avoiding the appropriation of knowledge and
providing universal accessto learning and the associated documents. It would consist of articles provided
by the community, with no centralised control, where different actors would undertake different tasks,
including, as a recommendation but not an obligation, that of revising or checking the articles. This
encyclopaediawould not only contain text but also multimedia and free educational software.

Various initiatives have emerged to make this a reality. For instance, Nupedia (http://www.nupedia.com
[http://Iwww.nupedia.com/]) [178] tried to build a quality encyclopaedia, but the attempt failed, perhaps
because it required a format that was relatively difficult to learn (TEI), although probably more because
of the requirement of having all the articles edited, revised by scientists and checked for style, etc.

The successor to Nupedia, which was much more successful, was Wikipedia (http://www.wikipedia.org
[http://Iwww.wikipedia.org/]) [69]. Wikipedia is a free multilingual encyclopaedia based on wiki
technology. Wikipedia is written cooperatively by volunteers and the vast mgjority of articles can be
modified by anyone with a web browser. Its success is based on its structure, which is more flexible in
terms of editing, which eliminates the obstacles that Nupedia had in place and which makes it closer to
what Stallman had in mind. The word wiki comes from the Hawaiian wiki wiki (‘quick’). Wiki technology
allows anyone to edit any document using the structured text system, which is extraordinarily simple as
we saw in section 8.6.2. In February 2007, the number of articles in English in Wikipedia was more than
1,500,000.

137

http://perens.org/OpenStandards
http://www.nupedia.com/
http://www.nupedia.com/
http://www.wikipedia.org/
http://www.wikipedia.org/

Free Software

Example 1.48. Note

Wikipediais a project by the non-profit organisation Wikimedia, which also has the following projects,
based on the same model as Wikipedia:

* Wiktionary (http://www.wiktionary.org [http://www.wiktionary.org/]) [66]. This is a cooperative
project that aims to create a free multilingual dictionary, with definitions, etymologies and
pronunciations, in the required languages.

» Wikibooks (http://www.wikibooks.org/) [67]. Thisisaproject that aimsto provide textbooks, manuals,
tutorials or other pedagogic texts to anyone requiring these elements, for free.

» Wikiquote (http://www.wikiquote.org [http://www.wikiquote.org/]) [70]. It is a compilation of famous
phrasesin all languages, which includes the sources when these are known.

» Wikisource. It is alibrary of original texts that are in the public domain or that have been published
with a GFDL (GNU free documentation license).

» Wikispecies (http://species.wikimedia.org/) [71]. It is an open repertory of animal species, vegetable
species, fungi, bacteria and al forms of known life.

» Wikinews (http://wikinews.org/) [68]. It is a source of free news content in which the users are the
editors.

» Commons (http://commons.wikimedia.org/) [19]. It is a free repository of images and multimedia
content.

» Wikiversity (http://wikiversity.org/) [72]. It isan open and free educational platform, based on teaching
projects at al educational levels.

* MetaWiki (http://meta.wikimedia.org/) [48]. It is the website that supports al the projects of the
Wikimedia Foundation.

We should aso mention the Concise Encyclopedia of Mathematics, which has a more limited concept of
what free means (it can only be consulted on Internet) and a development model in which it is necessary
to submit all contributions to an editorial committee before publication.

Courses

With the same aim as the encyclopaedias, it is possible to produce free teaching materials, such as notes,
dlides, exercises, books, syllabic or didactic software. Thereisatendency to view universities as businesses
that produce and sell knowledge, which contradicts their basic principles. The reasons why a university
may make these materials available to al are asfollows:

» Thefulfilment of its mission, as an agent that disseminates knowledge.

e Thelow cost of making existing materials available worldwide.

The fact that these materials cannot replace teaching in person.

The idea of these materials as publicity that may attract students and contribute to the university's
prestige.

» Thepossibility of creating acommunity of teachers that review and improve the materials.

The most prominent initiative in this area is that of the MIT (http://ocw.mit.edu [http://ocw.mit.edu/])
[174], which has the aim of making more than two thousand well-catal ogued resources accessible in a
coherent and uniform manner.

138

http://www.wiktionary.org/
http://www.wiktionary.org/
http://www.wikibooks.org/
http://www.wikiquote.org/
http://www.wikiquote.org/
http://species.wikimedia.org/
http://wikinews.org/
http://commons.wikimedia.org/
http://wikiversity.org/
http://meta.wikimedia.org/
http://ocw.mit.edu/
http://ocw.mit.edu/

Free Software

Collections and databases

The mere compilation of information following determined criteria, organising it and making it available
is, in itself, a product of valuable information, regardless of the information itself, which is therefore
the product of its authors and, consequently, subject to restrictions on the freedom to access, modify or
redistribute the content. Therefore, if we want free information, we can also want free collections.

For example, we may wish to classify important information in the Internet, organising and commenting the
links. Thisiswhat the ODP (Open Directory Project http://dmoz.org [109]) does, it isoperated by Netscape
and is maintained by voluntary editors organised according to a hierarchical structure. The full directory
can be freely copied in RDF format and published with certain modifications, as does Google and many
other search engines that take advantage of it. Netscape, which owns the directory, guarantees an "Open
Directory Project socia contract"[53] inspired on that of the Debian distribution (http://www.debian.org/
social_contract.ntml) [106], which facilitates externa contributions ensuring that the Open Directory
Project will aways be free, with public policies, self-regulated by the community and the users as the
first priority.

Other examples of collections that might interest us are the free software distributions, with the programs
modified so that they fit together perfectly and are precompiled so that they can be run easily.

Hardware

There are two main aspects involved in freedom as regards to hardware. The first one is the need for the
interfaces and instruction setsto befree, in such away that anyone can create adevice handler or acompiler
for an architecture. The second point isthat there should be sufficient information and power available for
reproducing a hardware design, modifying it and combining it with others. The designs can be considered
softwarein an appropriatelanguage (VHDL, Verilog, etc). However, making themwork isnot easy, asthey
have to be manufactured, which is expensive and slow. However, there are initiativesin this sense, among
which we could mention OpenCores (http://www.opencores.org [http://www.opencores.org/]) [52], for
integrated circuits.

Literature and art

Tofinish off our examination of freeresources, we cannot forget art and literature, whose ultimate objective
isnot asmuch utilitarian asit is aesthetical. What reasons might an artist have to give people the freedom
to copy, modify or redistribute their work? On the one hand, it can help to make them well-known and
favour the dissemination of their work, which alows them to obtain income from other activities, such as
concerts or commissions, and on the other, it can promote experimentation and creativity. In art, we have
the same circumstances as in technical subjects. Innovation isincremental and it is sometimes difficult to
distinguish between plagiarism and awork that is representative or follows an artistic movement or trend.

Obvioudly, creation and interpretation are not the same thing, and neither are music and literature.
Music, painting, photography and cinema are very similar to programs, in the sense that they can
be made to "work" immediately on a computer, whereas the same does not apply to sculpture, for
example. There are not many open source initiatives in art and literature and the ones that exist are
very diverse. We could mention the novels by the Wu Ming (http://www.wumingfoundation.com [http://
www.wumingfoundation.com/]) [29] collective.

Licenses for other free resources

The licenses for free software have been a source of inspiration for other intellectual resources, in such
away that many of them have been adopted directly, especially where documentation is concerned, and
on other occasions, they have been adapted slightly, as occurs with the pioneering Open Audio License

139

http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.opencores.org/
http://www.opencores.org/
http://www.wumingfoundation.com/
http://www.wumingfoundation.com/
http://www.wumingfoundation.com/

Free Software

(http://www.eff.org/I P/Open_licenses/eff _oal.html) [114]. Most of these licenses are copyleft licenses, if
they permit derived works.

GNU's free documentation license (see section 10.2.1) has been used and is often used for al kinds of
texts, although the Creative Commons licenses (see section 10.2.2) are gradually being accepted.

In fact, program licenses (GPL and LGPL) have even been used for hardware, although this subject is
complex and difficult to reconcile with the current law. In effect, the designs and diagrams can be used,
without physically being copied, to extract ideas that are used for new closed designs. For example, the
OpenlPCore Hardware General Public License ("OpenlPCore hardware general public license") [155]
establishes that this appropriation is not permitted, but the legal validity of the document is questionable
[209]. Theonly possibleway of protecting theseideasisusing someform of free patent, whichissomething
that has not yet developed and is out of the reach of those that do not intend or are unable to establish a
business built on the ideas.

GNU free documentation license

One of the most well-known copyleft licenses for technical documentation, whether it corresponds to
programs or any other matter, is that of the Free Software Foundation. After realising that a document
is not the same as a program, Richard Stallman promoted a license for the documents that went with the
programs and for other documents of atechnical or didactic nature.

In order to smooth the development of the derived versions, a transparent copy of the document must
be made available to whoever needs it, as explained in section 3.2.5, as well as the opaque copies, in an
analogy between the source codes and the objects of the programs.

One of the reasons for having alicense is to establish authorship and to ensure that the ideas or opinions
expressed by the author are not mischaracterised. This is why the derived works must have a title on
the cover different to that of the previous versions (unless express permission has been given) and must
expressly state the place where the original can be obtained. The names of the main authors of the original
documents must also be listed, aswell as the names of the people that have made any of the modifications,
and all notesonintellectual property must be preserved. Likewise, any acknowledgements and dedications
must be preserved and the history section, if there is one, must be respected when new modifications are
added. It is even possible, and this is the aspect of the license that has most been criticised, to designate
invariant sections and cover texts, which no one can modify or eliminate, although the license only permits
non-technical textsto be considered asinvariant sections, which the licenserefersto as secondary sections.

This license has created a lot of controversy in the free software world, to the point that the Debian
distribution project is currently (at the time of publication of this book) discussing whether to remove
from debian the contents under this license or designate all documents that have the license as non-
free and consider them as non-official. Even though there are no invariant sections, because the derived
works may be subject to the terms of the same license, it is important to remember that they could
be added subsequently. It is argued, for example, that there may be incorrect or obsolete invariant
sections, which, nevertheless, have to be preserved. In any case, the license isincompatible with Debian's
free software guidelines (http://www.debian.org/socia_contract.html#guidelines [http://www.debian.org/
social_contract.ntml]) [104], but the question hinges perhaps on whether the documentation must follow
these guidelines (for example, the texts of the licenses cannot be modified either).

Advice

see. Thefirst versions of this text were covered under the GFDL license, but the authors subsequently decided to use
a Creative Commons license as well (see section 10.2.2), which is more appropriate for the characteristics
of abook. So thistext isadual licensing work.

140

http://www.eff.org/IP/Open_licenses/eff_oal.html
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html

Free Software

Creative Commons licenses

Creative Commons (http://creativecommons.org [http://creativecommons.org/]) [21] is a non-profit
organisation that wasfoundedin 2001 by expertsinintellectual property and law in theinformation society,
with the aim of fostering the creation, conservation and accessibility of intellectual resources ceded to the
community in numerous ways. It is based on the idea that some people may not wish to make use of all
the intellectual property rights that the law grants them, as this could impede their wide distribution.

Thefirst Creative Commons licenses for creative works, of which there were various versions, originally
came about in late 2002. These licenses were designed to be:

* strong enough to withstand a court's scrutiny, in many countries,
« simple enough for non-lawyers to use;
« sophisticated enough to be identified by various web applications.

The different licenses allow the creator to select what types of freedoms are allowed, apart from copying,
in accordance with four points:

or @ Attribution. The material can be distributed, copied or

exhibited by third parties as long as the original author is credited.

@ or @ MNon-commercial. The original material and derivative

works can be distributed, copied or exhibited for non-commercial use

@ Mo derivative works . The material can be distributed, copied or exhibited
but may not be used to create new works derving from the onginal.

@ share alike. The material can be modified and distributed but under the
same license terms as the original material.

In version 1.x of the Creative Commons licenses, there were eleven types of license, which combined
the four basic characteristics mentioned above. 98% of the authors chose the "attribution" option;
consequently, as of version 2.x of the Creative Commons licenses, attribution is a requirement. This
reduces the eleven types of license to six, which are as follows:

141

http://creativecommons.org/
http://creativecommons.org/

Free Software

. Altribution
. @ Attribution — No derivative works
. @@ Attribution — Mo derivative works — Non-commaercial

. @ Attribution — Non-commercial
. ® @ Attribution — Mon-commercial — Share alike

. @ Attribution = Share alike

The following table shows a schematic of the licenses with the corresponding icons. Thisicon is usually
alink to asummary of the license, hosted at Creative Commons website[21].

Allows
modifications if
shared alike.

commercavse. (OO S0 D
Do neigor, QOO ©QOOQ 0

BY NG SA

Does not
maodifical

Allows
modifications.

It is possible to use the generic icon instead of the icon representing the license, but it must be linked to
the license chosen by the author. The HTML code of thelink to the license may be obtained from Creative
Commons [21]. Once the license has been chosen and the corresponding icon added, the work will have
been licensed and you will receive the:

» Commons deed. A summary of the license with the relevant icons for it. This summary will be shown
when clicking on the link obtained from Creative Commons [21].

142

Free Software

» Legal Code. Thisis the complete legal text on which the license is based. This text may be accessed
from the summary mentioned above.

« Digital code. Thisisthe RDF (resource description framework) description, which search engines and
other applications can use to identify the license and the terms of use.

In February 2007, version 3.0 of the Creative Commons licenses was published. This is an update that
corrects many of the faults that people identified. The first large modification isthat the generic licenseis
no longer based on the US model and is now based on the terminology of the Berne Convention. Secondly,
moral rights and rights management societies are mentioned specifically, as different rulings had been
made in each jurisdiction. Thirdly and finally, the texts of both the commons deed and the legal code that
went with each license were modified to makeit clear that the clause on the recognition of authorship does
not alow the licensee to imply or give the impression that they have a relationship or are associated in
any way with the licensor.

In addition, Creative Commons provides other types of licenses for specific applications. Such as:

143

Free Software

Public Domain. License used to release the work from copyright compl

=) Developing Mations. The most permissive license for countries conside
be in development by the World Bank.

Sampling. License used for sharing snippets (fragments of code which
perform a useful function).

Founders' Copyright. License used to release the work from copyright
a pericd of fourteen or twenty-eight years.

CC-GNU GPL. A license which adds the Creative Commons' metadats
summary (Commons Deed) to the Free Software Foundation's GNU
General Public License.

. A license which adds the Creative Commons' metadata and summary

(Commons Deed) to the Free Software Foundation's GNU General Put
License.

Wiki. License for Wiki. In practical terms this is identical to the attributic
and share alike license.

% Music Sharing. License used to share music.

144

Free Software

Not all Creative Commons licenses are considered free by sectors linked to free software, as the four
essential freedoms must apply beforelicensesare defined as such (see section 1.1.1) Benjamin"Mako" Hill
(Debian and Ubuntu devel oper) created the Freedomdefined.org (http://freedomdefined.org/) [28] website,
with the aim of providing abetter definition of what isfree culture and what is not. On thisbasis, of the six
basic Creative Commons licenses, only two are strictly free: attribution alone (BY) and attribution-share-
alike (BY-SA), the latter of which also has copyleft.

Bibliography
bibliography

[1] Aap Project: http://www.a-a-p.org [http://www.a-a-p.org/]

[2] Ada Core Technologies: http://www.gnat.com/

[3] Alcbve: http://www.alcove.com [http://www.al cove.com/]

[4] Alcbve-Labs: http://www.al cove-labs.org [http://www.al cove-labs.org/]
[5] Alioth: http://alioth.debian.org [http://alioth.debian.org/]

[6] Anjuta: http://www.anjuta.org [http://www.anjuta.org/]

[7] The Apache Ant Project: http://ant.apache.org [http://ant.apache.org/]

[8] Arch Revision Control System: http://www.gnu.org/software/gnu-arch/
[9] artofcode LLC: http://artof code.com/

[10] Autoconf: http://www.gnu.org/software/autoconf

[11] Barrapunto: http://barrapunto.com

[12] Bazaar GPL Distributed Version Control Software: http://bazaar-vcs.org/
[13] Berlios. The Open Source Mediator: http://berlios.de [http://berlios.def]
[14] Bitkeeper Source Management: http://www.bitkeeper.com

[15] Bruce Perens: http://perens.com/OpenStandards/Definition.html

[16] Caldera: http://www.sco.com [http://www.sco.com/]

[17] Cisco Enterprise Print System: http://ceps.sourceforge.net/

[18] Code::blacks: http://www.codeblocks.org [http://www.codebl ocks.org/]
[19] Commons: http://commons.wikimedia.org/

[20] Concurrent Version System: http://ximbiot.com/cvs/

[21] Creative Commons. http://creativecommons.org [http://creativecommons.org/]

[22] Directory of Open Access Journals: http://www.dogj.org [http://www.dog.org/]

145

http://freedomdefined.org/
http://www.a-a-p.org/
http://www.a-a-p.org/
http://www.gnat.com/
http://www.alcove.com/
http://www.alcove.com/
http://www.alcove-labs.org/
http://www.alcove-labs.org/
http://alioth.debian.org/
http://alioth.debian.org/
http://www.anjuta.org/
http://www.anjuta.org/
http://ant.apache.org/
http://ant.apache.org/
http://www.gnu.org/software/gnu-arch/
http://artofcode.com/
http://www.gnu.org/software/autoconf
http://bazaar-vcs.org/
http://berlios.de/
http://berlios.de/
http://www.bitkeeper.com
http://perens.com/OpenStandards/Definition.html
http://www.sco.com/
http://www.sco.com/
http://ceps.sourceforge.net/
http://www.codeblocks.org/
http://www.codeblocks.org/
http://commons.wikimedia.org/
http://ximbiot.com/cvs/
http://creativecommons.org/
http://creativecommons.org/
http://www.doaj.org/
http://www.doaj.org/

Free Software

[23] Eclipse - An Open Development Platform: http://www.eclipse.org [http://www.eclipse.org/]
[24] eCos: http://sources.redhat.com/ecos/

[25] eCos license 2.0: http://www.gnu.org/licenses/ecos-license.html

First Monday. Peer Rewiewed Journal on the Internet. [26] : http://firstmonday.org [http://firstmonday.org/]
[27] Free Software Foundation: http://www.fsf.org [http://www.fsf.org/]

[28] Freedom Defined (Free Cultural Works): http://freedomdefined.org/

[29] Fundacion Wu Ming: http://www.wumingfoundation.com [http://www.wumingfoundation.com/]
[30] GForge: http://gforge.org [http://gforge.org/]

[31] Gettext: http://www.gnu.org/software/gettext

[32] GNU Automake: http://www.gnu.org/software/automake

[33] GNU Emacs: http://www.gnu.org/software/emacs/

[34] GNU Libc: http://www.gnu.org/software/libc

[35] GNU Libtool: http://www.gnu.org/software/libtool

[36] GNU Make: http://www.gnu.org/software/make/make.html

[37] GNU Troff: http://www.gnu.org/software/groff/groff.html

[38] "Have you seen these hackers?": http://www.mozilla.org/MPL/missing.html

[39] "History of TeX": http://www.math.utah.edu/software/plot79/tex/history.html

[40] IBM Public License Version 1.0: http://opensource.org/licesenses/ibmpl.php

[41] Jam Product Information: http://www.perforce.com/jam/jam.html

[42] KDevelop: http://www.kdevel op.org [http://www.kdevelop.org/]

[43] Launchpad: https.//launchpad.net

[44] The Linux Documentation Project: http://www.tldp.org [http://www.tldp.org/]

[45] LinuxCare: http://www.levanta.com [http://www.|levanta.com/]

[46] Mailman, the GNU Mailing List Manager: http://www.list.org [http://www.list.org/]

[47] The Malone Bug Tracker: https://launchpad.net/products/malone

[48] Metawiki: http://meta.wikimedia.org/

[49] MozillaPublic License 1.1: http://www.mozilla.org/MPL/MPL-1.1.html

[50] Mozilla Tinderbox: http://www.mozilla.org/tinderbox.html

[51] NetBeans: http://www.netbeans.org [http://www.netbeans.org/]

[52] Open Cores: http://www.opencores.org [http://www.opencores.org/]

146

http://www.eclipse.org/
http://www.eclipse.org/
http://sources.redhat.com/ecos/
http://www.gnu.org/licenses/ecos-license.html
http://firstmonday.org/
http://firstmonday.org/
http://www.fsf.org/
http://www.fsf.org/
http://freedomdefined.org/
http://www.wumingfoundation.com/
http://www.wumingfoundation.com/
http://gforge.org/
http://gforge.org/
http://www.gnu.org/software/gettext
http://www.gnu.org/software/automake
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/libc
http://www.gnu.org/software/libtool
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/groff/groff.html
http://www.mozilla.org/MPL/missing.html
http://www.math.utah.edu/software/plot79/tex/history.html
http://opensource.org/licesenses/ibmpl.php
http://www.perforce.com/jam/jam.html
http://www.kdevelop.org/
http://www.kdevelop.org/
https://launchpad.net
http://www.tldp.org/
http://www.tldp.org/
http://www.levanta.com/
http://www.levanta.com/
http://www.list.org/
http://www.list.org/
https://launchpad.net/products/malone
http://meta.wikimedia.org/
http://www.mozilla.org/MPL/MPL-1.1.html
http://www.mozilla.org/tinderbox.html
http://www.netbeans.org/
http://www.netbeans.org/
http://www.opencores.org/
http://www.opencores.org/

Free Software

[53] Open Directory Project Social Contract:

[54] Open Source Initiative: http://www.opensource.org [http://www.opensource.org/]

[55] Public Library of Science: http://www.publiclibraryofscience.org [http://www.publiclibraryof science.org/]
[56] Red Hat: http://www.redhat.com [http://www.redhat.com/]

[57] Savannah: http://savannah.gnu.org [http://savannah.gnu.org/] and http://savannah.nongnu.org [http://
savannah.nongnu.org/]

[58] Slashdot: News for Nerds. http://slashdot.org [http://slashdot.org/]

[59] Sleepycat License: http://www.sleepycat.com/download/oslicense.html

[60] Sleepycat Software: http://www.s eepycat.com/

[61] SourceForge: Open Source Software Devel opment Website: http://sourceforge.net [http://sourceforge.net/]
[62] Subversion: http://subversion.tigris.org [http://subversion.tigris.org/]

[63] Texinfo - The GNU Documentation System:

[64] Tigris.org: Open Source Software Engineering: http://tigris.org [http:/tigris.org/]
[65] W3c Document License:

http://mww.w3.org/Consortium/L egal/2002/copyright-documents-20021231

[66] Wiktionary: http://www.wiktionary.org [http://www.wiktionary.org/]

[67] Wikibooks: http://www.wikibooks.org/

[68] Wikinews: http://wikinews.org/

[69] Wikipedia: http://www.wikipedia.org [http://www.wikipedia.org/]

[70] Wikiquote: http://www.wikiquote.org [http://www.wikiquote.org/]

[71] Wikispecies: http://species.wikimedia.org/

[72] Wikiversity: http://wikiversity.org/

[73] X Window System Release 11 License: http://www.x.org/Downloads_terms.html
[74] Ximian: http://www.novell.com/linux/ximian.html

[75] Zope Corporation: http://www.zope.com/

[76] Zope Public License 2.0: http://www.zope.org/Resources/ZPL

[77] Law on Intellectual Property. Spanish Royal Legislative Decree 1/1996, of 12t April (April 1996):
[78] Affero General Public License, 2002: http://www.affero.org/oagpl.html

[79] Law on Intellectual Property. Spanish Law 23/2006, of 7t July (July 2006):

[80] Flossimpact Study. Technical Report, European Comission, 2007: http://flossimpact.eu [http://flossimpact.eu/]

147

http://www.opensource.org/
http://www.opensource.org/
http://www.publiclibraryofscience.org/
http://www.publiclibraryofscience.org/
http://www.redhat.com/
http://www.redhat.com/
http://savannah.gnu.org/
http://savannah.gnu.org/
http://savannah.nongnu.org/
http://savannah.nongnu.org/
http://savannah.nongnu.org/
http://slashdot.org/
http://slashdot.org/
http://www.sleepycat.com/download/oslicense.html
http://www.sleepycat.com/
http://sourceforge.net/
http://sourceforge.net/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://tigris.org/
http://tigris.org/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.wiktionary.org/
http://www.wiktionary.org/
http://www.wikibooks.org/
http://wikinews.org/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.wikiquote.org/
http://www.wikiquote.org/
http://species.wikimedia.org/
http://wikiversity.org/
http://www.x.org/Downloads_terms.html
http://www.novell.com/linux/ximian.html
http://www.zope.com/
http://www.zope.org/Resources/ZPL
http://www.affero.org/oagpl.html
http://flossimpact.eu/
http://flossimpact.eu/

Free Software

[81] I1SO JTC 1/SC 34. Standard Generalised Markup Language (SGML, 1SO 8879), 1986:

[82] Antoniades, |.; Samoladas, |.; Stamelos, |.; Bleris, G. L. "Dynamical simulation models of the open source
development process' En: Koch [157].

http://wwwai .wu-wien.ac.at/~koch/oss-book/
[83]Bailey, E. C.. 1998. MaximumRPM. Taking the Red Hat package manager tothelimit. . http://rikers.org/rpmbook/

[84]Gonzdlez Barahona, J. M.. 2000. "Software libre, monopoliosy otrasyerbas'.Todo Linux. (3). http://sinetgy.org/
~jgb/arti cul og/soft-libre-monopolios/

[85]Gonzdlez Barahona, J. M. . 2002. ":Qué se hace con mi dinero?'.Todo Linux. 17.
http://sinetgy.org/~j gb/arti cul os/sobre-administracion/

[86] Gonzalez Barahona, J. M.; Robles, G. Libre Software Engineering Web Site.
http://libresoft.dat.escet.urjc.es/

[87]Gonzdlez Barahona, J. M.; Robles, G.. (2003, mayo). "Unmounting thecode god. assumption”. En:Proceedings of
the Fourth International Conference on extreme Programming and Agile Processesin Software Engineering.
. Genoa, Italy.

[88] Gonzalez Barahona, J. M.; Robles, G.; Ortufio Pérez, M. A.; Rodero Merino, L.; Centeno Gonzalez, J.;
Matellan Olivera, V.; Castro Barbero, E. M.; De las Heras Quir6s; P. "Anatomy of two GNU/Linux
distributions'. En: Koch [157].

http://wwwai .wu-wien.ac.at/~koch/oss-book/

[89]Barnson, M. P. . The Bugzlla guide. .

http://www.bugzilla.org/docs214/html/index.html

[90] Baudis, P. "Cogito manual page".

http://www.kernel .org/pub/software/scm/cogito/docs/

[91]Bezroukov, N.. (1998, diciembre). "A second look at the cathedral and the bazaar”.First Monday. , 412.
http://www.firstmonday.org/issues/issue4 12/bezroukov/index.html

[92] Bodnar, L. (2003). "Linux distributions. Facts and figures".
http://www.distrowatch.com/stats.php?secti on=packagemanagement

[93]Boehm, B. W.. 1981. Software Engineering Economics. . Prentice Hall.

[94] Bradner, S. (1996, october). "The Internet standards process. Revision 3 (rfc 2026, bcp 9)".
http://www.ietf.org/rfc/rfc2026.txt

[95] Cederqvist, P.; GNU (1993). "CV'S - concurrent versions system". http://www.gnu.org/manual/cvs/index.html

[96]Collins-Sussman, B.; Fitzpatrick; B. W.; Pilato, C. M. . 2004. Version control with Subversion.. O'Reilly &
Associates (http://www.ora.com [http://www.ora.com/]).

http://svnbook.red-bean.com/

148

http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://rikers.org/rpmbook/
http://sinetgy.org/~jgb/articulos/soft-libre-monopolios/
http://sinetgy.org/~jgb/articulos/soft-libre-monopolios/
http://sinetgy.org/~jgb/articulos/sobre-administracion/
http://libresoft.dat.escet.urjc.es/
http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://www.bugzilla.org/docs214/html/index.html
http://www.kernel.org/pub/software/scm/cogito/docs/
http://www.firstmonday.org/issues/issue4_12/bezroukov/index.html
http://www.distrowatch.com/stats.php?section=packagemanagement
http://www.ietf.org/rfc/rfc2026.txt
http://www.gnu.org/manual/cvs/index.html
http://www.ora.com/
http://www.ora.com/
http://svnbook.red-bean.com/

Free Software

[97] Cunningham, W. "Wiki design principles".
[98] Dachary, L. (2001). "Savannah, the next generation".
http://savannah.gnu.org/docs/savannah-plan.html

[99] Autonomous Gover nment of Andalucia (2003, March). Decree 72/2003, of 18" March, on Measuresto Promote
the Knowledge Society in Andalucia.

http://www.andal uci aj unta.es/ SP/A JCDA/Ficheros/ ArchivosPdf/DecretoConoci mi ento. pdf
[100]De Boor, A. . Pmake. A tutorial. . http://docs.freebsd.org/44doc/psd/12.make/paper.html
[101] Delcaza, M. "The story of the GNOME Project".
http://primates.ximian.com/~miguel/gnome-history.html

[102] Senate of the Republic of France. Forum sur la proposition de loi tendant & généraliser dans I'administration
['usage d'Internet et de logiciels libres.

http://www.senat.fr/consult/loglibre/index.htm

[103]DelasHeras Quirds, P.; Gonzalez Barahona, J. M... 2000. "Iniciativasdelas administraciones publicasen relacion
al software libre".Bole. TIC, ASTIC magazine. 14.

[104] Debian. "Debian free software guidelines'.

http://www.debian.org/social _contract.html#guidelines [http://www.debian.org/social_contract.html]
[105]Debian. . Debian policy manual. .

http://www.debian.org/doc/debian-policy/

[106] Debian. "Debian social contract".

http://www.debian.org/social_contract.html

[107] Schriftenreihe der KBSt (2003, July). Leitfaden fur die migration von basissoftwarekomponenten auf
serverund arbeitsplatzsystemen. Technical report, Koordinierungs-und Beratungsstelle der Bundesregierung
fur Informationstechnik in der Bundesverwaltung (KBSt).

http://www.kbst.bund.de/download/mif_v1 de.pdf

[108]DiBona, C.; Ockman, S.; Stone, M. (ed.) 1999. Open sources. Voices fromthe open sourcerevolution. . O'Reilly
& Associates.

http://www.oreilly.com/catal og/opensource/ [http://www.oreilly.com/catal og/opensources/]
[109] Open Directory Project. http://dmoz.org [http://dmoz.org/]

[110]Ehrenkrantz, J. R.. (2003, May). "Release management within open source projects'. In:Proceedings of the
3 Workshop on Open Source Software Engineering at the 25" International Conference on Software
Engineering. . Portland, USA

[111] European Council (1991). Council Directive 91/250/CEE of 14" m ay 1991, onthelegal protection of computer
programs.

http://europa.eu.int/scadplus/leg/es/Ivb/I26027.htm

149

http://savannah.gnu.org/docs/savannah-plan.html
http://www.andaluciajunta.es/SP/AJ/CDA/Ficheros/ArchivosPdf/DecretoConocimiento.pdf
http://docs.freebsd.org/44doc/psd/12.make/paper.html
http://primates.ximian.com/~miguel/gnome-history.html
http://www.senat.fr/consult/loglibre/index.htm
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.debian.org/doc/debian-policy/
http://www.debian.org/social_contract.html
http://www.kbst.bund.de/download/mlf_v1_de.pdf
http://www.oreilly.com/catalog/opensources/
http://www.oreilly.com/catalog/opensources/
http://dmoz.org/
http://dmoz.org/
http://europa.eu.int/scadplus/leg/es/lvb/l26027.htm

Free Software

[112]Feller, J.; Fitzgerad, B; Hissam, S.; Lakhani, K.. (ed.) 2003. Making sense of the bazaar. . O'Relilly.
[113]Fogel, K.; Bar, M.. 2001. Open source code development with CVS. (2edition). Paragliph Press.
http://cvsbook.red-bean.com [http://cvsbook.red-bean.com/]

[114] Electronic Frontier Foundation. Open Audio.

http://www.eff.org/I P/Open_licensegeff _oal.html

[115] Free Softwar e Foundation. GPLv3.

http://gplv3.fsf.org [http://gplv3.fsf.org/]

[116] Free Software Foundation. LGPLV3. First discussion draft.

http://gplv3.fsf.org/pi permail/info-gplv3/2006-Jul y/000008.html

[117] Free Softwar e Foundation (1985): "The GNU Manifesto".

http://www.gnu.org/philosophy/

[118] Free Softwar e Foundation (1991, junio). GNU General Public License, version 2. http://www.fsf.org/licenses/
gpl.html

[119] Free Softwar e Foundation (1999, February). GNU Lesser General Public License, version 2.1.
http://www.fsf.org/licenses/Igpl .html

[120] Free Softwar e Foundation. "Free software definition".

http://www.gnu.org/phil osophy/free-sw.html

[121] Free Softwar e Foundation. "Free licenses”.

http://www.gnu.org/licenses/license-list.html

[122]Garbee, B.; Koptein, H.; Lohner, N.; Lowe, W.; Mitchell, B.; Murdock, I.; Schulze, M.; Small, C.. "A brief
history of Debian". In the package:Debian-history. .

[123]German, D.. (2002, May). "The evolution of GNOME". In:Proceedings of the 2nd Workshop on Open Source
Software Engineering at the 24" |nternational Conference on Software Engineering. . Florida, USA

[124]German, D.; Mockus, A.. (2003, May): "Automating the measurement of open source projects’. In:Proceedings
of the 3" Wor kshop on Open Source Software Engineering at the 251 | nternational Conference on Software
Engineering. . Portland, USA

[125]Ghosh, R. A.. (1998, March). "Cooking pot markets: an economic model for the trade in free goods and services
on the Internet.First Monday. , 3(3).

http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html

[126]Ghosh, R. A.; Glott, R.; Krieger, B.; Robles, G.. 2002. Free/libre and open source software; Survey and study.
. Part iv: "Survey of developers'.

http://www.infonomics.nl/FLOSS/report/FLOSS _Final4.pdf

[127]Ghosh, R. A.; Prakash, V. V.. (2000, July). "The orbiten free software survey" .First Monday. , 5(7).

150

http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://www.eff.org/IP/Open_licenses/eff_oal.html
http://gplv3.fsf.org/
http://gplv3.fsf.org/
http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html
http://www.gnu.org/philosophy/
http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/lgpl.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/license-list.html
http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html
http://www.infonomics.nl/FLOSS/report/FLOSS_Final4.pdf

Free Software

http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html

[128]Godfrey, M. W.; Tu, Q.. (2000, August). "Evolution in open source software. A case study". In:Proceedings of
the 2000 International Conference on Software Maintainance. .

[129] Gonzalez, J. A. (2002, March). "Cartaa congresista Villanueva'.
http://www.gnu.org. pe/mscarta.html
[130]Goosens, M.; Rahtz, S.. 1999. The LaTeX Web Companion. . Addison Wesley.

[131]Grad, B.. (2002, January-March). " A personal recollection: IBM's unbundling of software and services'. In:|EEE
Annals of the History of Computing. , 24(1):64-71.

[132] Working Group on Libre Softwar e (1999). "Free software / open source. Information society opportunities
for Europe?’.

http://eu.conecta.it/paper.pdf
[133] GrULIC. "Legidation on the use of free software by the State ".
http://proposicion.org.ar/doc/referencias/index.html.es

[134] Hamerly, J; Paquin, T.; Walton, S. (1999). "Freeing the source. The story of Mozilla". http://www.oreilly.com/
catal og/opensources/book/netrev.html

[135]Hammel, M. J.. (1991, December). "The history of xfree86".Linux Magazine. .
http://www.linux-mag.com/2001-12/xfree86_01.html

[136]Harris, S.. (2001, August).The Tao of IETF. A novice's guide to the Internet engineering task force. (RFC 3160,
FY1 17).

http://www.ietf.org/rfc/rfc3160.txt

[137] Harrison, P. (2002). "The rational street performer protocol”.
http://www.logarithmic.net/pfh/RSPP

[138] Hasan, R. "History of Linux".
http://ragib.hypermart.net/linux/

[139]Hauben, M.; Hauben, R.. 1997. Netizens. On the history and impact of Usenet and the Internet. . IEEE Computer
Society Press.

[140] Healy, K.; Schussman; A. (2003, January). "The ecology of open source software development”. http://
opensource.mit.edu/papers/heal yschussman. pdf

[141] Hecker, F. (1998, May). " Setting up shop. The business of open-source software".
http://www.hecker.org/writings/setting-up-shop.html

[142] Hecker, F. (1998). "Setting up shop. The business of open-source software’.
http://www.hecker.org/writings/setting-up-shop.html

[143] Hertel, G.; Niedner, S.; Herrmann, S. (2003). "Motivation of software developersin open source projects. An
Internet-based survey of contributors to the Linux kernel".

151

http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html
http://eu.conecta.it/paper.pdf
http://proposicion.org.ar/doc/referencias/index.html.es
http://www.oreilly.com/catalog/opensources/book/netrev.html
http://www.oreilly.com/catalog/opensources/book/netrev.html
http://www.linux-mag.com/2001-12/xfree86_01.html
http://www.ietf.org/rfc/rfc3160.txt
http://www.logarithmic.net/pfh/RSPP
http://ragib.hypermart.net/linux/
http://opensource.mit.edu/papers/healyschussman.pdf
http://opensource.mit.edu/papers/healyschussman.pdf
http://www.hecker.org/writings/setting-up-shop.html
http://www.hecker.org/writings/setting-up-shop.html

Free Software

http://opensource.mit.edu/papers/rp-hertel niednerherrmann. pdf
[144]Himanen, P.. 2001. The hacker ethic and the spirit of the information age. . Random House.
http://www.hackerethic.org [http://www.hackerethic.org/]

[145] Hunt, F.; Johnson, P. (2002). "On the Pareto distribution of SourceForge projects. Technical report". Centrefor
Technology Management, Cambridge University Engineering Department, Mill Lane, Cambridge CB2 1RX.

http://mww-mmd.eng.cam.ac.uk/peopl e/fhh10/Sourceforge/ Sourcef orge%o20paper . pdf

[146] Open Source I nitiative. "History of the OS|".

http://www.opensource.org/docs/history.php

[147] Hamilton, J. R. (US ambassador to Peru) (2002, June). "Carta a presidente del Congreso de la Republica'.
http://www.gnu.org.pe/l obbyusa-congreso.html

[148] Jones, P. (2000, May). "Brook's law and open source. The more the merrier?'.
http://www-106.ibm.com/devel operworks/opensource/library/os-merrier.html ?dwzone=opensource

[149]Jorgensen, N.. "Incremental and decentralized integration in FreeBSD". In: Felleret al.. [112]. http://
www.dat.ruc.dk/~niel §/research/papers/bazaar-freebsd.pdf

[150]Brooks, F. P.. 1975. The mythical man-month. Essays on software engineering. . Addison-Wesley.
[151] Kalt, C. (2000, April). "Internet relay chat: architecture (RFC 2810)".
http://www.ietf.org/rfc/rfc2810.txt

[152]Kelsey, J.; Schneier, B.. (1998, November). "The street performer protocol”. In:Third USENIX Workshop on
Electronic Commerce Proceedings. . USENIX Press.

http://www.counterpane.com/street_performer.html

[153]Kelsey, J.; Schneier, B.. (1999, June). "The street performer protocol and digital copyrights'.First Monday. , 4(6).
http://www.firstmonday.dk/issues/issued _6/kelsey/

[154]Kelty, C. M.. (2001, December). "Free software/free science”.First Monday. , 612.
http://firstmonday.org/issues/issue6_12/kelty/index.html

[155] K hatib, J. "OpenlPCore Hardware General Public License".
http://www.opencores.org/OIPC/OHGPL_17.shtml

[156]Knuth, D.. 1989. The TeXbook. . Addison Welsley.

[157]Koch, S.. (ed.) 2003. Free/open sour ce software devel opment. . Idea Group Inc.

http://wwwai .wu-wien.ac.at/~koch/oss-book/

[158]Koch, S.; Schneider, G.. 2000. "Results from software engineering research into open source development
projects using public data'. In:Diskussionspapiere zum Tatigkeitsfeld Informationsverarbeitung und
Informationswirtschaft, H.R. Hansen und W.H. Janko (Hrsg.), Nr. 22. , WirtschaftsuniversitatWien.

152

http://opensource.mit.edu/papers/rp-hertelniednerherrmann.pdf
http://www.hackerethic.org/
http://www.hackerethic.org/
http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www.opensource.org/docs/history.php
http://www.gnu.org.pe/lobbyusa-congreso.html
http://www-106.ibm.com/developerworks/opensource/library/os-merrier.html?dwzone=opensource
http://www.dat.ruc.dk/~nielsj/research/papers/bazaar-freebsd.pdf
http://www.dat.ruc.dk/~nielsj/research/papers/bazaar-freebsd.pdf
http://www.ietf.org/rfc/rfc2810.txt
http://www.counterpane.com/street_performer.html
http://www.firstmonday.dk/issues/issue4_6/kelsey/
http://firstmonday.org/issues/issue6_12/kelty/index.html
http://www.opencores.org/OIPC/OHGPL_17.shtml
http://wwwai.wu-wien.ac.at/~koch/oss-book/

Free Software

[159]Kovacs, G. L.; Drozdik, S.; Succi, G.; Zuliani, P.. 2004. "Open source software for the public administration”.
In:Proceedings of the 6" I nternational Wor kshop on Computer Science and | nformation Technologies. (CIST
2004). Budapest, Hungary.

[160]Krishnamurthy, S.. (2002, May). "Cave or community? An empirical examination of 100 mature open source
projects’.First Monday. , 7(6).

http://www.firstmonday.dk/issues/issue7_6/krishnamurthy/index.html

[161] Laffitte; Trégouet; Cabanel (1999). Proposition de loi numéro 495. Senate of the Republic of France.
http://www.senat.fr/consult/loglibre/textel oi.html

[162] Laffitte; Trégouet; Cabanel (2000). Proposition de loi numéro 117. Senate of the Republic of France.
http://www.senat.fr/consult/loglibre/textel oi.html

[163]Lamport, L.. 1994. LaTeX user's guide and reference manual. (2edition). Addison Welsley, Reading, Mass.

[164]Lancashire, D.. (2001, December). "Code, culture and cash. The fading atruism of open source
development".First Monday. , 612.

http://www.firstmonday.dk/issues/issue6_12/lancashire/index.html

[165]Lehman, M. M.; Ramil, J. F; Wernick, P. D.. (1997, November). "Metrics and laws of software evolution. The
nineties view". In:Proceedings of the 4" | nternational Symposium on Software Metrics. .

http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf

[166]Leiner, B. M.; Cerf, V. G.; Kahn, R. E.; Clark, D. D.; Kleinrock, L.; Lynch, D. C.; Postel, J.; Roberts, L. G.;
Wolff, S.. 1997. "A brief history of the Internet”. In:Communications of the ACM. .

http://www.isoc.org/internet/history/brief.shtml

[167] Netcraft Ltd. August 2003 Web Server Survey, 2003.
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html

[168] Lucovsky, M. (2000). "From NT OS/2 to Windows 2000 and beyond. A software-engineering odyssey".
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky _html/& gt;

[169] McGraw, G. "Building secure software: how to avoid security problems the right way". Cited by: David A.
Wheseler in http://www.dwheel er.com/sloc/

[170]McKusick, M. K.. 1999. "Twenty years of Berkeley Unix. From AT& T owned to freely redistributable”. In:
DiBonaet al.. [108].

http://www.oreilly.com/catal og/opensources/

[171] SUN Microsystems (2000). "Sun microsystems announces availability of StarOffice source code on
OpenOffice.org".

http://www.collab.net/news/press/2000/openoffice live.html

[172]Mockus, A.; Fielding, R. T.; Herbsleb, J. D.. (2000, June). "A case study of open source software development:
the Apache server”. In:Proceedings of the 22" International Conference on Software Engineering (ICSE
2000). , pages 263272. Limerick, Ireland ACM Press.

153

http://www.firstmonday.dk/issues/issue7_6/krishnamurthy/index.html
http://www.senat.fr/consult/loglibre/texteloi.html
http://www.senat.fr/consult/loglibre/texteloi.html
http://www.firstmonday.dk/issues/issue6_12/lancashire/index.html
http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf
http://www.isoc.org/internet/history/brief.shtml
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://www.dwheeler.com/sloc/
http://www.oreilly.com/catalog/opensources/
http://www.collab.net/news/press/2000/openoffice_live.html

Free Software

[173] Molenaar, B. "What is the context of charityware?".
http://www.mool enaar.net/Charityware.html

[174] MIT OpenCourseWare.

http://ocw.mit.edu [http://ocw.mit.edu/]

[175] Nagel, L. W.. (1996, september). "The life of SPICE". 1n;1996 Bipolar Circuits and Technology Mesting. .
Minneapolis, MN, US

http://www.icdl.ucla.edu/aagroup/Life%200f%20SPI CE.html

[176] Narduzzo, A.; Rossi, A. (2003, May). "Modularity in action: GNU/Linux and free/open source software
development model unleashed”.

http://opensource.mit.edu/papers/narduzzorossi.pdf

[177] Newman, N. (1999). "The origins and future of open source software”.
http://www.netaction.org/opensrc/future/

[178] Nupedia.

http://www.nupedia.com [http://www.nupedia.com/]

[179] Villanueva Nufez, E. (2002, April). "Letter to Microsoft Peru”.
http://www.gnu.org.pe/rescon.html

[180] Danish Board of Technology (2002, October). " Open-source software in e-Government, analysis and
recommendations drawn up by aworking group under the danish board of technology. Technical report".

[181] Open Source Initiative. "Open source licenses".
http://www.opensource.org/licenses/index.html
[182] Pareto, W. (1896). "Course of Political Economy". Lausanne.

[183] Perens, P.; The Open Source Initiative (1998). "The open source definition”. http://www.opensource.org/
docg/definition_plain.html

[184] GNU Peru. "Proyectos ley de software libre en la Administracion pablica del Gobierno peruano, Congreso de
laRepublica’.

http://www.gnu.org.pe/proleyap.html

[185] Pinheiro, P. (1999, December). Proposi¢éo pl-2269/1999: Dispde sobre a utilizagdo de programas abertos pel os
entes de direito publico e de direito privado sob controle acionério da administragdo publica. Camara dos
Deputados do Brasil.

http://www.camara.gov.br/Internet/sileg/Prop_Detalhe.asp?d=17879
http://www.fenadados.org.br/software.htm
[186] Pranevich, J. (2003). "The wonderful world of Linux 2.6".

http://www.kniggit.net/wwol 26.html

154

http://www.moolenaar.net/Charityware.html
http://ocw.mit.edu/
http://ocw.mit.edu/
http://www.icsl.ucla.edu/aagroup/Life%20of%20SPICE.html
http://opensource.mit.edu/papers/narduzzorossi.pdf
http://www.netaction.org/opensrc/future/
http://www.nupedia.com/
http://www.nupedia.com/
http://www.gnu.org.pe/rescon.html
http://www.opensource.org/licenses/index.html
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.gnu.org.pe/proleyap.html
http://www.camara.gov.br/Internet/sileg/Prop_Detalhe.asp?id=17879
http://www.fenadados.org.br/software.htm
http://www.kniggit.net/wwol26.html

Free Software

[187] The Debian Project. "Debian developer map".
http://www.debian.org/devel/devel opers.loc

[188] Puigcercos Boixassa, J. (2002). Draft Bill on Measures for Implementing Free Software in Public
Administration.

http://mww.congreso.es/public_oficiales/L 7/CONG/BOCG/B/B_244-01.PDF

[189]Quittner, J.; Slatalla, M.. 1998. Soeeding the net: the inside story of Netscape and how it challenged Microsoft.
. Atlantic Monthly Pr.

[190] Rasch, C. "A brief history of free/open source software movement".
http://www.openknowledge.org/writing/open-source/sch/brief-open-source-history.html

[191]Rasch, C.. (2001, May). "The Wall Street performer protocol. Using software completion bonds to fund open
source software development".First Monday. , 6(6).

[192]Raymond, E. R.. (2001, January).The cathedral and the bazaar. Musings on Linux and open source by an
accidental revolutionary. . O'Reilly & Associates (http://www.ora.com [http://www.ora.com/]).

http://catb.org/~esr/writings/cathedral -bazaar/

[193] Reis, C R.; De Mattos Fortes, R. P. (2002, February). "An overview of the software engineering process and
toolsin the Mozilla Project".

http://opensource.mit.edu/papers/reismozilla.pdf

[194] Rideau, F. R. (2000). "Patents are an economic absurdity".
http://fare.tunes.org/articles/patents.html

[195]Roberts, L.. (1978, November). "The evolution of packet switching".Proceedings of the |IEEE. , 66.

[196]Robles, G.; Gonzdlez Barahona, J. M.; Centeno Gonzdlez, J.; Matellan Olivera, V.; Rodero Merino, L.. (2003,
May). "Studying the evolution of libre software projects using publicly available data’. In:Proceedings of
the 39 Wor kshop on Open Source Software Engineering at the 25" International Conference on Software
Engineering. . Portland, US.

[197] Robles, G.; Scheider, H.; Tretkowski, I.; Weber, N. (2001): "Who is doing it? Knowing more about libre
software developers'.

http://widi.berlios.de/paper/study.pdf
[198]Rochkind, M.. (1986, May). "Interview with Dick Haight".Unix Review. .

[199] Scacchi, W. (2003). "Understanding open source software evolution. Applying, breaking and rethinking the
laws of software evolution”.

http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evol ution. pdf
[200] Schneier, B. (2000). "Software complexity and security".
http://www.counterpane.com/crypto-gram-0003.html

[201] Smoogen, S. J. "The truth behind Red Hat names”.

155

http://www.debian.org/devel/developers.loc
http://www.congreso.es/public_oficiales/L7/CONG/BOCG/B/B_244-01.PDF
http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html
http://www.ora.com/
http://www.ora.com/
http://catb.org/~esr/writings/cathedral-bazaar/
http://opensource.mit.edu/papers/reismozilla.pdf
http://fare.tunes.org/articles/patents.html
http://widi.berlios.de/paper/study.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://www.counterpane.com/crypto-gram-0003.html

Free Software

http://www.smoogespace.com/documents/behind_the names.html

[202] Haggen So. "Comparison of free/open source hosting (FOSPhost) sites available for hosting projects externally
from project owners'.

http://www.ibiblio.org/fosphost/exhost.htm

[203] Stallman, R. "GNU coding standards".

http://www.gnu.org/prep/standards.html

[204] Stallman, R.. "Whyfree software. is better thanopen source. .

http://www.fsf.org/phil osophy/free-software-for-freedom.html

[205] Stallman, R. (1998). "Copyleft: pragmatic idealism™.

http://www.gnu.org/phil osophy/pragmatic.html

[206] Stallman, R.. 1998. "Whyfree software. is better thanopen source. ".

http://www.gnu.org/phil osophy/free-software-for-freedom.html

[207] Stallman, R. (1998). "Why software should not have owners'.
http://mww.gnu.org/philosophy/why-free.html

[208] Stallman, R.. "The GNU Operating System and the Free Software Movement". In: DiBonaet al.. [108].
http://www.fsf.org/gnu/thegnuproject.html

[209]Stallman, R.. (1999, June). "On free hardware".Linux Today. .
http://features.linuxtoday.com/news_story.php3?tsn=1999-06-22-005-05-NW-LF

[210] Stallman, R. (2001). "The free universal encyclopedia and learning resource".
http://ww.gnu.org/encycl opedia/free-encyclopedia.html

[211]Stallman, R.. 2002. Free software, free society. Selected essays of Richard M. Sallman. . Joshua Gay.
[212] Stallman, R. (2003). "Some confusing or loaded words and phrases that are worth avoiding".
http://www.gnu.org/phil osophy/words-to-avoid.html

[213] Stoltz, M. (1999). "The case for government promotion of open source software".
http://www.netaction.org/opensrc/oss-report.html

[214] Tanenbaum, A.; Torvalds, L. (1999). "The Tanenbaum-Torvalds debate".
http://www.oreilly.com/catal og/opensources/book/appa.html

[215] The Open Sour ce I nitiative. "The open source definition™.
http://www.opensource.org/docs/definition_plain.html

[216] Tiemann, M.. "Future of Cygnus Solutions. An entrepreneur's account”. In: DiBonaet al.. [108].

156

http://www.smoogespace.com/documents/behind_the_names.html
http://www.ibiblio.org/fosphost/exhost.htm
http://www.gnu.org/prep/standards.html
http://www.fsf.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/why-free.html
http://www.fsf.org/gnu/thegnuproject.html
http://features.linuxtoday.com/news_story.php3?ltsn=1999-06-22-005-05-NW-LF
http://www.gnu.org/encyclopedia/free-encyclopedia.html
http://www.gnu.org/philosophy/words-to-avoid.html
http://www.netaction.org/opensrc/oss-report.html
http://www.oreilly.com/catalog/opensources/book/appa.html
http://www.opensource.org/docs/definition_plain.html

Free Software

http://www.oreilly.com/catal og/opensources/book/tiemans.html

[217]Torvalds, L; Diamond; D.. 2001. Just for fun: the story of an accidental revolutionary. . Texere.
[218] Linus Torvalds, Hamano, J. C.; Ericsson, A. "Git manual page".

http://www.kernel .org/pub/software/scm/git/docs/

[219] Tuomi, I. (2002). "Evolution of the Linux credits file: methodological challenges and reference data for open
source research”.

http://www.jrc.es/~tuomiil/articles/Evol utionOf TheL inuxCreditsFil e.pdf
[220] Several authors. "Open letter to WIPQ".
http://ww.cptech.org/ip/wipo/kamil-idris-7july2003.pdf

[221] Vigoi Sallent, P.; Benach i Pascual, E.; Huguet i Biosca; J. (2002, May). Proposicio de llei de programari
[liure en € marc de I'Administracio publica de Catalunya.

http://www.parlament-cat.es/pdf/06b296. pdf

http://www.hispalinux.es/modul es.php?
op=modI oad& amp;name=Sections& amp;file=index& amp;req=viewarticle& amp;artid=49

[222] Villanueva Nufiez, E. (2001, December). Free software project bill, number 1609.
http://www.gnu.org.pe/proley1.html

[223] Villanueva Nufez, E.; Rodrich Ackerman, J. (2002, April). Bill on the use of free software by the Public
Administration, number 2485.

http://www.gnu.org.pe/proley4.html
[224]W3C. 2000. Extensible markup language (xml) 1.0. (2edition).

[225]Walsh, N.; Muellner, L.; Stayton, B.. 2002. DocBook: the definitive guide. . O'Reilly. http://docbook.org/tdg/en/
html/docbook.html

[226] Welke, L; Johnson, L. (1998). How the ICP Directory began.
http://www.softwarehi story.org/history/Welkel.html

[227] Whedler, D. A. (2000, July). "Estimating Linux's size".
http://www.dwheeler.com/sloc

[228] Whedler, D. A. (2001, June). "More than a gigabuck: estimating GNU/Linux's".
http://www.dwheeler.com/sloc

[229] Wiesstein, E. "Concise encyclopedia of mathematics”.
http://mathworld.wolfram.com/

[230] Wikipedia. "Gini coefficient".

http://www.wikipedia.org/wiki/Gini_coefficient

157

http://www.oreilly.com/catalog/opensources/book/tiemans.html
http://www.kernel.org/pub/software/scm/git/docs/
http://www.jrc.es/~tuomiil/articles/EvolutionOfTheLinuxCreditsFile.pdf
http://www.cptech.org/ip/wipo/kamil-idris-7july2003.pdf
http://www.parlament-cat.es/pdf/06b296.pdf
http://www.hispalinux.es/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=49
http://www.hispalinux.es/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=49
http://www.gnu.org.pe/proley1.html
http://www.gnu.org.pe/proley4.html
http://docbook.org/tdg/en/html/docbook.html
http://docbook.org/tdg/en/html/docbook.html
http://www.softwarehistory.org/history/Welke1.html
http://www.dwheeler.com/sloc
http://www.dwheeler.com/sloc
http://mathworld.wolfram.com/
http://www.wikipedia.org/wiki/Gini_coefficient

Free Software

[231] Wikipedia. "Lorenz curve".
http://www.wikipedia.org/wiki/Lorenz_curve

[232] Wikipedia. "Pareto”.
http://www.wikipedia.org/wiki/Pareto

[233] Wikipedia. "TeX".

http://www.wikipedia.org/wiki/Tex

[234] Wilson, B. "Netscape Navigator".
http://www.blooberry.com/indexdot/hi story/netscape.htm

[235] Computer World (2000). "Salary survey 2000".
http://www.computerworld.com/cwi/careers/surveysandreports

[236] Young, R. (1999). "Giving it away. how Red Hat software stumbled across a new economic model and helped
improve an industry".

http://www.oreilly.com/catal og/opensources/book/young.html
[237] Zawinsky, J. W. (1999). "Resignation and postmortem".

http://www.jwz.org/gruntle/nomo.html

158

http://www.wikipedia.org/wiki/Lorenz_curve
http://www.wikipedia.org/wiki/Pareto
http://www.wikipedia.org/wiki/TeX
http://www.blooberry.com/indexdot/history/netscape.htm
http://www.computerworld.com/cwi/careers/surveysandreports
http://www.oreilly.com/catalog/opensources/book/young.html
http://www.jwz.org/gruntle/nomo.html

Chapter 2. Appendixes

Jesus M. Gonzalez Barahona
Joaguin Seoane Pascual
Gregorio Robles

GNUFDL
2009-09-01

Appendix A. Learning guide

A.1l. Introduction

What is free software? What is it and what are the implications of a free program licence? How is free
software devel oped? How are free software projects financed and what are the business model s associated
to them that we are experiencing? What motivates devel opers, especially volunteers, to become involved
in free software projects? What are these developerslike? How are their projects coordinated, and what is
the software that they produce like? In short, what is the overall panorama of free software?

These are the sort of questions that we will try to answer in this document. Because athough free software
isincreasing its presence in the media and in debates among I T professionals, and although even citizens
in general are starting to talk about it, it is still unknown for many people. And even those who are familiar
with it are often aware of just some of its features, and mostly ignorant about others.

A.2. Aims

Thegeneral aimis, unquestionably, that the reader understand and think logically about basic free software
concepts and their main implications. Let us ook for more specific ams:

» Knowing what is (and what is not) free software and the main consequences that such a definition has.

» Exploring the rudiments of the legal questions surrounding free software and, particularly, the
importance of licenses, the main types and their consequences.

» Having a perspective of the reality of free software, from aglobal and historical point of view and from
the perspective of the most advanced and current projects.

« Learning and getting to know the methods in which free software projects may be financed (when such
means exist) and the relevant business models.

» Learning the most important details of the free software development models and the methods for
studying them from the perspective of software engineering.

A.3. Contents and lear ning plans

This text is structured into various chapters (didactic modules) and written in such a way that they are
practically independent and self-contained, which means that, excepting the introduction, the book can be
read in any order. However, readers are advised to follow the order established for the book, in accordance
with the plan below.

The course will be structured in ECTS credits, which means that the planning will require an overall effort
form the student, which will include exercises and debates, which will last 150 hours.

159

Appendixes

Chapter 1 (6 hours). Introductory module discussing all the specific aspects of free software and focusing
essentially on an explanation of the underlying basis, for people who are learning about the matter for the
first time and on highlighting itsimportance. An introduction covering the definition of free software and

its main consequences, amongst other elements, will be provided.

Aims Content Materials Activities Time
Learning what | The four freedoms | Section 1.1.1 Reading the| 2 hours
freedommeanswith material
regard to software
Distinguishing Definition of | Section 1.1.2 Reading the|1 hour
between free|related concepts, material and
software and other|whether they are making suggestions
related concepts similar or

analogous
Introducing the| Ethical and | Section 1.2 Reading the|1 hour
reasons for which|practical material and
free software is|motivations making suggestions
made
Introducing the| Consequences for|Section 1.3 Reading the|2 hours
consequences of |the user, the State, material and
free software the developer, etc. making suggestions

Chapter 2 (14 hours). Historical development of the world of free software, from its beginning in the
seventiesto the current moment, offering abroad vision of the most notabl e milestones, the main projects,

the financial, professional or social evolution, etc.

software all the way
up to the present

day

chronological order

annex B

making suggestions

Aims Content Materials Activities Time
Learning about the|Facts before the|Section 2.1 and|Reading the|2 hours
"prehistory" of free|existence of the|beginning of annex|material and
software concept B making suggestions

Learning about the|Most significant| Sections 2.2, 2.3,|Reading the| 10 hours
history of free|events inj24 and rest of | materid and

Trying to predict
the future

Some predictions
(hopes and
problems)

Section 2.5

Reading the
material and

making suggestions

2 hours

Chapter 3 (9 hours). Legal aspects of free software. The most common free software licenses and their

effects on business and development models will be analysed in detail.

Aims Content Materials Activities Time
Learning the basic|Copyright, Section 3.1 Reading the|3 hours
concepts of | intellectual material and
intellectual and|property, patents, making suggestions
industrial property |brands, industrial

secrets
Learning the legal | Definition of free|Section 3.2 Reading the|7 hours
basis of free|licenses and the material and

making suggestions

160

Appendixes

Aims Content Materials Activities Time
software: the|features of the most
licenses important licenses

Chapter 4 (8 hours). Characteristics of free software developers and the motivations that lead them to

participate in the projects, thereby making the existence of free programs possible.

Aims Content Materials Activities Time
Getting to know|Ages, genders,| Sections 4.1, 4.2,|Reading the|4 hours
the type of people|professions, 43and 4.4 material and
that develop free|geographical making suggestions
software location, etc.
Learning how much|Weekly dedication, | Sections 4.5, 4.6,|Reading the|4 hours
time to spend on it|motivations, 4.7and 4.8 material and
and why questions of making suggestions

prestige and

leadership

Chapter 5 (22 hours). Financial aspects of free software and, especially, methods for financing the projects

and business models that are being explored.

software industry

Aims Content Materials Activities Time
Learning about the|Financial sources|Section 5.1 Reading the|8 hours
sources of finance |used material and

making suggestions
Learning how to|Businessmodels |Sections5.2 and 5.3|Reading the|8 hours
profit from free material and
software making suggestions
Learning about|Monopolies and|Sections 5.1, 5.2,|Reading the| 6 hours
the relationship| software. Free|5.3and 5.4 material and
between free| software'srole making suggestions
software and the
monopolistic
Situations that are
typicdl in the

Chapter 6 (28 hours). Relationship of policies and free software and, especially, policies for promoting

free software and the use of free software by public administrations.

Aims Content Materials Activities Time
Learning about the|Main effects and|Section 6.1 Reading the|4 hours
effect of free|difficulties in material and

software on public
administrations.

implementation

making suggestions

Learning about
what
administrations do

or can do with

Solutions to needs,
promotion and
investment in R&D

Section 6.2

Reading the
material and
making suggestions

4 hours

161

Appendixes

software, including
examples of
specific texts.

Aims Content Materials Activities Time
regaeld to free
software
Learning about | Revision of | Section 6.3 Reading the| 20 hours
legidative legidative material and
initiatives initiatives for making suggestions
implementing or
supporting free

Chapter 7 (12 hours). Management and development models for free software projects, techniques that
have been successful and quantitative and qualitative studies of free software from the perspective of

development.

Aims Content Materials Activities Time
Learning about|"The cathedral and|Sections 7.1, 7.2,|Reading the|3 hours
the paradigmatic|the bazaar" 7.3and 7.5 material and

models of software suggested

development bibliography

Learning about the|Characteristic Section 7.4 Reading the| 3 hours
processes involved|processes material and

in the development suggested

of free software bibliography

Learning about | Resources and| Section 7.6 Reading the|3 hours
the possibilities| quantitative studies material and

and redlities that suggested

the availability bibliography

of sources and

the associated

registries bring to

the free software

engineering

Learning what | Future tasks Section 7.7 Reading the|3 hours
remains to be done material and

in free software suggested

engineering bibliography

Chapter 8 (14 hours). Introduction of the technologies and development environments for free software

and their effects on the management and evolution of the projects.

Aims Content Materials Activities Time
Learning the| General Section 8.1 Reading the|1/2 hour
general features of | characterisation material and

the environments suggested

and the tools bibliography

that free software

developers use

Learning the basic|Languages, Section 8.2 and 8.3 | Reading the|2 hours
development tools |compilers, material and

162

Appendixes

Aims Content Materials Activities Time
operating systems, suggested
etc. bibliography

Learning the basic|Messaging, forums, | Section 8.4 Reading the|2 hours
methodswithwhich|repositories, chats material and
developers work|and wikis suggested
together bibliography
Learning thelCVS and new|Section 8.5 Reading the|4 hours
mechanisms used to | alternatives material and
manage sources and suggested
their versions bibliography
Learning how | Languages and | Section 8.6 Reading the|2 hours
free software is|tools for material and
documented documentation suggested

bibliography
Learning how|Bug management|Section 8.7 Reading the|1 hour
errors and tasks are| systems material and
managed suggested

bibliography
Learning how | Resources for other | Section 8.8 Reading the|1/2 hour
portability is|architectures material and
supported suggested

bibliography
Learning about the|SourceForge and|Section 8.9 Reading the|2 hours
public others material and
environments of suggested
integrated bibliography
development

Chapter 9 (30 hours). Studying free software projects (revising the most interesting classical free software
projects, in terms of results obtained, management model, historical evolution, effect on other projects,

etc.). Study of companies related to free software.

Aims Content Materials Activities Time
Learning an|Linux and *BSD | Sections9.1 and 9.2| Reading the|8 hours
example of material and
operating systems suggested

bibliography
Learning an|Gnome and KDE | Sections9.3 and 9.4| Reading the|8 hours
example of desktop material and
environments suggested

bibliography
Learning an|Apache Section 9.5 Reading the|2 hours
example of system material and
programs suggested

bibliography
Learning an|Mozilla and| Sections 9.6 and 9.7 | Reading the|4 hours
example of end user | OpenOffice material and
programs suggested

bibliography

163

Appendixes

Aims Content Materials Activities Time
Learning an|Red Hat and Debian | Sections 9.8 and 9.9| Reading the|8 hours
example of a material and
distribution suggested

bibliography

Chapter 10 (6 hours). Modulein which free resources other than software are presented; these are resources
that have been created partly thanks to free software and the model that it has given.

Aims Content Materials Activities Time
Learning other free|Free texts, | Section 10.1 Reading the|3 hours
resources hardware, teaching material and
materials and art suggested
bibliography
Learning about the|Licenses, especialy| Section 10.2 Reading the| 3 hours
applicable licenses |the Crestive material and
Commons licenses suggested
bibliography

Appendix B. Key dates in the history of free
software

Thisisonly alist of the dates that could be considered to be important in the history of free software. It
is based on the one that appears in [132] and the one provided by the Open Source Initiative [146] and is
not supposed to be comprehensive: there are certainly many important dates that have not been included
in the list. However, we hope to provide a sufficiently complete view of the historical landscape in which
the world of free software has evolved.

Dates Events

1950s and 1960s The software is distributed with its source code and
without any restrictions on the user groups such as
SHARE (IBM) and DECUS (DEC).

1969, April RFC number 1, which describes the first Internet
(then called ARPANET) is published. The free
availability of the RFCs and, particularly, of the
specifications of the protocols used in Internet were
key factors for its devel opment.

1970, January IBM began selling its software separately, creating
the beginning of the proprietary software industry.

1972 Unix begins to be distributed in universities and
research centres.

1973 Unix arrives at Berkeley University, in California
The history of Unix BSD begins.

1973 SPICE is placed by Donald O. Penderson in the

public domain. With time, it will become the
standard initsfield (integrated circuit simulators).

1978 Donald Knuth, of Stanford University, starts
working on TeX, an electronic typesetting system
that will be distributed as free software.

164

Appendixes

Dates

Events

1983

Richard Stallman writes "The GNU Manifesto", in
which he asks for software to be shared with the
public again.

1984

The GNU project begins. The developers that work
on it, initially coordinated by Richard Stallman,
begin to create a large number of tools similar to
those in Unix, including an editor (Emacs) and a
compiler (GCC). The aim is to build an operating
system that is completely free.

1985

The X Consortium, based at MIT, distributes the X
Window system as free software, under a license
that is hardly restrictive at all.

1985

Richard Stallman founds the Free Software
Foundation. Among other tasks, the Foundation
will work as a centre that receives the funds and
resources that will assist the development of the
GNU project and as the owner of the intellectual
property generated by the project.

1989

Cygnus, the first company that essentially provides
commercia services for free software (including
support, development and adaptation of free
programs), is founded.

1989

The Network Simulator (or simply, ns) begins
to be developed as a variant of the REAL
Network Simulator. Nsis afree telecommunication
network simulator that will be used extensively by
universities all over the world and that will become
astandard initsfield, to a certain extent.

1990

The Free Software Foundation announces that it
intends to build a kernel that will be called GNU
Hurd. The aim of this project is to complete what
the GNU project's strategy was most missing: a
complete operating system.

1991

William and Lynne Jolitz writeaseriesin Dr. Dobbs
Journal on how to port BSD Unix to PC based on
the 1386.

1991, August

Linus Torvalds, a twenty-one year old Finnish
student announces that he has begun work on afree
Unix-type kernel using GNU tools, such as GCC.
Hisam at the timeisto build afree Minix.

1991, October

Linus Torvalds releases the first version of his
kernel, which is still very primitive and is caled
Linux.

1992

The US Air Force awards New York University a
contract to build an open source compiler for the
new version of Ada (a language that it was almost
obligatory to use at that time in al contracts with
the US military), Ada 95. The NY U team chooses

165

Appendixes

Dates

Events

GNU GCC for the generation of code and calls its
compiler GNAT (GNU NYU Ada 95 Trandator).

1992, July

William and Lynne Jolitz release 386BSD 0.1,
which, with time, will give rise to the projects
NetBSD, FreeBSD and later OpenBSD.

1993

SuSE is founded in Germany, which begins its
business distributing Slackware Linux, translated
into German.

1993, August

lan Murdock starts a new distribution based
on Linux caled Debian GNU/Linux, which
will become the distribution built by voluntary
developers with the most participants.

1993, December

FreeBSD 1.0, one of the first stable distributions
derived from the Jolitz's 386BSD is released on the
Internet.

1994

The GNAT developers found the company Ada
Core Technologies, with the aim of guaranteeing its
development and evolution in the future and with a
business model based on providing servicesto their
clients compiler (and not selling the compiler itself,
which continues to be free software). With time,
GNAT will become the leader in the market of Ada
compilers.

1994, January

Version 0.91 of Debian GNU/Linux isreleased; itis
the fruit of the efforts of twelve devel opers.

1994, March

Thefirst edition of the Linux Journal is published.

1994, 29" July

Marc Ewing publishes the first version of Red Hat
Linux. As is the case with Debian, the aim is to
improve the results of the predominant distribution
in that time, Slackware.

1994, October

NetBSD 1.0. isreleased

1995

Bob Young founds Red Hat Software buying the
Red Hat Linux distribution from its creator, Marc
Ewing, and merging it with his own business, ACC,
which has been selling materials related to Linux
and Unix through catalogue since 1993. A little
later, Red Hat Linux 2.0 is released; it is the
first distribution that includes the RPM packaging
format.

1995 DARPA supportsthe development of nsthrough the
VINT project.

1995, January FreeBSD 2.0. isreleased

1995, April The first official release of Apache (0.6.2) takes
place.

1996 The First Conference on Freely Redistributable

Software takes place in Cambridge, Massachusetts,
us.

166

Appendixes

Dates

Events

1996, October

The KDE project is announced; it is one of the
first to address usability problems in the Unix
environment and thefirst that triestodo so onalarge
scalein theworld of free software.

1997, January Eric S. Raymond presents his paper "The cathedral
and the bazaar", in which he expresses his opinions
on why certain free software development models
work.

1997, August Miguel de Icaza announces the GNOME project, a

competitor to KDE with similar aims, but with the
explicit objective of ensuring that the whole of the
resulting system is free software. Born asareaction
of the Free Software Foundation and others to the
licensing problems that KDE had, which involved a
fundamental component, the Qt library, which was
not free software at that time.

1998, 22" January

Netscape declares its intention of distributing as
free software the code of its browser (Netscape
Navigator), which had been the leader in the web
browser market.

1998, 3" February

Chris Peterson, Todd Anderson, John Hall, Larry
Augustin, Sam Ockman and Eric Raymond meet
up to study the consequences of Netscape's
announcement with regard to the release of its
browser and decide to promote the term open source
software [146], using it as a brand that guarantees
that the productsthat haveit consist of free software.
The promotersof thisterm understand that itismore
appropriate for the corporate world than the one that
was more commonly used up to that moment, free
software. The Open Source Initiative is created to
manage the term.

1998, 31 March

Netscape publishesalarge part of its source codefor
Netscape Navigator on the Internet.

1998, 7" May

Corel announces the NetWinder, a network
computer based on Linux. It is the first time that
a large company commercialises an element that
uses software that is basically free software. Shortly
afterwards, Corel announces its plan to port its
office software (which includes WordPerfect) to
Linux, which isaso anovelty for the time.

1998, 28" May

Sun Microsystems and Adaptec become part of
Linux International. They are the first big IT
companies to do so.

1998, June

The technical conference of USENIX, which is
usually dedicated to Unix, opens a parallel session
called FREENI X, focusing on free software.

167

Appendixes

Dates

Events

1998, 22" June

IBM announces that it will commercialise and
provide support for Apache, using it as the server of
its WebSphere product line.

1998, July

Debian GNU/Linux 2.0 is released; it has been
built by more than three hundred volunteers and the
distribution includes more than one thousand five
hundred packages.

1998, July

KDE 1.0isreleased; it isthefirst version distributed
as stable. Several GNU/Linux distributions
incorporate it shortly afterwards.

1998, August

Linus Torvalds and Linux appear on the cover of
Forbes magazine.

1998, 29" September

Red Hat, whichistheleading company inthe market
of Linux-based distributions at the time, announces
that Intel and Netscape have bought a minority
sharein its capital. Free software begins to awaken
interest among investors.

1998, November

MandrakeSoft is founded and shortly afterwards, it
releases Mandrake Linux, its distribution of GNU/
Linux.

1998, 1% November

The Halloween Documents, in which Microsoft
supposedly identifies GNU/Linux and free software
as an important competitor and plans how to attack
it, are published.

1999, 27" January

HP and SGI announce that they will support Linux
in their computers, which marks the beginning of
a trend: the abandonment of proprietary Unix by
the computer manufacturers that used them as their
operating system, in favour of Linux.

1999, March

GNOME 1.0, which will subsequently be made
more stable (October GNOME) and incorporated in
several GNU/Linux distributions, is released.

1999, 9" March

Debian GNU/Linux 2.1 is released, with more than
two thousand packages.

1999, 15" March

Apple releases Darwin, which will be the centra
component of its new Mac OS X, under a free
license.

1999, August

Red Hat is floated on the stock exchange. The price
of the shares increases enormoudly in the first days
after the float, to the extent that it is capitalised at
4,800 milliondollars. Later, other companiesrelated
tofreesoftware, suchasV A Linux and Andover.net,
will also befloated onthe stock exchange. Thevalue
of the shares of al these companies will plummet a
few years later, when the dotcom bubble explodes;
many of these companieswill not survive the event.

168

Appendixes

Dates

Events

1999, October

Two companies are founded in order to produce
software in the framework of the GNOME project:
Eazel (which will go bankrupt in 2002, after
producing Nautilus, afile manager) and Helix Code
(later renamed Ximian and subsequently bought by
Novell, which will producetools such as Red Carpet
or Evolution).

1999, November

Red Hat Software buys Cygnus. The resulting
company isthe biggest company in theworld in the
field of free software.

2000, January Mozilla M13, considered by many as the first
reasonably stable version of Mozilla, is released
almost two years after the release of alarge part of
Netscape Navigator's code.

2000, May GNOME 1.2 (Bongo GNOME) is released.

2000, August The creation of the GNOME Foundation is

announced.

2000, 15" August

Debian GNU/Linux 2.2 isreleased, with more than
two thousand five hundred source packages, which
comprise approximately 55 million lines of code.

2001, January

Version 2.4 of Linux is released.

2001, 15" January

Wikipedia is started. The idea of building an
encyclopaediausing awiki as I T support, where, in
principle, anyone can cooperate, applying working
methods that are very similar to those used in free
software, becomes aredlity.

2002, 30" January

ObjectWeb, an organisation founded in France
by Bull, France Telecom and INRIA that is one
of the first organisations designed to produce
free software by cooperating with companies
and research centres, is founded with clearly
commercial objectives and the idea of being the
nucleus of an international community of interests.

2002, 3" April

KDE 3.0, the third generation of the KDE
desktop environment, is released. The quality of
free desktops begins to match that of traditional
commercial desktops.

2002, April

The gnuLinEx project is publicly announced;
with this project, the Regional Government of
Extremadura (Spain) wishes to use its own GNU/
Linux distribution in the computers of all the public
schoolsin the region.

2002, May

Mozilla 1.0, the first officially stable version of the
project, is released.

2002, 1% May

The office suite, OpenOffice.org 1.0, is released; it
will soon become a standard office application suite
in the free software world.

169

Appendixes

Dates

Events

2002, 26" June

GNOME 2.0, which represents an important
step forward for users, with a more carefully
designed interface and more attention to user-
friendliness, isreleased. Other aspects that improve
the accessibility are also introduced.

2002, 19" July

Debian GNU/Linux 3.0 is released with more than
100 million lines of source code; more than nine
hundred devel opers participate in this version.

2002, 28" July

Version 3.0 of Knoppix is released; it is an
evauation distribution that can be installed on a
hard disk quickly and easily, and it becomes a
tremendous success.

2002, 23" September

Thefirst version of Firefox (whichiscalled Phoenix
at thetime) isreleased, asan experimental extension
based on the code of Mozilla Suite that is supposed
to besimpler.

2002, December

Red Hat Softwre announcesthat its cash flow in the
second and third quarters of 2002 was positive.

2002, 16" December

The first Creative Commons licenses are published
(although the project was launched in 2001).

2003, January

MandrakeSoft, a company that produces the
Mandrake Linux distribution, declares bankruptcy.

2003, 19" January

FreeBSD 5.0-RELEASE is released, after almost
three years of work since the previous stable large-
scale version.

2003, 22" January

The number of articles in English on Wikipedia
reaches one hundred thousand articles. Shortly
afterwards, the number of German articles reaches
ten thousand.

2003, February

Motorola begins selling the A760 in Ching; it isthe
first mobile tel ephone that uses an operating system
based on Linux (theMontaVistaLinux distribution).

2003, 6" March

The SCO group files a lawsuit against IBM for
devaluing its version of Unix. This marks the
beginning of alawsuit in which IBM is accused of
contributing code that belongs to SCO to the Linux
kernel.

2003, 28" May

Munich City Council (Germany) announces that
Linux will replace Windowsin most of its computer
systems.

2003, July

M andrakeSoft announcesthat itsfinances have been
positive for the whole year and that it expects to
come out of receivership in late 2003.

2003, 7" July

An open letter [220] is written to the WIPO
(World Intellectual Property Organization) asking
it to examine new open models of collaborative

170

Appendixes

Dates

Events

creation (including free software but also the
Human Genome project or open scientific journals).

2003, 15" July

The Mozilla Foundation is established. Netscape
Inc. (now the property of AOL) announces that it
will no longer develop the Netscape browser and,
therefore, it will no longer work on the Mozilla
project. The Mozilla Foundation is established with
a donation of two million dollars from AOL and
material support and human resources from various
companies, including AOL itself, Red Hat and Sun
Microsystems.

2003, 4™ August

Novell buys Ximian Inc., one of the leading
companies in the development of free software
(especially for GNOME), as part of its strategy
to establish itself in the market for Linux-related
solutions.

2003, 2" September

OpenOffice.org 1.1 isreleased.

2003, 24" September

The European Parliament amends the Directive on
Patentability of Computer-lmplemented Inventions
so that (if it is approved as it stands) software
patents are not allowed in the European Union. The
Directive, which was originaly proposed by the
European Commission precisely to ensure that these
types of patents were legal, is till in the codecision
procedure, in which the Council of Ministers will
also haveto provide its opinion.

2003, 5" November

Version 1 (FC1) of de Fedora Core, the fruit of
the communal development process that Red Hat
had announced a few months before, is released.
As of this moment, the company Red Hat will
commercialise Red Hat Enterprise Linux, whilst
the Fedora Core collections are not officialy
maintained by Red Hat, but by the community of
voluntary developersthat build it with the assistance
of Red Hat (which already existed before Red Hat
decides on this collaboration).

2004, 13" January

Novell finishes its purchase of SUSE for a total of
210 million dollars.

2004, 9" February

The Mozilla Foundation decides to change the
Mozilla Firebird name (previously called Phoenix)
to MozillaFirefox. Thiswill be the definitive name
of the browser, while its development is close to
version 1.0.

2004, 18" May

The European Council, as part of the codecision
process on the European Directive on the
Patentability of Computer-Implemented Inventions,
decides to submit a compromise version of the text
to the European Parliament; however, it is accused
of ignoring the Parliament's vote, asthe new version

171

Appendixes

Dates

Events

permitsthe patenting of software. Thedecisionisso
contentious, even within the Council itself, that itis
not formally approved until March 2005.

2004, 8™ September

Pepper Computer announces that it will launch
the first miniPC with a touch screen that uses an
operating system that is completely free, based on
Fedora Core.

2004, 20" September

The number of articles on Wikipedia reaches one
million, in one hundred and five languages.

2004, 20" October

The first version of Ubuntu is released; it is based
on Debian and the aim is to publish new versions
regularly. The construction of the distribution is
financed by the company Canonical, which offers
maintenance and services for the distribution. The
distribution will become very successful, fairly
quickly.

2004, 9" November

Version 1.0 of Firefox is released, after a long
series of preparatory versions. This version was
downloaded more than 25 million times in the one
hundred days following its release.

2005, 24" January

MandrakeSoft announces that it is buying the
Brazilian company Conectiva, which releases a
distribution based on linux with the same name.
Shortly afterwards, MandrakeSoft announcesthat it
is changing its name to Mandriva.

2005, 1% May

OASIS recognises ODF (open document format),
the data format use by OpenOffice.org 2.0, among
others, as a standard.

2005, 251" May

Nokia announces its Nokia 770, a miniPC that uses
aversion of Debian GNU/Linux with the X Window
system and GTK+.

2005, 6" June

Debian GNU/Linux 3.1 isreleased; it now has more
than 200 million lines of source code.

2005, 14" June

Sun Microsystems releases Open Solaris, the free
version of its Solaris operating system.

2005, 15" June

Mandriva buys the US company Lycoris
(previously called Redmond Linux) and begins
working on a distribution that incorporates the
previous versions of Mandrake, Conectiva and
Lycoris.

2005, 61 Iy

The European Parliament rejects the proposal of
the Directive on the Patentability of Computer-
Implemented Inventions received from the Council
of Ministers, during the second reading. Thismeans
that the only legal text applicable to the subject
in the European Union is the European Patent
Convention of 1973.

172

Appendixes

Dates

Events

2005, 20" October

Version 2.0 of OpenOffice.org, which isdistributed
under the LGPL, isreleased.

2005, December

The first verson of Ruby on Rals, a
work environment for the development of
web applications using the model-view-controller
architecture, is released. Distributed with license
X11, it will be widely used in the prototyping and
development of numerous web services.

2005, December

Nicholas Negroponte announces the OLPC (One
Laptop Per Child) project, which has the aim of
designing and building a portable PC of 100 dollars
for children in developing countries. It uses free
software with a GNU/Linux version called Sugar,
based on Red Hat.

2005, 14" December

The science journal Nature publishes a paper
comparing Wikipedia with the Encyclopaedia
Britannica; according to the paper, the degree of
precision with regard to scientific subjects of both
encyclopaediasissimilar.

2006, 16™ January

The first draft of the GPLv3 is published; it is an
attempt to update the GPL, which isthe license that
ismost commonly used for free software projects at
the time (and by along way). At this point, an open
debating process begins with regard to the changes.

2006, 1% March

The number of articles in English on Wikipedia
reaches one million.

2006, 20" March

Fedora Core 5 is rel eased.

2006, 1% June

Ubuntu 6.06 LTS is released; it is advertised as
being supported by the company Canonical for three
years.

2006, August

The number of Firefox downloads reaches 200
million (there are many more downloads from
unofficial sites, which are not taken into account).
Around this time, it is estimated that the browser
hasa12% share of the global market (approximately
20% in Europe).

2006, 12" November

Sun announces that it will release the different
versions of the Java platform under the GPL.
Up until this moment, these versions had been
distributed for free in binary, which Sun had
justified citing compatibility and stability issues;
however this has made it extremely difficult to use
Javain free software distributions.

2006, 30" November

The 1SO (International Standards Organization)
and the IEC (International Electrotechnical
Commission) jointly publish OASIS ODF version
as an international standard (ISO/IEC 26300:2006)
for the exchange of office information.

173

Appendixes

Dates Events

2006, December The Taiwanese company First International
Computer (FIC) presents the first advanced mobile
telephone based on code that is completely open, in
the Open Source in Mobile conference. It is called
Neo01973, it costs 350 dollars and it uses a software
platform called OpenMoko, based on the kernel of
Linux 2.6, GTK+, X Windows and Matchbox.

2007, January The FLOSSImpact [80] study, on the effect
(especially the economic effect) of free software,
is published. The study has been financed by the
European Commission and it isthe first large-scale
study in thefield.

2007, 23 February Version 3.0 of the Creative Commons Licenses is
published.
2007, 8" pril Version 4.0 of Debian GNU/Linux is released.

Appendix C. GNU Public License

Version 2, June 1991

Copyright© 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA
Literal copies of this document may be copied and distributed, but not modified.

Preamble

Thelicensesfor most software are designed to take away your freedom to share and changeit. By contrast,
the GNU General Public Licenseisintended to guarantee your freedom to share and change free software
to make sure the software is free for al its users. This General Public License appliesto most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Lesser Genera Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. Y ou must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
givesyou legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
isno warranty for this free software. If the software is modified by someone else and passed on, we want

174

Appendixes

its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
TERMSAND CONDITIONSFOR COPYING, DISTRIBUTION AND MODIFICATION

0) This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The"Program”, below,
refers to any such program or work, and a "work based on the Program" means either the Program or
any derivative work under copyright law: that isto say, awork containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, trandation is
included without limitation in the term "modification™.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute awork based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1) You may copy and distribute verbatim copies of the Program'’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the noticesthat refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

Y oumay chargeafeefor thephysical act of transferring acopy, and you may at your option offer warranty
protection in exchange for afee.

2) You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet al of these conditions:

* a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

* b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

() If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide awarranty) and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the program itself is interactive but does
not normally print such an announcement, your work based on the program is not required to print an
announcement.)

These regquirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of awhole which isawork based on the

175

Appendixes

program, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the program.

In addition, mere aggregation of another work not based on the program with the program (or with awork
based on the program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3) You may copy and distribute the program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

» a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

» b) Accompany it with awritten offer, valid for at least threeyears, to give any third party, for achargeno
more than your cost of physically performing source distribution, a compl ete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on amedium
customarily used for software interchange; or,

The source code for awork means the preferred form of the work for making modifications to it. For an
executable work, complete source code means al the source code for al modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4) You may not copy, modify, sublicense, or distribute the program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the program is void, and
will automatically terminate your rights under this License. However, partieswho have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5) Y ou are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the program (or any
work based on the program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the program or works based on it.

6) Each time you redistribute the program (or any work based on the program), the recipient automatically
receives a license from the origina licensor to copy, distribute or modify the program subject to these
terms and conditions. Y ou may not impose any further restrictions on the recipients' exercise of the rights
granted herein. Y ou are not responsible for enforcing compliance by third partiesto this License.

7) If, asaconsequence of acourt judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.

176

Appendixes

If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the program at all. For example, if a
patent license would not permit royalty-free redistribution of the program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the program.

If any portion of thissectionisheld invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8) If the distribution and/or use of the program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9) The Free Software Foundation may publish revised and/or new versions of the General Public License
fromtimeto time. Such new versionswill be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the program specifies a version number of
this License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10) If you wish to incorporate parts of the program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11) BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS* WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12) IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/

177

Appendixes

OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMYS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Termsto Your New Programs

If you develop anew program, and you want it to be of the greatest possible use to the public, the best way
to achieve thisisto make it free software which everyone can redistribute and change under these terms.

To do so, attach the following noticesto the program. It is safest to attach them to the start of each source
fileto most effectively convey the exclusion of warranty; and each file should have at | east the " copyright"
line and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does. Copyright (C) yyyy name of author

Thisprogram isfree software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Thisprogram isdistributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

Y ou should have received acopy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it startsin an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type “show w'. This is free software, and you are welcome to redistribute
it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than 'show w' and 'show ¢'; they
could even be mouse-clicks or menu items -whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Y oyodyne, Inc., hereby disclaimsall copyright interest in the program “Gnomovision' (which makes passes
at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

ThisGeneral Public License doesnot permit incorporating your program into proprietary programs. If your
program isasubroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License.

178

Appendixes

Appendix D. Texts of some legislative
proposals and related documents

Below is the literal text of some of the legidlative proposals mentioned in chapter 6 and of some of the
related documents.

D.1. Draft bill brought by L affitte, Trégouét and Cabane (France)

We provide below atrandlation of the proposed law made in October 1999 by the French senators Pierre
Laffitte, René Trégouét and Guy Cabanel [laffitte99: propos].

D.1.1. Recitals
(Only the paragraphs on free software are included.)

[...] In order to guarantee the perpetuity of accessible data, facilitate its exchange and ensure that citizens
have free access to information, the use of this information by the Administration must not depend on
the goodwill of software manufacturers. It is necessary to have free systems whose development may be
guaranteed thanks to the manufacturers' source code being available to al.

Free softwareis currently developing very fast. Thereare many I T companiesthat recognisethat the future
of their businessis not in selling software, but in assisting people that use it, by providing the associated
services.

Our bill would establish that, after a transitional period defined by decree, the use of free software will
be obligatory in all public administrations.

Proprietary software, whose source code is not freely available, may only be used in specific cases, when
an authorisation is provided by afree software agency. [...]

D.1.2. Articles
» Article 1. On the dematerialisation of information and data exchange between public administrations.

State services, local administrations and public bodies will ensure that their information and data are
put into an electronic format, with electronic networks, as of 1% January 2002.

The conditions that regulate the transition from the current paper-based exchange and the future
exchange using electronic formats and networks will be specified by decree.

* Article 2. On the dematerialisation of public market processes.

In order to guarantee a great degree of transparency and quick access to information for companies,
al public tenders and the attached documents, will be published in electronic formats and networks,
as of 1% January 2002. Likewise, all bids for public tenders must be published in electronic formats
and networks.

A decree will determine the mechanisms of the transition to electronic processes.
* Article 3. On open technologies.

Subject to the exceptions mentioned in article 4, as of 1% January 2002, State services, local
administrations and public bodies may only use software that is free to use and modify and for which
the source code is available.

A decree will determine the terms and conditions of the transition.

179

Appendixes

« Article 4. On the Free Software Agency.

A Free Software Agency will be created. It will be in charge of informing the State services, local
administration and public bodies of the conditions in which this law must be applied. The Agency will
determine the use of software licenses that are appropriate in the context established by this law.

The Agency will ensure the interoperability of the free software used by the public administrations.

The Agency will make an inventory, for each sector, of any fields in which there is no available free
software, no applicable software that can be freely used and modified or no applicable software whose
source code is available. On the basis of this inventory, the Agency will declare the relevant public
administrations as exempt from this law.

The Free Software Agency will be open to all Internet users, and their decisions must be preceded by
consultations made on the Internet.

A representative of the Free Software Agency will be appointed in each prefecture.
The Free Software Agency's methods of working will be established by decree.
» Article5. On the dissemination of the modifications to the software used in the context of thislaw.

The Free Software Agency will ensure, whilst respecting copyrights, that the modifications to the
software are disseminated in accordance with the framework of this law.

» Article®6.

The costsincurred by the State as aresult of thislaw will be compensated through increasesin therights
defined in articles 575 and 575A of the General Tax Code.

D.2. Draft Bill of Le Déaut, Paul and Cohen (France)

We will now provide a trandation of practically the whole of the draft bill presented by Jean-Yves Le
Déaut, Christian Paul and Pierre Cohen in April 2000.

D.2.1. Recitals

The tremendous growth in the use of new information technologies and telecommunications has made it
necessary to produce accompanying legislation. The public services and the local administrations must
become the model and engine of theinformation society that will guaranteeindividual freedoms, consumer
safety and equal opportunitiesin the field in question.

Various examples show that, despite some significant progress achieved thanks to the actions of the
Government in thefield of the information society, the State services tend to use communication standards
that are intimately linked to one single private provider, which means that a user or collective is bound to
act as the client of this same provider, thereby strongly reinforcing the phenomena of abuse of dominant
position.

The State service often use software with source code that is not available, which makes it impossible to
correct the bugs and faultsthat the suppliersthemsel vesrefuseto correct or check whether there are security
deficiencies in sensitive applications. The State services use, sometimes unknowingly, software that
secretly transmitsinformation that isa priori considered confidential, to foreign societies or organisations.

However, the economic models of the software and telecommunications industry developed by the
market are based, to a large extent, on the appropriation of clientele and the exponential valuation of the
obtainment of user profiles. These economic models reward strategies of providing incompatible products,
of industrial secrets and of planned obsolescence and the violation of individual freedoms. Although the

180

Appendixes

French State cannot eliminate these underlying tendencies using the law due to the transnational nature of
communication networks, it can, however, facilitate the development of an information society on French
soil that is respectful of public freedoms, of consumer safety and of equal opportunities, and this would
hopefully set a precedent for Europe and the world.

Thelaw isbased onfive principles. acitizen'sright to have free accessto public information, the perpetuity
of public data, the security of the State, consumer safety in the information society and the principle of
software interoperability.

In order to guarantee the citizen's free access to public information, the code of the computerised data
provided by the Administration must not be linked to one single supplier. Open standards, in other words,
those in which the data coding regulations are public, make it possible to guarantee free access, as they
permit, where necessary, the development of free compatible software.

In order to guarantee the perpetuity of the public data, the use and maintenance of the software must not
depend on the goodwill of the software's creators. It is necessary to have systems whose development is
always guaranteed by the availability of the source code. The principle of source code availability in the
framework of license-based contracts, which is a principle that to date has only been present as an option
in the legislation on public utility and software package purchases, must become the rule and be applied
to all public software purchases.

We have deliberately avoided an ambiguous legidlative approach based exclusively on the use of free
software. It would not be appropriate for the State, regardless of the recognised quality of the free
software, to favour a determined economic model for the publication of software. On the contrary, the
obligatory resort to open communication standards and the publication of source codewill guarantee equal
opportunities, in accordance with the principles of interoperability of the legislation on software.

In order to guarantee national security, it is necessary to have systems that are free of elements that may
provide remote control of the system or the involuntary transmission of information to any third parties.
We need systems whose source code is freely accessible to the public, so that it can be examined by a
large number of independent world experts. The hill that we propose should provide more security for
the State, as full working knowledge of the source code would eliminate the growing number of pieces
of software containing "backdoors".

The bill that we propose would likewise reinforce consumer safety in the information society, asit would
allow for the emergence of new offers of software without "backdoors", which would not threaten the right
to aprivate life and individual freedoms.

But for equal opportunities to emerge, it will be necessary to reaffirm and reinforce the principle of
interoperability in the legidlation on software and legislation on compatibility. Today, both of theserights
are threatened by the parties that benefit from their dominant monopolistic position, who put obstaclesto
avoid the emergence of any competition.

In order to guarantee the interoperability of software, the intellectual or industrial property rights of a
software creator must not block the development of new compatible software that would compete with
him. The right to compatibility for all, in other words, the right to freely develop, publish and use original
software that is compatible with other software, must be guaranteed by the law. Likewise, the principle
of interoperability introduced by European laws on software must prevail over the other intellectual or
industrial property rights that may apply. Particularly, the existence of a brand on a communications
standard or a patent on an industrial process that is necessary to implement a communications standard,
must not permit its owner to block or limit the free dissemination of compatible free software.

The hill that we propose could be applied immediately. In effect, most software editors are prepared to
adopt open communication standards, such as those defined in Paris, Boston and Tokyo by the World
Wide Web Consortium. There are many proprietary software editors that are likewise prepared to provide
the French Government with the source code of their products. In addition, the offer of free software

181

Appendixes

based on the Linux operating system will cover many of the Administration's needs, now and in the future.
However, the Administrations and its collective bodies are not sufficiently informed about the existence
of open standards or the offers of software published with its source code.

In order to facilitate the fast implementation of free standards, it is necessary to reinforce the role of the
Inter-ministerial Commission on Technical Support for the Development of Information Technologies
and Communication in the Administration (Mission Interministérielle de Soutin Technique pour le
Développement des Technologies de I'Information et de la Communication dans I'Administration), and
entrust it with the mission of carrying out and disseminating within the Administration, a census of the
offer of open standards and software published with its source code. If thereisno market for this, theMTIC
will be in charge of developing new standards or new software published with its source code. In order
to carry out these new tasks, the MTIC will be transformed into the Agency of Information Technologies
and Communication (AITC).

When there is no market, the AITC will be in charge of developing new standards or new software
published with its source code. In order to ensure equal opportunities, the software developments that
occur will be put in the public domain; therefore, these devel opments may be sold as proprietary software
or asfree software, according to the license freely chosen by the editor. The AITC will also bein charge of
evaluating the levels of interoperability, perpetuity and security of the software purchased by the French
Administration.

More generally, the open communication systems and the availability of the source code are essential to
guaranteetheinteroperability, on aEuropean level, betweenthe I T systems of the different administrations
and the national public bodies, and to avoid that the interconnection between systems depend solely on
the goodwill of the software editors. The AITC will also bein charge of participating in the international
cooperation projects in the sphere of information technologies and communications, and of facilitating
interoperability with the information systems of the other European Union member countries.

The bill that we propose would cover the concerns listed above. It reminds us that the State can play an
important role in the economy, preserving national and European interests, whilst defending the market
economy. This bill would allow France to stand as the defender of freedom within the new information
and communication technologies.

D.2.2. Articles
» Articlel.

For all computerised data exchanges, the State Administration, the local administrations and the
local bodies would have the obligation of using open communication standards, constituted by public
regulations and procedures for exchanging digital data.

» Article2.

The Administration, the public bodies and the territorial public administrations are obliged to use
software whose source code is accessible.

» Article3.

All individuals or corporate entities have the right to develop, publish or use original software that is
compatible with the communication standards of any other software.

» Article4.

A public State body will be created, called the Agency of Information Technologies and
Communications. This body would report to the Ministry of Industry. The AITC will have the task
of reporting to and advising the State services, the collective bodies and the public bodies on the
creation and identification of the technical requirementswith regard to information and communication

182

Appendixes

technologies. It will identify the needs of the public services with regard to equipment and software,
ensure that the communi cation standards are harmonised and propose the technical practices that must
be applied. It will carry out inventoriesin each sector of activity of the open standards and the available
software.

Depending ontheresultsof theinventory, it will support the devel opment of open standards and software
published with its source code and promote the use of this type of software in the public domain to
mitigate any deficiencies in the market.

The AITC will favour the interoperability with the information systems of other EU member States and
participate in the international cooperation projects in the sphere of information and communication
technologies. The AITC will have arepresentative in each prefecture.

The AITC'sways of working will be established by decree.
» Articleb.

The modes of applying this law, as well as the conditions of the transition from the current situation,
will be established by decree issued by the Council of State.

» Article6.

Theexpensesincurred by the State asaresult of applying thislaw will be paid using the sums established
in articles 575 and 575A of the General Tax Code.

D.3. Bill proposed by Villanueva and Rodrich (Peru)

We will now provide the trandation into English of the literal text of most of Draft Bill number 2485, on
the Law on Free Software in Public Agencies, of the Peruvian congressmen Edgar Villanueva NUfiez and
Jacques Rodrich Ackerman [223].

D.3.1. Recitals

The complexity of the world we are living in demands permanent review and constant adaptation of its
institutional framework to be up to date with the current technological trends that the world imposes.

The discovery of new information technologies and among them, free software, has become an ideal
instrument to assure the preservation of the State's data.

In thisway technology fulfilsitsrole of facilitating the different and multiple human activities, being one
of them, the handling of public information.

According to the Peruvian Constitution, in section 5 of article 2, "al persons have the right to solicit
information that they need without disclosing the reason, and to receive that information from any public
entity within the period specified by law, at areasonable cost. Information that affects personal intimacy
and that is expressly excluded by law or for reasons of national security is not subject to disclosure”.

Section 6 of the same article emphasisestheright al persons have "to be assured that information services,
computerised or not, public or private, do not provideinformation that affects personal and family privacy".

Having said this, it isobviousthe concern of our Constitution for establishing institutional basesthat protect
the citizens freedom to information access and the non-disclosure of information that affects personal and
familiar intimacy, likewise for reasons of national security.

The guarantee of these rightsin our Constitution isn't solely based in the goodwill of the State's agents to
fulfil the norms of the Constitution, but also by the use of technologies that in some cases contribute and
in others do not, to an effective protection of said citizens rights.

183

Appendixes

It isin this context that it is of utmost importance for the State the incorporation of those technologies
that help to reinforce the exercise of the citizens' access to information and its due reserve in cases that
require so.

The use of free softwarein all of the State's agencies pointsin this direction. Basically we can say that the
fundamental principlesthat drive the present Bill aretightly related to the basic guarantees of ademocratic
State and we can sum them up in the following:

1) Free access of the citizens to public information
2) Perpetuity of public data
3) Security of the State and of the citizens

To guarantee the citizens free access to public information, it is essential that the coding of the datais
not tied to a sole provider. The use of standard and open formats assures this free access, making possible
the creation of compatible software.

To guarantee the perpetuity of public data, it is indispensable that the use and maintenance of software
do not depend on the goodwill of the providers, nor on monopoly conditions, imposed by those. Systems
whose evolution can be guaranteed by the availableness of source code are needed.

To guarantee national security it's vital to have systems that are devoid of elements that allow remote
control or the transmission of non-desired information to third-parties. Therefore, it is essential to have
systems whose source code is freely accessible to the public, so that its inspection is allowed to the State,
the citizens and a great number of independent experts in the world.

This proposal provides more security, because the knowledge of the source codewill eliminatethegrowing
number of programs with spy-ware.

In the same way, this Bill furthers the security of the citizens, both in their condition of legitimate holders
of the information handled by the State asin their condition of consumers. In thislast caseit would allow
the growth of an extensive supply of free software devoid of potential spy-ware that makes it possible to
jeopardise private life and individual freedoms.

The State, looking to improve the quality of public administration as both keeper and manager of private
information, will establish the conditions in which agencies of the State will acquire software in the future,
that is, in a manner that is compatible with the constitutional guarantees and basic principles previously
stated.

The project clearly states that any given software in order to be acceptable for the State must not only be
technically adequate to carry out a given task, but must also fulfil some requirements in license matters,
without which the State could not guarantee the citizens the adequate process of their data, looking over
for their integrity, confidentiality and permanent accessibility, all of which are critical elements for its
fulfilment.

The State establishes conditions for the use of software by the agencies of the State, without meddling in
any way in the transactions of the private sector. It is acknowledged that the State does not have the ample
spectrum of contractual freedom that the private sector has, because it is restricted due to the requirement
of transparency of al public acts, and in this sense the common benefit must be the leading factor to take
into account when legislating over this matter.

The project also guarantees the principle of equality before the Law, because no natural or legal entity is
excluded of the right to purvey those goods, under the conditions stated in this Bill and without any more
limitations than the ones that are established in the Bill of Contracts and Acquisitions of the State (TUO
Supreme Decree number 012-2001-PCM).

184

Appendixes

Additionally to these advantages we could highlight benefits that would begin to show up as aconsequence
of these measures, immediately after being carried out.

To begin with, there are the job opportunities for local programmers. Of the universe of server Software
commercialised in the USA. over the last year, 27% belongsto "free" software, atruly significant portion
for that huge and competitive market. The number speaks for itself and constitutes a firm answer to those
who would think that free software would imply a hefty limitation to the employment of programmers of
the country. On the contrary, the initiative will allow the release of a great amount of resources, and an
incentive to boost human creativity.

By making use of free software, professionals can analyse the root of the problems and improve the
development in whatever cases are necessary, using the globally available free software, under different
licenses. It is an ideal area to employ creativity, an aspect in which young Peruvians would be able to
reach good levels.

On the other hand, by means of the free software we get rid of illegal software that is present in some
agencies of the State. The non-permitted use of software inside the State or the mere suspicion of this
constitutes a powerful incentive to make any given public employee modify the situation that goes against
intellectual property.

Although it is correct to say that the adoption of free software is not necessary to abide by the law, its
use will drastically reduce the irregular occurrences and will act as a medium of legal infection, both in
the State and the private sector.

We can count many countries that are formally acknowledging an exclusive use of Free Software in the
public sector.

Among them we have France, where a legal norm about this subject is being debated. The government
of the city of Mexico (DF) has already started an important migration to adopt free software in a general
way and thisis the leading country in thisfield in the western world. Also, in Brazil, the State of Recife
has ruled its adoption. The Popular Republic of China has been using free software for several yearsasa
policy of the State. The same applies to Scandinavian countries. In the US both NASA and the US Navy
among other organisations have adopted free software for some of their needs, as have also done so other
government and private entities.

Finally, the project grants the execution of this law to the Presidency of the Council of Ministersfor being
this organism the one that concentrates the direction of al government ingtitutions. In this sense it has a
strategic advantage for carrying out the given reform and the migratory process of proprietary software
to free software.

These are the types of ideas in which these aspects have been specified in this legislative proposal.
D.3.2. Cost/Benefit analysis

Thisinitiative does not imply any expenseto the national treasury. However, for the fulfilment of itsaims,
it will be necessary to reassign the governmental expenditure whose incidence confines itself to what is
effectively expended by each governmental organism in the processes of contracts and bids of the State
for the acquisition of software.

Although it is true that free software represents a substantial saving for the State's economy, when
compared with proprietary software, thisis not the central point of support of thisBill. Aswe have pointed
out, its advantage focuses on the technological reassurances that the program conveys to the information
that the State handles, information that in many instancesis of areserved nature.

In this sense a better protection of the citizens' rights constitutes a non-measurable benefit that must be
taking into account from the cost/benefit analysis point of view.

185

Appendixes

We can sum up the benefits of the project in the following subjects:
» Nationa Security.

In order to perform its functions, the State must store and process information on its citizens. The
rel ationship between theindividual and the State depends on the privacy and integrity of thisdata, which
must be adequately kept against three specific risks:

1) Disclosurerisk: confidential datamust be handled in such way that the accessto themismadepossible
only to authorised persons and institutions.

2) Risk of impossibility of access: the data must be stored in such way that the access to them by
authorised persons and institutions is guaranteed for all its period of usefulness.

3) Risk of alteration: the alteration of data must be restricted, again only to those authorised to do so.

With free software all these risks are considerably mitigated. It allows the user to make a complete and
exhaustive inspection of the mechanismsthat are used to process data. Thefact that free software allows
the inspection of its sources is an excellent security measure because having the mechanisms exposed
to the eyes of trained professionals makes hiding malicious functions inside them exponentially more
difficult, even if the end user does not take the time to search for them by himself.

» Technological Independence.

With proprietary software there is no freedom of contract in the aspects of extension and correction of
the system in use, atechnological dependence isforged, one in which the provider isin the position of
ruling, one-way only, terms, deadlines and costs.

Free Software entitles the users with the freedom to control, correct and modify the program to suit
it better to their needs. This freedom is not aimed at programmers only. Although they are the ones
who can take advantage of it first-hand, the users benefit greatly too, for in this way they can hire any
programmer (not necessarily the original author) to correct given errors or add functionality.

» Loca development.

In the case of proprietary software, the user is able to execute or run a program, but not to inspect or
modify it; consequently, the user cannot learn from it; the users become dependent on a technology
that not only do they not understand but that is expressly prohibited to them. The professionals in
their environment, who could help the users to achieve their aims, are equally limited: as the way in
which the program works is secret and its inspection is not permitted, it is not possible to fix it. In
thisway, local professionals see their possibilities of offering added value constantly more limited and
their employment horizons narrow, along with their chances to learn more. With free software, these
disadvantages of proprietary software are enormously mitigated.

» Cost of software.

The cost is greatly reduced because, being free, thereisno need to ask for additional licensesto continue
using the program. This need does exist with proprietary software. It is important for the user to be
able to keep these costs under control, because if he cannot, he might be impeded to further carry on
with his goals, bound by unplanned occurrences. Again, here it is the technological dependence that
threatens free software.

» More sources of employment.

With free software, handwork that was chained as a consequence of the technological dependency of
the State to proprietary software is freed. Now user resources (in this case the State agencies) will be
assigned for maintenance and support of free software.

186

Appendixes

» Boost to creativity and entrepreneurship.
D.3.2.1. Costs

The big cost that isinvolved with the change from proprietary to free software islimited to the migratory
process. Even if it is true that the migratory process involves costs in studies, decision making to
implement the new systems, handwork to implement the change, data conversion, retraining of personal
and eventually expenses in licenses and/or development and time; it is no less certain that all these are
fixed costs and are paid only once.

On the other hand, proprietary software hasits costs, which were paid and which cannot be recovered. But
aside from these costs there are others involved with proprietary software: permanent updates (sometimes
reinforced by a self-supported monopoly) and above al the huge price for the State that is the loss of
the freedoms that guarantee the control of its own information. These costs are permanent and with the
passage of time, sooner or later they exceed the fixed costs of carrying out amigration.

To summarise, the benefits of the migratory process exceed its costs.

D.3.3. Legal Formula

D.3.3.1. Article1. Aim of the law

Employ exclusively free software in al the systems and computer equipment of every State agency.
D.3.3.2. Article 2. Scope of application

The Executive, Legislative and Judicia branches aswell asthe autonomous regional or local decentralised
organisms and the corporations where the State holds the mgjority of the shares will use free softwarein
their systems and computer equipment.

D.3.3.3. Article 3. Authority of application
The authority in charge to execute the law shall be the Council of Ministers.
D.3.3.4. Article 4. Definition of free software

For the purposes of thislaw, programor free software shall be defined asthat whoselicense shall guarantee
the user, without additional cost, the following:

 Unrestricted use of the program for any purpose.
 Unrestricted access to the respective source code.
» Exhaustive inspection of the working mechanisms of the program.

» Use of the internal mechanisms and arbitrary portions of the software, to adapt them to the needs of
the user.

* Freedom to make and distribute copies of the software.

» Moadification of the software and freedom to distribute said modifications of the new resulting software,
under the same license of the original software.

D.3.3.5. Article 5. Exceptions

Given the case where no solution which uses free software exists, that could satisfy the determined
necessity, the State Agencies could adopt the following alternatives adhering to their order.

187

Appendixes

If verifiable time constraints should occur in attending a technical problem and proprietary software was
found to be available, the organism that needed it could negotiate a permission of exception before the
competent authority to utilise proprietary software that has the following characteristics:

» The programs shall comply with the stipulations mentioned in section 4 of the law, except for the free
distribution of the modified program. In such a case the permission of exception could be definitive.

* If no programs of the preceding category were available, those that exist in a free project of advanced
development shall be chosen. The permission in this case shall be transitory and will automatically
expire when the free software becomes mature with the functionality that is necessary.

« If no products could be found that met these conditions, then proprietary software could be used, but the
demanded permission of exception from the competent authority will expire automaticaly two years
after it was issued, having to be renewed previous establishment that a satisfactory solution of free
software was not available.

The competent authority shall emit a permission of exception only if the State organism guarantees the
storage of datain open formats, without prejudice of payment for the proprietary licenses.

D.3.3.6. Article 6. Educational permissions

All educational establishmentsthat depend on the State are able to manage its proprietary software license
of its use in research, after paying the corresponding intellectual property rights and applicable licenses,
provided that the aim of the research is directly associated to the use of the program in question.

D.3.3.7. Article 7. Transpar ency of the exceptions

The exceptions that originate in the authority of a given application must be sustained and published in
the website of the State's Portal.

The resolution that authorises the exception must enumerate the functional requirements that the program
must fulfil.

D.3.3.8. Article 8. Exceptional authorisation

In case some State agency cannot fulfil its requirements with software stated in article 2 of this law then
it is authorised to acquire proprietary software to store or process data which must be kept in reserve, the
respective authority must publish in the State's portal a report where the risks associated with the use of
given software for a particular application must be explained.

The exceptional permissions granted to State agencies related with security and national defence are
exempted from the previously stated obligation.

D.3.3.9. Article 9. Responsibilities

The maximum administrative authority and the technical and informative authority of each agencies of the
State assume the responsibility for the fulfilment of this law.

D.3.3.10. Article 10. Regulatory norm

The executive branch of the government will rule within one hundred and eighty days deadline, the
conditions, deadlines and forms in which the current status quo will be changed to one which satisfies
the conditions of this law, and will guide, in that sense, al future contracts and negotiations for software
acquisition.

In the same way, it will direct the migratory process of the proprietary software systems to free software
ones, in every case where the given circumstances so demand.

188

Appendixes

D.3.3.11. Article 11. Glossary of terms

a) Program or software: any sequence of instructions used by a digital data processing system to carry out
a specific task or to solve a given problem.

b) Execution or use of a program: the act of using it on any digital data processing system to carry out
afunction.

¢) User: natural or legal entity that makes use of the software.

d) Source code or source program: complete set of instructions and source digital files created or modified
by those who programmed them, plus all the support digital files, like data tables, images, specifications,
documentation, and any other element that is necessary to create the executable program. As an exception,
all those tools that are usually available as free software in other media may be excluded, for example,
compilers, operating systems and libraries.

€) Free software or program: that which guarantees the user, without further cost, the following:
 Unrestricted use of the program for any purpose.

» Unrestricted access to the respective source code.

 Exhaustive inspection of the working mechanisms of the program.

» Use of the internal mechanisms and arbitrary portions of the software, to adapt them to the needs of
the user.

 Freedom to make and distribute copies of the software.

» Modification of the software and freedom to distribute said modifications of the new resulting software,
under the same license of the original software.

f) Proprietary software (non-free software), that which does not fulfil all the requirements listed in the
previous statement.

g) Open format: any manner of digitally coded information that satisfies both existent standards and the
following conditions:

« Itstechnical documentation is publicly available.
» The source code of at least one complete reference implementation is publicly available.

e Therearenorestrictionsfor the creation of programsthat store, transmit, receive or access data codified
in such way.

D.4. Lettersfrom Microsoft Peru and congressman Villanueva

On 21% March 2002, Juan Alberto Gonzélez, the general manager of Microsoft Peru, sent a letter to
congressman Edgar Villanueva Nufiez with regard to his draft bill on free software [129]. On gih April,
the congressman replied [179]. We include here the English trandlation of aliteral transcription of almost
the whole text of both letters (the paragraphs not related to the draft bill have been edited out).

D.4.1. Letter from Microsoft Peru

Aswe arranged in our meeting, we attended the forum organised in the Congress of the Republic on March
" regarding the law that you have proposed. There we got the chanceto listen to several presentations on
the subject. We would now like to present our position so that you have a better view of the real situation.

189

Appendixes

Y our proposal mandates that every public organisation exclusively uses free software, also known as open
source software. This is something which transgresses the principles of equality before the law, of no
discrimination, of free private initiative, and of freedom of industry and contracting, which are protected
by the Constitution.

Y our proposal, by making mandatory the use of open source software, establishes discriminatory and non-
competitivetreatment in contracting and acquisitions by public organisations, viol ating the basic principles
of the Law of State Contracting and Acquisitions (Number 26850).

By forcing the Stateto favour abusiness model supporting exclusively open source software, your proposal
will discourage local and international software manufacturers who make real and important investments
in the country, create a significant number of direct and indirect jobs, and thus contribute to the national
income. In contrast, open source software development always has a lesser benefit to the economy, since
it mainly creates jobs in the service sector.

Y our proposal imposesthe use of open source softwarewithout considering therisksthiscarriesto security,
warranty, and possible violation of the intellectual property rights of third parties.

It erroneously assumes that open source software is free software, that is, without cost, and therefore
arrives at incorrect conclusions about money saved by the State. It has no cost-benefit analysis to back
up this assumption.

It is wrong to think that open source software is free. Research by the Gartner Group (an important
market researcher in the technology world, well-known worldwide) has shown that the cost of software
acquisition (operating system and applications) is only 8% of the total cost of ownership that enterprises
and organisations must face as a consequence of the rational and productive use of technology. The other
92% is costs of installation, training, support, maintenance, management, and downtime.

One of the arguments supporting your proposal is the supposed cheapness of open source software when
compared to commercia software, without considering the possibility of volume licensing models. The
State can redlly benefit from these, as other countries have.

Additionally, the approach chosen by your project (i) is clearly more expensive because of the high costs of
migration; (ii) risksloss of interoperability among information systems, both inside the State and between
the State and the private sector, due to the many different distributions of open source software on the
market.

In most cases, open source software does not offer adequate levels of serviceto achieve better productivity
by its users, nor doesit offer warranties from well-known manufacturers. These things have caused many
public entities to go back on their decisions to use open source software; they are now using commercial
softwareinits place.

This project discourages creativity in the Peruvian software industry, which sells USD 40 million worth
of goods every year, USD 4 million of that exported (10th place in the ranking of Peruvian non-traditional
exports, more than handcrafted goods) and is a source of highly skilled jobs. With alaw encouraging the
use of open source software, programmers lose their intellectual property rights and their most important
source of remuneration.

Since open source software can be freely distributed, it cannot make any money for its developers by
exportation. In thisway, it weakensthe multiplier effect of software salesto other countries and stuntsthe
growth of thislocal industry, which the State should be stimulating.

In the forum, the importance of the use of open source software in education was discussed, without
commenting on the complete failure of this initiative in countries like Mexico. There, the same State
officialswho supported the project now say that open source softwaredid not provide alearning experience
to children in schools, adequate levels of training were not available nationwide, inadequate support for

190

Appendixes

the platform was provided, and the software was not integrated well enough with existing school computer
systems.

If open source software fulfils al the requirements of State entities, why should alaw be needed to adopt
its use? Should not the market freely choose which products provide more benefits and value?

D.4.2. Reply from Congressman Villanueva

First of all, I thank you for your letter of March 25, 2002 in which you state the official position of Microsoft
relativeto Bill Number 1609, Free Softwarein Public Administration, which isindubitably inspired by the
desirefor Peru to find asuitable placein the global technological context. In the same spirit, and convinced
that we will find the best solutionsthrough an exchange of clear and open idesas, | will take this opportunity
to reply to the commentaries included in your |etter.

While acknowl edging that opinions such as yours constitute asignificant contribution, it would have been
even more worthwhile for me if, rather than formulating objections of a general nature (which we will
analysein detail later) you had gathered solid argumentsfor the advantages that proprietary software could
bring to the Peruvian State, and toitscitizensin general, since thiswould have allowed amore enlightening
exchange in respect of each of our positions.

With the aim of creating an orderly debate, we will assume that what you call open source software is
what the bill defines as free software, since there exists software for which the source code is distributed
together with the program, but which does not fall within the definition established by the bill; and that
what you call commercial software is what the bill defines as proprietary or non-free, given that there
exists free software which is sold in the market for a price like any other good or service.

It is also necessary to make it clear that the aim of the bill we are discussing is not directly related to the
amount of direct savings that can be made by using free software in state institutions. That isin any casea
marginal aggregate value, but in no way isit the chief focus of the bill. The basic principles which inspire
the bill are linked to the basic guarantees of a state of law, such as:

* free accessto public information by the citizen,
 permanence of public data,
* security of the State and citizens.

To guarantee the citizens free access to public information, it is essential that the coding of the datais
not tied to a sole provider. The use of standard and open formats gives a guarantee of this free access, if
necessary through the creation of compatible free software.

To guarantee the permanence of public data, it is necessary that the usability and maintenance of the
software does not depend on the goodwill of the suppliers, or on the monopoly conditions imposed by
them. For this reason the State needs systems the development of which can be guaranteed due to the
availahility of the source code.

To guarantee national security or the security of the State, it isindispensable to be able to rely on systems
without elements which allow control from adistance or the undesired transmission of information to third
parties. Therefore, systems with source code freely accessible to the public are required to alow their
inspection by the State itself, by the citizens, and by a large number of independent experts throughout
the world. Our proposal brings further security, since the knowledge of the source code will eliminate the
growing number of programs with spy code.

Inthe sameway, our proposal strengthensthe security of the citizens, bothin their role aslegitimate owners
of information managed by the State, and in their role as consumers; in this second case, by allowing the
growth of a widespread availability of free software not containing spy code able to put at risk privacy
and individua freedoms.

191

Appendixes

In this sense, the hill is limited to establishing the conditions under which the State bodies will obtain
software in the future, that is, in away compatible with these basic principles.

From reading the bill it will be clear that once passed:

« thelaw does not forbid the production of proprietary software

« thelaw does not forbid the sale of proprietary software

* thelaw does not specify which concrete software to use

» thelaw does not dictate the supplier from whom software will be bought

* thelaw does not limit the terms under which a software product can be licensed.

What the hill does express clearly, is that, for software to be acceptable for the State it is not enough
that it is technically capable of fulfilling a task, but that further the contractual conditions must satisfy a
series of requirements regarding the license, without which the State cannot guarantee the citizen adequate
processing of his data, watching over its integrity, confidentiality, and accessibility throughout time, as
these are very critical aspects for its normal functioning.

We agree, Mr. Gonzélez, that information and communication technology have a significant impact on
the quality of life of the citizens (whether it be positive or negative). We surely also agree that the basic
values | have pointed out above are fundamental in ademocratic state like Peru. So we are very interested
to know of any other way of guaranteeing these principles, other than through the use of free softwarein
the terms defined by the bill.

Asfor the observations you have made, we will now go on to analyse them in detail:

Firstly, you point out that: 1. "Your proposa mandates that every public organisation exclusively use
free software, also known as open source software. This is something which transgresses the principles
of equality before the law, of no discrimination, of free private initiative, and of freedom of industry and
contracting, which are protected by the Constitution."

This understanding is in error. The bill in no way affects the rights you list; it limits itself entirely to
establishing conditionsfor the use of software on the part of state institutions, without in any way meddling
in private sector transactions. It is a well established principle that the State does not enjoy the wide
spectrum of contractual freedom of the private sector, as it is limited in its actions precisely by the
requirement for transparency of public acts; and in this sense, the preservation of the greater common
interest must prevail when legislating on the matter.

Thebill protectsequality under thelaw, since no natural or legal entity isexcluded from theright of offering
these goods to the State under the conditions defined in the bill and without more limitations than those
established by the Law of State Contracts and Purchasing (TUO by Supreme Decree No. 012-2001-PCM).

The bill does not introduce any discrimination whatsoever, since it only establishes how the goods have
to be provided (which is a State power) and not who has to provide them (which would effectively be
discriminatory, if restrictions based on national origin, race religion, ideology, sexual preference etc. were
imposed). On the contrary, the bill is decidedly anti-discriminatory. Thisis so because by defining with no
room for doubt the conditions for the provision of software, it prevents State bodies from using software
which has a license including discriminatory conditions.

It should be obvious from the preceding two paragraphs that the bill does not harm free private enterprise,
since the latter can always choose under what conditions it will produce software; some of these will be
acceptable to the State, and others will not be since they contradict the guarantee of the basic principles
listed above. This free initiative is of course compatible with the freedom of industry and freedom of

192

Appendixes

contract (in the limited form in which the State can exercise the latter). Any private subject can produce
software under the conditions which the State requires, or can refrain from doing so. Nobody is forced
to adopt a model of production, but if they wish to provide software to the State, they must provide the
mechanisms which guarantee the basic principles, and which are those described in the bill.

By way of an example: nothing in thetext of the bill would prevent your company offering the State bodies
an office suite, under the conditions defined in the bill and setting the price that you consider satisfactory.
If you did not, it would not be due to restrictions imposed by the law, but to business decisionsrelative to
the method of commercialising your products, decisions with which the State is not involved.

To continue, you note that: 2. "Your proposal, by making mandatory the use of open source software,
establishes discriminatory and non-competitive treatment in contracting and acquisitions by public
organizations...".

This statement isjust areiteration of the previous one, and so the response can be found above. However,
let us concern ourselves for amoment with your comment regarding "non-competitive practices.”

Of course, in defining any kind of purchase, the buyer sets conditions which relate to the proposed use of
the good or service. From the start, this excludes certain manufacturers from the possibility of competing,
but does not excludethem a priori, but rather based on a series of principles determined by the autonomous
will of the purchaser, and so the process takes place in conformance with the law. And in the hill it is
established that no-one is excluded from competing as far as he guarantees the fulfilment of the basic
principles.

Furthermore, the bill stimulates competition, since it tends to generate a supply of software with better
conditions of usability, and to better existing work, in amodel of continuous improvement.

Onthe other hand, the central aspect of competition isthe chanceto provide better choicesto the consumer.
Now, it is impossible to ignore the fact that marketing does not play a neutral role when the product is
offered on the market (since accepting the opposite would lead one to suppose that firms expenses in
marketing lack any sense), and that therefore a significant expense under this heading can influence the
decisions of the purchaser. This influence of marketing isin large measure reduced by the bill that we are
backing, since the choice within the framework proposed is based on the technical merits of the product
and not on the effort put into commercialisation by the producer; in this sense, competition is increased,
since the smallest software producer can compete on equal terms with the most powerful corporations.

It is necessary to stress that there is no position more anti-competitive than that of the big software
producers, which frequently abuse their dominant position, since in innumerable cases they propose as
a solution to problems raised by users: "update your software to the new version" (at the user's expense,
naturally); furthermore, it is common to find arbitrary cessation of technical help for products, which,
in the provider's judgement alone, are old; and so, to receive any kind of technical assistance, the user
finds himself forced to migrate to new versions (with non-trivial costs, especialy as changesin hardware
platform are often involved). And asthewholeinfrastructure is based on proprietary dataformats, the user
staystrapped in the need to continue using products from the same supplier, or to make the huge effort to
change to another environment (probably also proprietary).

You add: 3. "By forcing the State to favour abusiness model supporting exclusively open source software,
your proposal will discouragelocal and international software manufacturerswho make real and important
investments in the country, create a significant number of direct and indirect jobs, and thus contribute
to the national income. In contrast, open source software development always has a lesser benefit to the
economy, since it mainly creates jobs in the service sector.”

I do not agree with your statement. Partly because of what you yourself point out in paragraph 6 of your
letter, regarding the relative weight of services in the context of software use. This contradiction alone
wouldinvalidateyour position. The service model, adopted by alarge number of companiesin the software
industry, ismuch larger in economic terms, and with atendency to increase, than thelicensing of programs.

193

Appendixes

On the other hand, the private sector of the economy has the widest possible freedom to choose the
economic model which best suitsitsinterests, evenif thisfreedom of choiceis often obscured subliminally
by the disproportionate expenditure on marketing by the producers of proprietary software.

In addition, a reading of your opinion would lead to the conclusion that the State market is crucia and
essential for the proprietary software industry, to such a point that the choice made by the State in this bill
would completely eliminate the market for these firms. If that is true, we can deduce that the State must
be subsidising the proprietary software industry. In the unlikely event that this were true, the State would
have theright to apply the subsidiesin the areait considers of greatest socia value; it isundeniable, inthis
improbable hypothesis, that if the State decided to subsidise software, it would have to do so choosing the
free over the proprietary, considering its social effect and the rational use of taxpayer's money.

In respect of the jobs generated by proprietary software in countries like ours, these mainly concern
technical tasks of little aggregate value; at the local level, the technicians who provide support for
proprietary software produced by transnational companies do not have the possibility of fixing bugs, not
necessarily for lack of technical capability or of talent, but because they do not have access to the source
code to fix it. With free software one creates more technically qualified employment and a framework of
free competence where success is only tied to the ability to offer good technical support and quality of
service, one stimulatesthe market, and oneincreasesthe shared fund of knowledge, opening up alternatives
to generate services of greater total valueand ahigher quality level, to thebenefit of all involved: producers,
service organisations, and consumers.

It isa common phenomenon in developing countries that local software industries obtain the majority of
their takings in the service sector, or in the creation of ad hoc software. Therefore, any negative impact
that the application of the bill might have in this sector will be more than compensated by a growth in
demand for services (aslong asthese are carried out to high quality standards). If thetransnational software
companies decide not to compete under these new rules of the game, it is likely that they will undergo
some decrease in takings in terms of payment for licences; however, considering that these firms continue
to allege that much of the software used by the State has been illegally copied, one can see that the impact
will not be very serious. Certainly, in any case their fortune will be determined by market laws, changes
in which cannot be avoided; many firms traditionally associated with proprietary software have already
set out on the road (supported by copious expense) of providing services associated with free software,
which shows that the models are not mutually exclusive.

With this bill the State is deciding that it needs to preserve certain fundamental values. And it is deciding
this based on its sovereign power, without affecting any of the constitutional guarantees. If these values
could be guaranteed without having to choose a particular economic model, the effects of the law would
be even more beneficial. In any case, it should be clear that the State does not choose an economic model;
if it happens that there only exists one economic model capable of providing software which provides the
basic guarantee of these principles, thisis because of historical circumstances, not because of an arbitrary
choice of agiven model.

Your letter continues: "4. "Y our proposal imposes the use of open source software without considering
the risksthis carriesto security, warranty, and possible violation of the intellectual property rights of third
parties."

Alluding in an abstract way to "the risks this carries ", without specifically mentioning a single one of
these supposed dangers, shows at the least some lack of knowledge of the topic. So, allow me to enlighten
you on these points.

On security:

National security has already been mentioned in general terms in the initial discussion of the basic
principles of the bill. In more specific terms, relative to the security of the softwareitself, it iswell known
that all software (whether proprietary or free) contains errorsor bugs (in programmers slang). But itisalso

194

Appendixes

well-known that the bugs in free software are fewer, and are fixed much more quickly, than in proprietary
software. It is not in vain that numerous public bodies responsible for the IT security of State systemsin
developed countries require the use of free software for the same conditions of security and efficiency.

What is impossible to prove is that proprietary software is more secure than free, without the public
and open inspection of the scientific community and users in general. This demonstration is impossible
because the model of proprietary software itself prevents this analysis, so that any guarantee of security
is based only on promises of good intentions (biased, by any reckoning) made by the producer itself, or
its contractors.

It should be remembered that in many cases, the licensing conditions include de non-disclosure clauses
which prevent the user from publicly revealing security flaws found in the licensed proprietary product.

In respect of the guarantee:

Asyou know perfectly well, or could find out by reading the End User License Agreement of the products
you license, in the great majority of casesthe guarantees are limited to replacement of the storage medium
in case of defects, but in no caseis compensation given for direct or indirect damages, loss of profits, etc...
If asaresult of asecurity bugin one of your products, not fixed in time by yourselves, an attacker managed
to compromise crucial State systems, what guarantees, reparations and compensati on woul d your company
make in accordance with your licensing conditions? The guarantees of proprietary software, inasmuch as
programs are delivered as is, that is, in the state in which they are, with no additional responsibility of the
provider in respect of function, in no way differ from those normal with free software.

On Intellectual Property:

Questions of intellectual property fall outside the scope of thishill, since they are covered by other specific
laws. The free software model in no way impliesignorance of these laws, and in fact the great majority of
free softwareis covered by copyright. In reality, the inclusion of this question in your observations shows
your confusion in respect of the legal framework in which free software is developed. The inclusion of
the intellectual property of others in works claimed as on€e's own is not a practice that has been noted in
the free software community; whereas, unfortunately, it has been in the area of proprietary software. As
an example, the condemnation by the Commercial Court of Nanterre, France, on 271" September 2001
of Microsoft Corp. to a penalty of 3 million francs in damages and interest, for violation of intellectual
property (piracy, to use the unfortunate term that your firm commonly uses in its publicity).

Y ou go onto say that: 5. "It erroneously assumesthat open sour ce softwareisfree software, that is, without
cost, and therefore arrives at incorrect conclusions about money saved by the State. It has no cost-benefit
analysis to back up this assumption."”

This observationiswrong; in principle, freedom and lack of cost are orthogonal concepts: thereis software
which is proprietary and charged for (for example, MS Office), software which is proprietary and free
of charge (MS Internet Explorer), software which is free and charged for (Red Hat, SuSE etc., Gnu/
Linux distributions), software which isfree and not charged for (Apache, OpenOffice, Mozilla), and even
software which can be licensed in a range of combinations (MySQL).

Certainly free software is not necessarily free of charge. And thetext of the bill does not state that it hasto
be s0, as you will have noted after reading it. The definitionsincluded in the bill state clearly what should
be considered free software, at no point referring to freedom from charges. Although the possibility of
savings in payments for proprietary software licenses are mentioned, the foundations of the bill clearly
refer to the fundamental guaranteesto be preserved and to the stimulusto local technological development.
Given that a democratic state must support these principles, it has no other choice than to use software
with publicly available source code, and to exchange information only in standard formats.

If the State does not use software with these characteristics, it will be weakening basic republican
principles. Luckily, free software also implieslower total costs; however, even given the hypothesis (easily

195

Appendixes

disproved) that it was more expensive than proprietary software, the simple existence of an effective free
software tool for a particular IT function would oblige the State to use it; not by command of this hill,
but because of the basic principles we enumerated at the start, and which arise from the very essence of
the lawful democratic State.

You continue: 6. "It iswrong to think that open source software is free. Research by the Gartner Group
(an important market researcher in the technology world, well-known worldwide) has shown that the cost
of software acquisition (operating system and applications) is only 8% of the total cost of ownership that
enterprises and organi sations must face as a consequence of the rational and productive use of technology.
"The other 92% consists of: installation, training, support, maintenance, management and administration,
and downtime."

Thisargument repeatsthat already given in paragraph 5 and partly contradicts paragraph 3. For the sake of
brevity werefer to the comments on those paragraphs. However, allow meto point out that your conclusion
is logically false: even if according to the Gartner Group the cost of software is on average only 8% of
the total cost of use, this does not in any way deny the existence of software which is free of charge, that
is, with alicensing cost of zero.

In addition, in this paragraph you correctly point out that the service components and losses due to down
time make up the largest part of the total cost of software use, which, as you will note, contradicts your
statement regarding the small value of services suggested in paragraph 3. Now the use of free software
contributes significantly to reduce the remaining life-cycle costs. Thisreduction in the costs of installation,
support etc. can be noted in several areas: in thefirst place, the competitive service model of free software,
support and maintenance for which can be freely contracted out to a range of suppliers competing on
the grounds of quality and low cost (this is true for installation, enabling, and support, and in large part
for maintenance). In the second place, due to the reproductive characteristics of the model, maintenance
carried out for an application is easily replicable, without incurring large costs (that is, without paying
more than once for the same thing) since modifications, if one wishes, can be incorporated in the common
fund of knowledge. Thirdly, the huge costs caused by non-functioning software (blue screens of death,
malicious code such as virus, worms, and trojans, exceptions, general protection faults and other well-
known problems) are reduced considerably by using more stable software. And it is well-known that one
of the most remarkable virtues of free softwareis its stability.

Y ou further statethat: 7. "One of the arguments supporting your proposal isthe supposed cheapnessof open
source software when compared to commercial software, without considering the possibility of volume
licensing models, which can be highly advantageous for the State, as has happened in other countries."

| have aready pointed out that what is in question is not the cost of the software but the principles of
freedom of information, accessibility, and security. These arguments have been covered extensively inthe
preceding paragraphsto which | would refer you.

On the other hand, there certainly exist types of volume licensing (although unfortunately proprietary
software does not satisfy the basic principles). But as you correctly pointed out in the immediately
preceding paragraph of your letter, they only manage to reduce the impact of a component which makes
up no more than 8% of the total.

Y ou continue: 8. "Additionally, the approach chosen by your project (i) is clearly more expensive because
of the high costs of migration; (ii) risksloss of interoperability among information systems, both inside the
State and between the State and the public sector, due to the many different distributions of open source
software on the market."

Let us analyse your statement in two parts. Your first argument, that migration implies high costs, isin
reality an argument in favour of the bill. Because the more time goes by, the more difficult migration
to another technology will become; and at the same time, the security risks associated with proprietary
software will continue to increase. In this way, the use of proprietary systems and formats will make the
State ever more dependent on specific suppliers. On the contrary, once apolicy of using free software has

196

Appendixes

been established (which certainly, doesimply some cost) then on the contrary migration from one system
to another becomes very simple, since al datais stored in open formats. On the other hand, migration to
an open software context implies no more costs than migration between two different proprietary software
contexts, which invalidates your argument completely.

The second argument refersto "loss of interoperability among information systems, both inside the State
and between the State and the private sector”. This statement implies a certain lack of knowledge of the
way in which free software is built, which does not maximise the dependence of the user on a particular
platform, as normally happens in the realm of proprietary software. Even when there are multiple free
software distributions, and numerous programs which can be used for the samefunction, interoperability is
guaranteed as much by the use of standard formats, as required by the bill, asby the possibility of creating
interoperabl e software given the availability of the source code.

You then say that: 9. "In most cases, open source software does not offer adequate levels of service to
achieve better productivity by itsusers, nor doesit offer warranties from well-known manufacturers. These
things have caused many public entities to go back on their decisions to use open source software; they
are now using commercial softwarein its place."

This observation is without foundation. In respect of the guarantee, your argument was rebutted in the
responseto paragraph 4. In respect of support services, it is possible to use free software without them (just
as a so happens with proprietary software), but anyone who does need them can obtain support separately,
whether from local firms or from international corporations, again just as in the case of proprietary
software.

On the other hand, it would contribute greatly to our analysis if you could inform us about free software
projects established in public bodieswhich have already been abandoned in favour of proprietary software.
We know of a good number of cases where the opposite has taken place, but do not know of any where
what you describe has taken place.

Y ou continue by observing that: 10. " This project discourages creativity in the Peruvian software industry,
which sells USD 40 million worth of goods every year, USD 4 million of that exported (10" place in the
ranking of Peruvian non traditional exports, more than handcrafted goods) and isasource of highly skilled
jobs. With alaw encouraging the use of open source software, programmerslosetheir intellectual property
rights and their most important source of remuneration.”

It isclear enough that nobody isforced to commercialisetheir code asfree software. The only thing to take
into account isthat if it is not free software, it cannot be sold to the public sector. Thisis not in any case
the main market for the national software industry. We covered some questions referring to the influence
of the bill on the generation of employment which would be both highly technically qualified and in better
conditions for competition above, so it seems unnecessary to insist on this point.

What follows in your statement is incorrect. On the one hand, no author of free software loses his
intellectual property rights, unless he expressly wishes to place his work in the public domain. The free
software movement has always been very respectful of intellectual property, and has generated widespread
public recognition of authors. Names like those of Richard Stallman, Linus Torvalds, Guido van Rossum,
Larry Wall, Miguel de Icaza, Andrew Tridgell, Theo de Raadt, Andrea Arcangeli, Bruce Perens, Darren
Reed, Alan Cox, Eric Raymond, and many others, are recognised world-wide for their contributions to
the development of software that is used today by millions of people throughout the world, whilst there
are many material authors of excellent pieces of proprietary software who remain anonymous. On the
other hand, to say that the rewards for authors rights make up the main source of payment of Peruvian
programmersisin any case aguess, in particular since there is no proof to this effect, nor a demonstration
of how the use of free software by the State would influence these payments.

Y ou go onto say that: 11. " Since open source software can befreely distributed, it cannot make any money
for its developers by exportation. In this way, it weakens the multiplier effect of software sales to other
countries and stunts the growth of this local industry, which the State should be stimulating.”

197

Appendixes

This statement shows once again complete ignorance of the mechanisms of and market for free software.
It triesto claim that the market of sale of non-exclusive rightsfor use (sale of licences) isthe only possible
one for the software industry, when you yourself pointed out several paragraphs above that it is not even
the most important one. The incentives that the bill offers for the growth of a supply of better qualified
professionals, together with the increase in experience that working on a large scale with free software
within the State will bring for Peruvian technicians, will place them in a highly competitive position to
offer their services abroad.

Y ou then state that: "12. In the forum, the importance of the use of open source software in education was
discussed, without commenting on the complete failure of thisinitiative in countries like Mexico. There,
the same State officials who supported the project now say that open source software did not provide
a learning experience to children in schools, adequate levels of training were not available nationwide,
inadequate support for the platform was provided, and the software was not integrated well enough with
existing school computer systems."

Infact Mexico hasgoneinto reverse with the Red Escolar (Schools Network) project. Thisis due precisely
to the fact that the driving forces behind the Mexican project used license costs as their main argument,
instead of the other reasons specified in our project, which arefar more essential. Because of thisconceptual
mistake, and as a result of the lack of effective support from the SEP (Secretary of State for Public
Education), the assumption was made that to implant free software in schools it would be enough to drop
their software budget and send them a CD ROM with GNU/Linux instead. Of course this failed, and it
could not have been otherwise, just as school laboratoriesfail when they use proprietary software and have
no budget for implementation and maintenance. That is exactly why our bill is not limited to making the
use of free software mandatory, but recognisesthe need to create aviable migration plan, in which the State
undertakesthetechnical transitionin an orderly way in order to then enjoy the advantages of free software.

Y ou end with arhetorical question: 13. "If open source softwarefulfilsall therequirements of State entities,
why should alaw be needed to adopt its use? Should not the market freely choose which products provide
more benefits and value?’

We agree that in the private sector of the economy, it must be the market that decides which products to
use, and no State interferenceis permissible there. However, in the case of the public sector, the reasoning
is not the same: as we have aready established, the State archives, handles, and transmits information
which does not belong to it, but which is entrusted to it by citizens, who have no alternative under the
rule of law. As a counterpart to thislegal requirement, the State must take extreme measures to safeguard
the integrity, confidentiality, and accessibility of this information. The use of proprietary software raises
serious doubts as to whether these requirements can be fulfilled, lacks conclusive evidence in this respect,
and so is not suitable for use in the public sector.

The need for alaw is based, firstly, on the realisation of the fundamental principles listed above in the
specific area of software; secondly, on the fact that the State is not an ideal homogeneous entity, but made
up of multiple bodies with varying degrees of autonomy in decision making. Given that it isinappropriate
to use proprietary software, thefact of establishing theserulesin law will prevent the personal discretion of
any State employee from putting at risk the information which belongsto citizens. And above al, because
it constitutes an up-to-date reaffirmation in relation to the means of management and communication of
information used today, it is based on the republican principle of openness to the public.

In conformance with this universally accepted principle, the citizen has the right to know all information
held by the State and not covered by well-founded declarations of secrecy based on law. Now, software
dealswith information and isitself information. Information in aspecial form, capable of being interpreted
by a machine in order to execute actions, but crucia information all the same because the citizen has a
legitimate right to know, for example, how his vote is computed or his taxes calculated. And for that he
must have free access to the source code and be able to prove to his satisfaction the programs used for
electoral computations or calculation of his taxes.

D.5. Decree of Measuresto Promote the Knowledge Society in Andalucia

198

Appendixes

Below are some of the articles, related to free software, of the abovementioned Decree on Measures to
Encourage the Knowledge Society in Andalucia[99].

 Article 11. Educational materials in computer format.

1. All public teaching centres will have educational materials and programs in computerised format,
preferably based on free software. In any case, the centreswill receive these formats from the Regional
Government of Andalucia.

2. Likewise, the teachers will receive incentives for using computerised curricular materials and
programs or using Internet, especially with regard to developments made using free software.

» Article 31. Free software.

1. When purchasing computer equipment that will be used in public teaching centres for educational
activities, it should be ensured that al the hardware is compatible with operating systems based on free
software. Computers will come preinstalled with all the free software that is necessary for the specific
purposes for which they are intended.

2. The computer eguipment that the Regional Government of Andalucia provides for public access to
Internet will be based on free software products.

3. The Regional Government of Andaluciawill foster the dissemination and the personal, domestic and
educational use of free software. For these purposes, an online advice service will be established for the
installation and use of these types of products.

 Article 49. Objective.

1. Therewill be subsidies for the development of innovative projectsthat facilitate theintegration of 1T
and communications in professional and occupational training.

2. These projects will follow one of the following models:

a) Preparation of materials and contents of professional and occupational training for their use and
dissemination by Internet, especially with regard to the developments made using free software.

b) Training initiatives using innovative methods, such as long-distance |earning and methods whereby
the students only need to attend the courses personally on certain occasions.

Appendix E. Creative Commons' Attribution-
ShareAlike

Version 3.0 Unported

@creative
commons

LEGAL CODE

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY -

199

Appendixes

CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON
AN "ASIS'" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE
INFORMATION PROVIDED, AND DISCLAIMSLIABILITY FOR DAMAGES RESULTING FROM
ITSUSE.

1. License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORISED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THISLICENSE. TO THE EXTENT THIS LICENSE MAY BE
CONSIDERED TOBE A CONTRACT, THE LICENSOR GRANTSYOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. " Adaptation" means awork based upon the Work, or upon the Work and other pre-existing works,
such asatrandation, adaptation, derivative work, arrangement of music or other alterations of aliterary
or artistic work, or phonogram or performance and includes cinematographic adaptations or any other
form in which the Work may be recast, transformed, or adapted including in any form recognisably
derived from the original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronisation of the Work in timed-relation with a moving
image ("synching") will be considered an Adaptation for the purpose of this License.

b. " Callection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute
intellectual creations, in which the Work is included in its entirety in unmodified form along with
one or more other contributions, each constituting separate and independent works in themselves,
which together are assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined below) for the purposes of this License.

c. "Creative Commons Compatible License® means a license that is listed at http://
creativecommons.org/compatiblelicenses that has been approved by Creative Commons as being
essentially equivalent to this License, including, at a minimum, because that license: (i) containsterms
that have the same purpose, meaning and effect as the License Elements of this License; and, (ii)
explicitly permits the relicensing of adaptations of works made available under that license under this
License or a Creative Commons jurisdiction license with the same License Elements as this License.

d. " Distribute" meansto make availableto the public the original and copies of the Work or Adaptation,
as appropriate, through sale or other transfer of ownership.

e. "License Elements’ means the following high-level license attributes as selected by Licensor and
indicated in the title of this License: Attribution, ShareAlike.

f. "Licensor" meanstheindividual, individuals, entity or entities that offer(s) the Work under the terms
of this License.

g. "Original Author" means, in the case of aliterary or artistic work, the individual, individuals, entity
or entities who created the Work or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who

200

Appendixes

act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic worksor expressions
of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organisation that
transmits the broadcast.

h. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be
the mode or form of its expression including digital form, such as a book, pamphlet and other
writing; alecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical
work; a choreographic work or entertainment in dumb show; a musical composition with or without
words; a cinematographic work to which are assimilated works expressed by a process analogous
to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a
photographic work to which are assimilated works expressed by a process analogous to photography; a
work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of datato
the extent it is protected as a copyrightable work; or awork performed by avariety or circus performer
to the extent it is not otherwise considered aliterary or artistic work.

i. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

j- "Publicly Perform" meansto perform public recitations of the Work and to communicate to the public
those public recitations, by any means or process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that members of the public may
access these Works from a place and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the public of the performances of the
Work, including by public digital performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

k. " Reproduce’ meansto make copies of the Work by any meansincluding without limitation by sound
or visual recordings and the right of fixation and reproducing fixations of the Work, including storage
of aprotected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this Licenseis intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the
Work as incorporated in the Collections;

b. tocreateand Reproduce Adaptationsprovided that any such Adaptation, including any translation in any
medium, takesreasonable stepsto clearly label, demarcate or otherwise identify that changeswere made
to the origina Work. For example, a trandation could be marked "The original work was trandated
from English to Spanish," or a modification could indicate "The original work has been modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

201

Appendixes

a. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights granted
under this License;

b. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives
the exclusive right to collect such royalties for any exercise by You of the rights granted under this
License; and,

c. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individualy or, in the event that the Licensor is a member of a collecting society that administers
voluntary licensing schemes, viathat society, from any exercise by Y ou of the rights granted under
this License.

The above rights may be exercised in al media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise the
rightsin other media and formats. Subject to Section 8(f), al rights not expressly granted by Licensor are
hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must
include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the
Work You Distribute or Publicly Perform. Y ou may not offer or impose any terms on the Work that
restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted
to that recipient under thetermsof the License. Y ou may not sublicensethe Work. Y ou must keep intact
all notices that refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When Y ou Distribute or Publicly Perform the Work, You may
not impose any effective technological measures on the Work that restrict the ability of a recipient of
the Work from Y ou to exercise the rights granted to that recipient under the terms of the License. This
Section 4(a) appliesto the Work asincorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this License. If You create a Collection,
upon notice from any Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(c), as requested. If You create an Adaptation, upon notice from any
Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by
Section 4(c), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i) this License; (ii) a
later version of this License with the same License Elements asthis Licensg; (iii) a Creative Commons
jurisdiction license (either this or a later license version) that contains the same License Elements as
this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If
you license the Adaptation under one of the licenses mentioned in (iv), you must comply with the
terms of that license. If you license the Adaptation under the terms of any of the licenses mentioned in
(i), (ii) or (iii) (the "Applicable License"), you must comply with the terms of the Applicable License
generaly and the following provisions: (1) Y ou must include a copy of, or the URI for, the Applicable
License with every copy of each Adaptation You Distribute or Publicly Perform; (I1) You may not
offer or impose any terms on the Adaptation that restrict the terms of the Applicable License or the
ability of the recipient of the Adaptation to exercise the rights granted to that recipient under the terms
of the Applicable License; (I11) You must keep intact all notices that refer to the Applicable License
and to the disclaimer of warranties with every copy of the Work as included in the Adaptation You
Distribute or Publicly Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You
may not impose any effective technological measures on the Adaptation that restrict the ability of a

202

Appendixes

recipient of the Adaptation from Y ou to exercise the rights granted to that recipient under the terms
of the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collection,
but this does not require the Collection apart from the Adaptation itself to be made subject to the terms
of the Applicable License.

c. If You Digtribute, or Publicly Perform the Work or any Adaptations or Collections, Y ou must, unless
a regquest has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means Y ou are utilising: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another
party or parties(e.g., asponsor institute, publishing entity, journal) for attribution (" Attribution Parties")
in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or
parties; (ii) thetitle of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any,
that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work; and (iv), consistent with Section 3(b), in the case of
an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French trandlation
of the Work by Original Author," or "Screenplay based on origina Work by Original Author"). The
credit required by this Section 4(c) may beimplemented in any reasonable manner; provided, however,
that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for
all contributing authors of the Adaptation or Collection appears, then as part of these credits and in
amanner at least as prominent as the credits for the other contributing authors. For the avoidance of
doubt, Y ou may only use the credit required by this Section for the purpose of attribution in the manner
set out above and, by exercising Y our rights under this License, Y ou may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/
or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Origina Author, Licensor and/or Attribution Parties.

d. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable
law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any
Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in
relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section
3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation,
modification or other derogatory action prejudicial to the Original Author's honor and reputation, the
Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this
License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF
THISLICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HASBEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

203

Appendixes

a. ThisLicense and the rights granted hereunder will terminate automatically upon any breach by Y ou of
the terms of this License. Individuals or entities who have received Adaptations or Collections from
Y ou under this License, however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the
applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release
the Work under different license terms or to stop distributing the Work at any time; provided, however
that any such election will not serve to withdraw this License (or any other license that has been, or
isrequired to be, granted under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to Y ou under
this License.

b. Eachtime You Distribute or Publicly Perform an Adaptation, Licensor offersto the recipient alicense
to the original Work on the same terms and conditions as the license granted to Y ou under this License.

c. If any provision of this Licenseisinvalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this License, and without further action by the
parties to this agreement, such provision shall be reformed to the minimum extent necessary to make
such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such
waiver or consent shall bein writing and signed by the party to be charged with such waiver or consent.

e. ThisLicense constitutesthe entire agreement between the partieswith respect to the Work licensed here.
There are no understandings, agreements or representations with respect to the Work not specified here.
Licensor shall not be bound by any additional provisions that may appear in any communication from
Y ou. ThisLicense may not be modified without the mutual written agreement of the Licensor and Y ou.

f. Therights granted under, and the subject matter referenced, in this License were drafted utilising the
terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended
on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the
WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as
revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in
which the License terms are sought to be enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable national law. If the standard suite of rights
granted under applicable copyright law includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.

Appendix F. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin S, Fifth Floor, Boston, MA
02110-1301 USA Everyoneis permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this Licenseisto make a manual, textbook, or other functional and useful document "free"
inthe sense of freedom: to assure everyonethe effective freedom to copy and redistributeit, with or without

204

Appendixes

modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher away to get credit for their work, while not being considered responsible for modifications
made by others.

ThisLicenseisakind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purposeisinstruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants aworld-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". Y ou accept the license if you copy, modify or distribute the work in away requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or aportion of it, either
copied verbatim, or with modifications and/or trans ated into another language.

A "Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readersis not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and

205

Appendixes

edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
arenot generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whosetitle either is precisely XY Z or
contains XY Z in parenthesesfollowing text that translates X Y Z in another language. (Here XY Z standsfor
a specific section name mentioned below, such as"Acknowledgements', "Dedications’, "Endorsements”,
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which statesthat this License applies
to the Document. These Warranty Disclaimers are considered to be included by referencein this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have isvoid and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must aso follow the conditionsin section 3.

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copiesin coversthat carry, clearly and legibly, al these Cover Texts: Front-Cover Textson thefront cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. Y ou may add other material on the coversin addition. Copying with changeslimited
to the covers, aslong asthey preserve thetitle of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(asmany asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opague copy, or state in or with each
Opague copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at |east one year after the last time you distribute an Opague copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them achanceto provide you with an updated version of the Document.

206

Appendixes

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

» B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (al of its principal authors, if it has fewer than five), unless they release you from this
regquirement.

» C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
* D. Preserve all the copyright notices of the Document.
» E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F.Include, immediately after the copyright notices, alicense notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum bel ow.

* G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts givenin
the Document's license notice.

* H. Include an unaltered copy of this License.

* |. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If thereisno
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

 J. Preserve the network location, if any, given in the Document for public accessto a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. Y ou may omit a network location for a
work that was published at |east four years before the Document itself, or if the original publisher of
the version it refersto gives permission.

» K. For any section Entitled "Acknowledgements' or "Dedications’, Preserve the Title of the section,
and preservein the section all the substance and tone of each of the contributor acknowledgements and/
or dedications given therein.

* L. Preserveadl the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

» M. Delete any section Entitled "Endorsements’. Such a section may not be included in the Modified
Version.

* N. Do not retitle any existing section to be Entitled "Endorsements’ or to conflict in title with any
Invariant Section.

e O. Preserve any Warranty Disclaimers.

207

Appendixes

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections asinvariant. To do this, add their titlesto the list of Invariant Sectionsin the Modified
Version's license notice. These titles must be distinct from any other section titles.

Y ou may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your
Modified Version by various parties - for example, statements of peer review or that the text has been
approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the origina documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make thetitle of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else aunique number. Make the same
adjustment to the section titlesin thelist of Invariant Sectionsin the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled " Acknowledgements', and
any sections Entitled "Dedications’. Y ou must delete all sections Entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents rel eased under this License,
and replacetheindividual copiesof thisLicenseinthevariousdocumentswith asingle copy that isincluded
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documentsin all other respects.

Y ou may extract asingle document from such acollection, and distributeit individually under thisLicense,
provided you insert a copy of thisLicenseinto the extracted document, and follow thisLicensein al other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivativeswith other separate and independent documents or works,
in or on avolume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation's users beyond what the
individua works permit. When the Document is included in an aggregate, this License does not apply to
the other worksin the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed

208

Appendixes

on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole

aggregate.
8. TRANSLATION

Trandation is considered akind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include trandlations of some or al Invariant Sections in addition to
the original versions of these Invariant Sections. Y ou may include a translation of this License, and al
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of adisagreement between the trand ation and the original version of this License or anotice or disclaimer,
the original version will prevail.

If asectioninthe Document isEntitled " Acknowledgements', "Dedications’, or "History", the requirement
(section 4) to Preserveits Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THISLICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
fromtimeto time. Such new versionswill be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to usethis License for your documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR Y OUR NAME. Permissionisgranted to copy, distribute and/or modify thisdocument
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of thelicenseisincluded in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line
with this:

with the Invariant Sectionsbeing LIST THEIR TITLES, with the Front-Cover Textsbeing LIST, and with
the Back-Cover Textsbeing LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

209

Appendixes

If your document contains nontrivial examples of program code, we recommend rel easing these examples
in parallel under your choice of free software license, such asthe GNU General Public License, to permit
their usein free software.

210

